The physics of quantum mechanics /:
The Physics of Quantum Mechanics aims to give students a good understanding of how quantum mechanics describes the material world. It shows that the theory follows naturally from the use of probability amplitudes to derive probabilities. It stresses that stationary states are unphysical mathematical...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY :
Oxford University Press,
2014.
|
Ausgabe: | First edition. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The Physics of Quantum Mechanics aims to give students a good understanding of how quantum mechanics describes the material world. It shows that the theory follows naturally from the use of probability amplitudes to derive probabilities. It stresses that stationary states are unphysical mathematical abstractions that enable us to solve the theory's governing equation, the time-dependent Schroedinger equation. Every opportunity is taken to illustrate the emergence of the familiarclassical, dynamical world through the quantum interference of stationary states. The text stresses the continuity be. |
Beschreibung: | 1 online resource (407 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780191002274 0191002275 1306043034 9781306043038 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn868971318 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 130509s2014 nyua ob 001 0 eng d | ||
040 | |a E7B |b eng |e rda |e pn |c E7B |d OCLCO |d N$T |d ZCU |d OCLCF |d EBLCP |d IDEBK |d YDXCP |d DEBSZ |d OCLCQ |d IUP |d OCLCQ |d WYU |d U3W |d ITD |d OCLCQ |d K6U |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 861559527 | ||
020 | |a 9780191002274 |q (electronic bk.) | ||
020 | |a 0191002275 |q (electronic bk.) | ||
020 | |a 1306043034 | ||
020 | |a 9781306043038 | ||
020 | |z 9780199688579 |q (pbk.) | ||
020 | |z 9780199688562 |q (hardback) | ||
035 | |a (OCoLC)868971318 |z (OCoLC)861559527 | ||
050 | 4 | |a QC174.12 |b .B56 2014eb | |
072 | 7 | |a LAN |x 020000 |2 bisacsh | |
082 | 7 | |a 407 | |
049 | |a MAIN | ||
100 | 1 | |a Binney, James, |d 1950- |1 https://id.oclc.org/worldcat/entity/E39PCjBvTgwJMrKtg8kDT9kQ7b |0 http://id.loc.gov/authorities/names/n81011660 | |
245 | 1 | 4 | |a The physics of quantum mechanics / |c James Binney, Rudolf Peierls Centre for Theoretical Physics and Merton College, University of Oxford, David Skinner, Department of Applied Mathematics and Theoretical Physics, University of Cambridge. |
250 | |a First edition. | ||
264 | 1 | |a New York, NY : |b Oxford University Press, |c 2014. | |
300 | |a 1 online resource (407 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Contents; Preface; 1 Introduction; 1.1 Origins; 1.2 Measurements; 1.2.1 Measurement involves disturbance; Heisenberg microscope; 1.2.2 Ideal measurements; 1.2.3 Summary; 1.3 Probability amplitudes; 1.3.1 Two-slit interference; 1.4 Quantum states; 1.4.1 Observables; Complete sets of amplitudes; 1.4.2 Vector spaces and their duals; 1.4.3 The energy representation; 1.4.4 Polarisation of photons; 1.5 Summary; Problems; 2 Operators, measurement and time evolution; 2.1 Operators; Functions of operators; Commutators; 2.2 Evolution in time; 2.2.1 Evolution of expectation values. | |
505 | 8 | |a 2.3 The position representation2.3.1 Hamiltonian of a particle; 2.3.2 Wavefunction for well-defined momentum; The uncertainty principle; 2.3.3 Dynamics of a free particle; 2.3.4 Back to two-slit interference; 2.3.5 Generalisation to three dimensions; Probability current; The virial theorem; 2.4 Summary; Problems; 3 Oscillators; 3.1Stationary states of a harmonic oscillator; 3.2 Dynamics of oscillators; 3.2.1 Anharmonic oscillators; Problems; 4 Transformations and observables; 4.1 Transforming kets; 4.1.1 Translating kets; 4.1.2 Continuous transformations and generators. | |
