Handbook of categorical algebra 3 :: categories of sheaves /
The Handbook of Categorical Algebra is intended to give, in three volumes, a rather detailed account of what, ideally, everybody working in category theory should know, whatever the specific topic of research they have chosen. The book is planned also to serve as a reference book for both specialist...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [England] ; New York :
Cambridge University Press,
[1994]
|
Schriftenreihe: | Encyclopedia of mathematics and its applications ;
volume 53. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The Handbook of Categorical Algebra is intended to give, in three volumes, a rather detailed account of what, ideally, everybody working in category theory should know, whatever the specific topic of research they have chosen. The book is planned also to serve as a reference book for both specialists in the field and all those using category theory as a tool. Volume 3 begins with the essential aspects of the theory of locales, proceeding to a study in chapter 2 of the sheaves on a locale and on a topological space, in their various equivalent presentations: functors, etale maps or W-sets. Next, this situation is generalized to the case of sheaves on a site and the corresponding notion of Grothendieck topos is introduced. Chapter 4 relates the theory of Grothendieck toposes with that of accessible categories and sketches, by proving the existence of a classifying topos for all coherent theories. |
Beschreibung: | 1 online resource (xvii, 522 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 514-516) and index. |
ISBN: | 9781107088504 110708850X |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn861692376 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 131029s1994 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d VTS |d STF |d M8D |d RDF |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
020 | |a 9781107088504 |q (electronic bk.) | ||
020 | |a 110708850X |q (electronic bk.) | ||
020 | |z 0521441803 | ||
020 | |z 9780521441803 | ||
035 | |a (OCoLC)861692376 | ||
050 | 4 | |a QA169 |b .B673 1994eb | |
072 | 7 | |a MAT |x 039000 |2 bisacsh | |
072 | 7 | |a MAT |x 023000 |2 bisacsh | |
072 | 7 | |a MAT |x 026000 |2 bisacsh | |
082 | 7 | |a 510.8 |b E56 v.52 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Borceux, Francis, |d 1948- |1 https://id.oclc.org/worldcat/entity/E39PBJqQvPRwXB3YBQmRkC3JDq |0 http://id.loc.gov/authorities/names/n83129031 | |
245 | 1 | 0 | |a Handbook of categorical algebra 3 : |b categories of sheaves / |c Francis Borceux. |
246 | 3 | |a Categories of sheaves | |
264 | 1 | |a Cambridge [England] ; |a New York : |b Cambridge University Press, |c [1994] | |
264 | 4 | |c ©1994 | |
300 | |a 1 online resource (xvii, 522 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of mathematics and its applications ; |v volume 53 | |
504 | |a Includes bibliographical references (pages 514-516) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Half-title; Title; Copyright; Dedication; Contents; Preface to volume; Introduction to this handbook; 1 Locales; 1.1 The intuitionistic propositional calculus; 1.2 Heyting algebras; 1.3 Locales; 1.4 Limits and colimits of locales; 1.5 Nuclei; 1.6 Open morphisms of locales; 1.7 Etale morphisms of locales; 1.8 The points of a locale; 1.9 Sober spaces; 1.10 Compactness conditions; 1.11 Regularity conditions; 1.12 Exercises; 2 Sheaves; 2.1 Sheaves on a locale; 2.2 Closed subobjects; 2.3 Some categorical properties of sheaves; 2.4 Etale spaces; 2.5 The stalks of a topological sheaf | |
505 | 8 | |a 4.2 The classifying topos of a finite limit theory4.3 The classifying topos of a geometric sketch; 4.4 The classifying topos of a coherent theory; 4.5 Diaconescu's theorem; 4.6 Exercises; 5 Elementary toposes; 5.1 The notion of a topos; 5.2 Examples of toposes; 5.3 Monomorphisms in a topos; 5.4 Some set theoretical notions in a topos; 5.5 Partial morphisms; 5.6 Injective objects; 5.7 Finite colimits; 5.8 The slice toposes; 5.9 Exactness properties of toposes; 5.10 Union of subobjects; 5.11 Morphisms of toposes; 5.12 Exercises; 6 Internal logic of a topos; 6.1 The language of a topos | |
505 | 8 | |a 8 The axiom of infinity8.1 The natural number object; 8.2 Infinite objects in a topos; 8.3 Arithmetic in a topos; 8.4 The trichotomy; 8.5 Finite objects in a topos; 8.6 Exercises; 9 Sheaves in a topos; 9.1 Topologies in a topos; 9.2 Sheaves for a topology; 9.3 The localizations of a topos; 9.4 The double negation sheaves; 9.5 Exercises; Bibliography; Index | |
520 | |a The Handbook of Categorical Algebra is intended to give, in three volumes, a rather detailed account of what, ideally, everybody working in category theory should know, whatever the specific topic of research they have chosen. The book is planned also to serve as a reference book for both specialists in the field and all those using category theory as a tool. Volume 3 begins with the essential aspects of the theory of locales, proceeding to a study in chapter 2 of the sheaves on a locale and on a topological space, in their various equivalent presentations: functors, etale maps or W-sets. Next, this situation is generalized to the case of sheaves on a site and the corresponding notion of Grothendieck topos is introduced. Chapter 4 relates the theory of Grothendieck toposes with that of accessible categories and sketches, by proving the existence of a classifying topos for all coherent theories. | ||