505 | 8 | |a 4.1.3 The rotation operator4.1.4 Discrete transformations; The parity operator; Mirror operators; 4.2 Transformations of operators; The parity operator; Mirror operators; 4.3 Symmetries and conservation laws; 4.4The Heisenberg picture; 4.5 What is the essence of quantum mechanics?; Problems; 5 Motion in step potentials; 5.1 Square potential well; 5.1.1 Limiting cases; Infinitely deep well; Infinitely narrow well; 5.2 A pair of square wells; 5.2.1 Ammonia; The ammonia maser; 5.3 Scattering of free particles; The scattering cross-section; 5.3.1 Tunnelling through a potential barrier. | |
505 | 8 | |a 5.3.2 Scattering by a classically allowed region5.3.3 Resonant scattering; The Breit-Wigner cross-section; 5.4 How applicable are our results?; 5.5 Summary; Problems; 6 Composite systems; 6.1 Composite systems; 6.1.1 Collapse of the wavefunction; 6.1.2 Operators for composite systems; 6.1.3 Development of entanglement; 6.1.4 Einstein-Podolski-Rosen experiment; Bell's inequality; 6.2 Quantum computing; 6.3 The density operator; 6.3.1 Reduced density operators; 6.3.2 Shannon entropy; 6.4 Thermodynamics; 6.5 Measurement; Problems; 7Angular momentum; 7.1 Eigenvalues of Jz and J2. | |
505 | 8 | |a 7.1.1 Rotation spectra of diatomic molecules7.2 Spin and orbital angular momentum; 7.2.1 Orbital angular momentum; L as the generator of circular translations; Spectra of L2 and Lz; 7.2.2 Spin angular momentum; 7.3 Physics of spin; 7.3.1 Spin-half matrices; 7.3.2 Spin-one matrices; 7.3.3 The Stern-Gerlach experiment; Stern-Gerlach experiment with spin-one atoms; 7.3.4 Precession in a magnetic field; 7.3.5 The classical limit; 7.4 Orbital angular-momentum eigenfunctions; 7.4.1 Orbital angular momentum and parity; 7.4.2 Orbital angular momentum and kinetic energy; 7.4.3 Legendre polynomials. | |
520 | |a The Physics of Quantum Mechanics aims to give students a good understanding of how quantum mechanics describes the material world. It shows that the theory follows naturally from the use of probability amplitudes to derive probabilities. It stresses that stationary states are unphysical mathematical abstractions that enable us to solve the theory's governing equation, the time-dependent Schroedinger equation. Every opportunity is taken to illustrate the emergence of the familiarclassical, dynamical world through the quantum interference of stationary states. The text stresses the continuity be. | ||
650 | 0 | |a Quantum theory. |0 http://id.loc.gov/authorities/subjects/sh85109469 | |
650 | 6 | |a Théorie quantique. | |
650 | 7 | |a LANGUAGE ARTS & DISCIPLINES |x Study & Teaching. |2 bisacsh | |
650 | 7 | |a Quantum theory |2 fast | |
700 | 1 | |a Skinner, David. | |
758 | |i has work: |a The physics of quantum mechanics (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGh7T9wrWCKWhR4DkK84pX |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Binney, James. |t Physics of quantum mechanics. |d New York, NY : Oxford University Press, 2014 |h xiii, 392 pages |z 9780199688579 |w (DLC) 17731418 |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=653261 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=653261 |3 Volltext | |
936 | |a BATCHLOAD | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1492578 | ||
938 | |a ebrary |b EBRY |n ebr10783894 | ||
938 | |a EBSCOhost |b EBSC |n 653261 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26534417 | ||
938 | |a YBP Library Services |b YANK |n 11254426 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn868971318 |
---|---|
_version_ | 1813903633961451522 |
adam_text | |
any_adam_object | |
author | Binney, James, 1950- |
author2 | Skinner, David |
author2_role | |
author2_variant | d s ds |
author_GND | http://id.loc.gov/authorities/names/n81011660 |
author_facet | Binney, James, 1950- Skinner, David |
author_role | |
author_sort | Binney, James, 1950- |
author_variant | j b jb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.12 .B56 2014eb |
callnumber-search | QC174.12 .B56 2014eb |
callnumber-sort | QC 3174.12 B56 42014EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Cover; Contents; Preface; 1 Introduction; 1.1 Origins; 1.2 Measurements; 1.2.1 Measurement involves disturbance; Heisenberg microscope; 1.2.2 Ideal measurements; 1.2.3 Summary; 1.3 Probability amplitudes; 1.3.1 Two-slit interference; 1.4 Quantum states; 1.4.1 Observables; Complete sets of amplitudes; 1.4.2 Vector spaces and their duals; 1.4.3 The energy representation; 1.4.4 Polarisation of photons; 1.5 Summary; Problems; 2 Operators, measurement and time evolution; 2.1 Operators; Functions of operators; Commutators; 2.2 Evolution in time; 2.2.1 Evolution of expectation values. 2.3 The position representation2.3.1 Hamiltonian of a particle; 2.3.2 Wavefunction for well-defined momentum; The uncertainty principle; 2.3.3 Dynamics of a free particle; 2.3.4 Back to two-slit interference; 2.3.5 Generalisation to three dimensions; Probability current; The virial theorem; 2.4 Summary; Problems; 3 Oscillators; 3.1Stationary states of a harmonic oscillator; 3.2 Dynamics of oscillators; 3.2.1 Anharmonic oscillators; Problems; 4 Transformations and observables; 4.1 Transforming kets; 4.1.1 Translating kets; 4.1.2 Continuous transformations and generators. 4.1.3 The rotation operator4.1.4 Discrete transformations; The parity operator; Mirror operators; 4.2 Transformations of operators; The parity operator; Mirror operators; 4.3 Symmetries and conservation laws; 4.4The Heisenberg picture; 4.5 What is the essence of quantum mechanics?; Problems; 5 Motion in step potentials; 5.1 Square potential well; 5.1.1 Limiting cases; Infinitely deep well; Infinitely narrow well; 5.2 A pair of square wells; 5.2.1 Ammonia; The ammonia maser; 5.3 Scattering of free particles; The scattering cross-section; 5.3.1 Tunnelling through a potential barrier. 5.3.2 Scattering by a classically allowed region5.3.3 Resonant scattering; The Breit-Wigner cross-section; 5.4 How applicable are our results?; 5.5 Summary; Problems; 6 Composite systems; 6.1 Composite systems; 6.1.1 Collapse of the wavefunction; 6.1.2 Operators for composite systems; 6.1.3 Development of entanglement; 6.1.4 Einstein-Podolski-Rosen experiment; Bell's inequality; 6.2 Quantum computing; 6.3 The density operator; 6.3.1 Reduced density operators; 6.3.2 Shannon entropy; 6.4 Thermodynamics; 6.5 Measurement; Problems; 7Angular momentum; 7.1 Eigenvalues of Jz and J2. 7.1.1 Rotation spectra of diatomic molecules7.2 Spin and orbital angular momentum; 7.2.1 Orbital angular momentum; L as the generator of circular translations; Spectra of L2 and Lz; 7.2.2 Spin angular momentum; 7.3 Physics of spin; 7.3.1 Spin-half matrices; 7.3.2 Spin-one matrices; 7.3.3 The Stern-Gerlach experiment; Stern-Gerlach experiment with spin-one atoms; 7.3.4 Precession in a magnetic field; 7.3.5 The classical limit; 7.4 Orbital angular-momentum eigenfunctions; 7.4.1 Orbital angular momentum and parity; 7.4.2 Orbital angular momentum and kinetic energy; 7.4.3 Legendre polynomials. |
ctrlnum | (OCoLC)868971318 |
dewey-full | 407 |
dewey-hundreds | 400 - Language |
dewey-ones | 407 - Education, research, related topics |
dewey-raw | 407 |
dewey-search | 407 |
dewey-sort | 3407 |
dewey-tens | 400 - Language |
discipline | Sprachwissenschaft |
edition | First edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06246cam a2200625 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn868971318</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">130509s2014 nyua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">YDXCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IUP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">U3W</subfield><subfield code="d">ITD</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">861559527</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191002274</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191002275</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1306043034</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781306043038</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780199688579</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780199688562</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)868971318</subfield><subfield code="z">(OCoLC)861559527</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC174.12</subfield><subfield code="b">.B56 2014eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">LAN</subfield><subfield code="x">020000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">407</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Binney, James,</subfield><subfield code="d">1950-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjBvTgwJMrKtg8kDT9kQ7b</subfield><subfield code="0">http://id.loc.gov/authorities/names/n81011660</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The physics of quantum mechanics /</subfield><subfield code="c">James Binney, Rudolf Peierls Centre for Theoretical Physics and Merton College, University of Oxford, David Skinner, Department of Applied Mathematics and Theoretical Physics, University of Cambridge.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY :</subfield><subfield code="b">Oxford University Press,</subfield><subfield code="c">2014.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (407 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Contents; Preface; 1 Introduction; 1.1 Origins; 1.2 Measurements; 1.2.1 Measurement involves disturbance; Heisenberg microscope; 1.2.2 Ideal measurements; 1.2.3 Summary; 1.3 Probability amplitudes; 1.3.1 Two-slit interference; 1.4 Quantum states; 1.4.1 Observables; Complete sets of amplitudes; 1.4.2 Vector spaces and their duals; 1.4.3 The energy representation; 1.4.4 Polarisation of photons; 1.5 Summary; Problems; 2 Operators, measurement and time evolution; 2.1 Operators; Functions of operators; Commutators; 2.2 Evolution in time; 2.2.1 Evolution of expectation values.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3 The position representation2.3.1 Hamiltonian of a particle; 2.3.2 Wavefunction for well-defined momentum; The uncertainty principle; 2.3.3 Dynamics of a free particle; 2.3.4 Back to two-slit interference; 2.3.5 Generalisation to three dimensions; Probability current; The virial theorem; 2.4 Summary; Problems; 3 Oscillators; 3.1Stationary states of a harmonic oscillator; 3.2 Dynamics of oscillators; 3.2.1 Anharmonic oscillators; Problems; 4 Transformations and observables; 4.1 Transforming kets; 4.1.1 Translating kets; 4.1.2 Continuous transformations and generators.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.1.3 The rotation operator4.1.4 Discrete transformations; The parity operator; Mirror operators; 4.2 Transformations of operators; The parity operator; Mirror operators; 4.3 Symmetries and conservation laws; 4.4The Heisenberg picture; 4.5 What is the essence of quantum mechanics?; Problems; 5 Motion in step potentials; 5.1 Square potential well; 5.1.1 Limiting cases; Infinitely deep well; Infinitely narrow well; 5.2 A pair of square wells; 5.2.1 Ammonia; The ammonia maser; 5.3 Scattering of free particles; The scattering cross-section; 5.3.1 Tunnelling through a potential barrier.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.3.2 Scattering by a classically allowed region5.3.3 Resonant scattering; The Breit-Wigner cross-section; 5.4 How applicable are our results?; 5.5 Summary; Problems; 6 Composite systems; 6.1 Composite systems; 6.1.1 Collapse of the wavefunction; 6.1.2 Operators for composite systems; 6.1.3 Development of entanglement; 6.1.4 Einstein-Podolski-Rosen experiment; Bell's inequality; 6.2 Quantum computing; 6.3 The density operator; 6.3.1 Reduced density operators; 6.3.2 Shannon entropy; 6.4 Thermodynamics; 6.5 Measurement; Problems; 7Angular momentum; 7.1 Eigenvalues of Jz and J2.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.1.1 Rotation spectra of diatomic molecules7.2 Spin and orbital angular momentum; 7.2.1 Orbital angular momentum; L as the generator of circular translations; Spectra of L2 and Lz; 7.2.2 Spin angular momentum; 7.3 Physics of spin; 7.3.1 Spin-half matrices; 7.3.2 Spin-one matrices; 7.3.3 The Stern-Gerlach experiment; Stern-Gerlach experiment with spin-one atoms; 7.3.4 Precession in a magnetic field; 7.3.5 The classical limit; 7.4 Orbital angular-momentum eigenfunctions; 7.4.1 Orbital angular momentum and parity; 7.4.2 Orbital angular momentum and kinetic energy; 7.4.3 Legendre polynomials.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Physics of Quantum Mechanics aims to give students a good understanding of how quantum mechanics describes the material world. It shows that the theory follows naturally from the use of probability amplitudes to derive probabilities. It stresses that stationary states are unphysical mathematical abstractions that enable us to solve the theory's governing equation, the time-dependent Schroedinger equation. Every opportunity is taken to illustrate the emergence of the familiarclassical, dynamical world through the quantum interference of stationary states. The text stresses the continuity be.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantum theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85109469</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie quantique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">LANGUAGE ARTS & DISCIPLINES</subfield><subfield code="x">Study & Teaching.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skinner, David.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">The physics of quantum mechanics (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGh7T9wrWCKWhR4DkK84pX</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Binney, James.</subfield><subfield code="t">Physics of quantum mechanics.</subfield><subfield code="d">New York, NY : Oxford University Press, 2014</subfield><subfield code="h">xiii, 392 pages</subfield><subfield code="z">9780199688579</subfield><subfield code="w">(DLC) 17731418</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=653261</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=653261</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1492578</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10783894</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">653261</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26534417</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11254426</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn868971318 |
illustrated | Illustrated |
indexdate | 2024-10-25T16:21:48Z |
institution | BVB |
isbn | 9780191002274 0191002275 1306043034 9781306043038 |
language | English |
oclc_num | 868971318 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (407 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Oxford University Press, |
record_format | marc |
spelling | Binney, James, 1950- https://id.oclc.org/worldcat/entity/E39PCjBvTgwJMrKtg8kDT9kQ7b http://id.loc.gov/authorities/names/n81011660 The physics of quantum mechanics / James Binney, Rudolf Peierls Centre for Theoretical Physics and Merton College, University of Oxford, David Skinner, Department of Applied Mathematics and Theoretical Physics, University of Cambridge. First edition. New York, NY : Oxford University Press, 2014. 1 online resource (407 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Print version record. Cover; Contents; Preface; 1 Introduction; 1.1 Origins; 1.2 Measurements; 1.2.1 Measurement involves disturbance; Heisenberg microscope; 1.2.2 Ideal measurements; 1.2.3 Summary; 1.3 Probability amplitudes; 1.3.1 Two-slit interference; 1.4 Quantum states; 1.4.1 Observables; Complete sets of amplitudes; 1.4.2 Vector spaces and their duals; 1.4.3 The energy representation; 1.4.4 Polarisation of photons; 1.5 Summary; Problems; 2 Operators, measurement and time evolution; 2.1 Operators; Functions of operators; Commutators; 2.2 Evolution in time; 2.2.1 Evolution of expectation values. 2.3 The position representation2.3.1 Hamiltonian of a particle; 2.3.2 Wavefunction for well-defined momentum; The uncertainty principle; 2.3.3 Dynamics of a free particle; 2.3.4 Back to two-slit interference; 2.3.5 Generalisation to three dimensions; Probability current; The virial theorem; 2.4 Summary; Problems; 3 Oscillators; 3.1Stationary states of a harmonic oscillator; 3.2 Dynamics of oscillators; 3.2.1 Anharmonic oscillators; Problems; 4 Transformations and observables; 4.1 Transforming kets; 4.1.1 Translating kets; 4.1.2 Continuous transformations and generators. 4.1.3 The rotation operator4.1.4 Discrete transformations; The parity operator; Mirror operators; 4.2 Transformations of operators; The parity operator; Mirror operators; 4.3 Symmetries and conservation laws; 4.4The Heisenberg picture; 4.5 What is the essence of quantum mechanics?; Problems; 5 Motion in step potentials; 5.1 Square potential well; 5.1.1 Limiting cases; Infinitely deep well; Infinitely narrow well; 5.2 A pair of square wells; 5.2.1 Ammonia; The ammonia maser; 5.3 Scattering of free particles; The scattering cross-section; 5.3.1 Tunnelling through a potential barrier. 5.3.2 Scattering by a classically allowed region5.3.3 Resonant scattering; The Breit-Wigner cross-section; 5.4 How applicable are our results?; 5.5 Summary; Problems; 6 Composite systems; 6.1 Composite systems; 6.1.1 Collapse of the wavefunction; 6.1.2 Operators for composite systems; 6.1.3 Development of entanglement; 6.1.4 Einstein-Podolski-Rosen experiment; Bell's inequality; 6.2 Quantum computing; 6.3 The density operator; 6.3.1 Reduced density operators; 6.3.2 Shannon entropy; 6.4 Thermodynamics; 6.5 Measurement; Problems; 7Angular momentum; 7.1 Eigenvalues of Jz and J2. 7.1.1 Rotation spectra of diatomic molecules7.2 Spin and orbital angular momentum; 7.2.1 Orbital angular momentum; L as the generator of circular translations; Spectra of L2 and Lz; 7.2.2 Spin angular momentum; 7.3 Physics of spin; 7.3.1 Spin-half matrices; 7.3.2 Spin-one matrices; 7.3.3 The Stern-Gerlach experiment; Stern-Gerlach experiment with spin-one atoms; 7.3.4 Precession in a magnetic field; 7.3.5 The classical limit; 7.4 Orbital angular-momentum eigenfunctions; 7.4.1 Orbital angular momentum and parity; 7.4.2 Orbital angular momentum and kinetic energy; 7.4.3 Legendre polynomials. The Physics of Quantum Mechanics aims to give students a good understanding of how quantum mechanics describes the material world. It shows that the theory follows naturally from the use of probability amplitudes to derive probabilities. It stresses that stationary states are unphysical mathematical abstractions that enable us to solve the theory's governing equation, the time-dependent Schroedinger equation. Every opportunity is taken to illustrate the emergence of the familiarclassical, dynamical world through the quantum interference of stationary states. The text stresses the continuity be. Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Théorie quantique. LANGUAGE ARTS & DISCIPLINES Study & Teaching. bisacsh Quantum theory fast Skinner, David. has work: The physics of quantum mechanics (Text) https://id.oclc.org/worldcat/entity/E39PCGh7T9wrWCKWhR4DkK84pX https://id.oclc.org/worldcat/ontology/hasWork Print version: Binney, James. Physics of quantum mechanics. New York, NY : Oxford University Press, 2014 xiii, 392 pages 9780199688579 (DLC) 17731418 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=653261 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=653261 Volltext |
spellingShingle | Binney, James, 1950- The physics of quantum mechanics / Cover; Contents; Preface; 1 Introduction; 1.1 Origins; 1.2 Measurements; 1.2.1 Measurement involves disturbance; Heisenberg microscope; 1.2.2 Ideal measurements; 1.2.3 Summary; 1.3 Probability amplitudes; 1.3.1 Two-slit interference; 1.4 Quantum states; 1.4.1 Observables; Complete sets of amplitudes; 1.4.2 Vector spaces and their duals; 1.4.3 The energy representation; 1.4.4 Polarisation of photons; 1.5 Summary; Problems; 2 Operators, measurement and time evolution; 2.1 Operators; Functions of operators; Commutators; 2.2 Evolution in time; 2.2.1 Evolution of expectation values. 2.3 The position representation2.3.1 Hamiltonian of a particle; 2.3.2 Wavefunction for well-defined momentum; The uncertainty principle; 2.3.3 Dynamics of a free particle; 2.3.4 Back to two-slit interference; 2.3.5 Generalisation to three dimensions; Probability current; The virial theorem; 2.4 Summary; Problems; 3 Oscillators; 3.1Stationary states of a harmonic oscillator; 3.2 Dynamics of oscillators; 3.2.1 Anharmonic oscillators; Problems; 4 Transformations and observables; 4.1 Transforming kets; 4.1.1 Translating kets; 4.1.2 Continuous transformations and generators. 4.1.3 The rotation operator4.1.4 Discrete transformations; The parity operator; Mirror operators; 4.2 Transformations of operators; The parity operator; Mirror operators; 4.3 Symmetries and conservation laws; 4.4The Heisenberg picture; 4.5 What is the essence of quantum mechanics?; Problems; 5 Motion in step potentials; 5.1 Square potential well; 5.1.1 Limiting cases; Infinitely deep well; Infinitely narrow well; 5.2 A pair of square wells; 5.2.1 Ammonia; The ammonia maser; 5.3 Scattering of free particles; The scattering cross-section; 5.3.1 Tunnelling through a potential barrier. 5.3.2 Scattering by a classically allowed region5.3.3 Resonant scattering; The Breit-Wigner cross-section; 5.4 How applicable are our results?; 5.5 Summary; Problems; 6 Composite systems; 6.1 Composite systems; 6.1.1 Collapse of the wavefunction; 6.1.2 Operators for composite systems; 6.1.3 Development of entanglement; 6.1.4 Einstein-Podolski-Rosen experiment; Bell's inequality; 6.2 Quantum computing; 6.3 The density operator; 6.3.1 Reduced density operators; 6.3.2 Shannon entropy; 6.4 Thermodynamics; 6.5 Measurement; Problems; 7Angular momentum; 7.1 Eigenvalues of Jz and J2. 7.1.1 Rotation spectra of diatomic molecules7.2 Spin and orbital angular momentum; 7.2.1 Orbital angular momentum; L as the generator of circular translations; Spectra of L2 and Lz; 7.2.2 Spin angular momentum; 7.3 Physics of spin; 7.3.1 Spin-half matrices; 7.3.2 Spin-one matrices; 7.3.3 The Stern-Gerlach experiment; Stern-Gerlach experiment with spin-one atoms; 7.3.4 Precession in a magnetic field; 7.3.5 The classical limit; 7.4 Orbital angular-momentum eigenfunctions; 7.4.1 Orbital angular momentum and parity; 7.4.2 Orbital angular momentum and kinetic energy; 7.4.3 Legendre polynomials. Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Théorie quantique. LANGUAGE ARTS & DISCIPLINES Study & Teaching. bisacsh Quantum theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85109469 |
title | The physics of quantum mechanics / |
title_auth | The physics of quantum mechanics / |
title_exact_search | The physics of quantum mechanics / |
title_full | The physics of quantum mechanics / James Binney, Rudolf Peierls Centre for Theoretical Physics and Merton College, University of Oxford, David Skinner, Department of Applied Mathematics and Theoretical Physics, University of Cambridge. |
title_fullStr | The physics of quantum mechanics / James Binney, Rudolf Peierls Centre for Theoretical Physics and Merton College, University of Oxford, David Skinner, Department of Applied Mathematics and Theoretical Physics, University of Cambridge. |
title_full_unstemmed | The physics of quantum mechanics / James Binney, Rudolf Peierls Centre for Theoretical Physics and Merton College, University of Oxford, David Skinner, Department of Applied Mathematics and Theoretical Physics, University of Cambridge. |
title_short | The physics of quantum mechanics / |
title_sort | physics of quantum mechanics |
topic | Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Théorie quantique. LANGUAGE ARTS & DISCIPLINES Study & Teaching. bisacsh Quantum theory fast |
topic_facet | Quantum theory. Théorie quantique. LANGUAGE ARTS & DISCIPLINES Study & Teaching. Quantum theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=653261 |
work_keys_str_mv | AT binneyjames thephysicsofquantummechanics AT skinnerdavid thephysicsofquantummechanics AT binneyjames physicsofquantummechanics AT skinnerdavid physicsofquantummechanics |