650 | 0 | |a Categories (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85020992 | |
650 | 0 | |a Algebra, Homological. |0 http://id.loc.gov/authorities/subjects/sh85003432 | |
650 | 0 | |a Abelian categories. |0 http://id.loc.gov/authorities/subjects/sh85000127 | |
650 | 6 | |a Catégories (Mathématiques) | |
650 | 6 | |a Algèbre homologique. | |
650 | 6 | |a Catégories abéliennes. | |
650 | 7 | |a MATHEMATICS |x Essays. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Pre-Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Reference. |2 bisacsh | |
650 | 7 | |a Abelian categories |2 fast | |
650 | 7 | |a Algebra, Homological |2 fast | |
650 | 7 | |a Categories (Mathematics) |2 fast | |
650 | 7 | |a Catégories (Mathématiques) |2 ram | |
650 | 7 | |a Faisceaux, théorie des. |2 ram | |
650 | 7 | |a Topos (Mathématiques) |2 ram | |
758 | |i has work: |a Handbook of categorical algebra 3 Categories of sheaves (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFrPYtC9JQxRHwtFhvTtmm |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Borceux, Francis, 1948- |t Handbook of categorical algebra 3 |z 0521441803 |w (OCoLC)31978406 |
830 | 0 | |a Encyclopedia of mathematics and its applications ; |v volume 53. |0 http://id.loc.gov/authorities/names/n42010632 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569273 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 569273 | ||
938 | |a YBP Library Services |b YANK |n 11817876 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn861692376 |
---|---|
_version_ | 1816882248976171008 |
adam_text | |
any_adam_object | |
author | Borceux, Francis, 1948- |
author_GND | http://id.loc.gov/authorities/names/n83129031 |
author_facet | Borceux, Francis, 1948- |
author_role | |
author_sort | Borceux, Francis, 1948- |
author_variant | f b fb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA169 |
callnumber-raw | QA169 .B673 1994eb |
callnumber-search | QA169 .B673 1994eb |
callnumber-sort | QA 3169 B673 41994EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Half-title; Title; Copyright; Dedication; Contents; Preface to volume; Introduction to this handbook; 1 Locales; 1.1 The intuitionistic propositional calculus; 1.2 Heyting algebras; 1.3 Locales; 1.4 Limits and colimits of locales; 1.5 Nuclei; 1.6 Open morphisms of locales; 1.7 Etale morphisms of locales; 1.8 The points of a locale; 1.9 Sober spaces; 1.10 Compactness conditions; 1.11 Regularity conditions; 1.12 Exercises; 2 Sheaves; 2.1 Sheaves on a locale; 2.2 Closed subobjects; 2.3 Some categorical properties of sheaves; 2.4 Etale spaces; 2.5 The stalks of a topological sheaf 4.2 The classifying topos of a finite limit theory4.3 The classifying topos of a geometric sketch; 4.4 The classifying topos of a coherent theory; 4.5 Diaconescu's theorem; 4.6 Exercises; 5 Elementary toposes; 5.1 The notion of a topos; 5.2 Examples of toposes; 5.3 Monomorphisms in a topos; 5.4 Some set theoretical notions in a topos; 5.5 Partial morphisms; 5.6 Injective objects; 5.7 Finite colimits; 5.8 The slice toposes; 5.9 Exactness properties of toposes; 5.10 Union of subobjects; 5.11 Morphisms of toposes; 5.12 Exercises; 6 Internal logic of a topos; 6.1 The language of a topos 8 The axiom of infinity8.1 The natural number object; 8.2 Infinite objects in a topos; 8.3 Arithmetic in a topos; 8.4 The trichotomy; 8.5 Finite objects in a topos; 8.6 Exercises; 9 Sheaves in a topos; 9.1 Topologies in a topos; 9.2 Sheaves for a topology; 9.3 The localizations of a topos; 9.4 The double negation sheaves; 9.5 Exercises; Bibliography; Index |
ctrlnum | (OCoLC)861692376 |
dewey-full | 510.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510.8 |
dewey-search | 510.8 |
dewey-sort | 3510.8 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05510cam a2200697 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn861692376</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">131029s1994 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">RDF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107088504</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">110708850X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521441803</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521441803</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)861692376</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA169</subfield><subfield code="b">.B673 1994eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">039000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">023000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">026000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">510.8</subfield><subfield code="b">E56 v.52</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borceux, Francis,</subfield><subfield code="d">1948-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJqQvPRwXB3YBQmRkC3JDq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83129031</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of categorical algebra 3 :</subfield><subfield code="b">categories of sheaves /</subfield><subfield code="c">Francis Borceux.</subfield></datafield><datafield tag="246" ind1="3" ind2=" "><subfield code="a">Categories of sheaves</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [England] ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">[1994]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 522 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">volume 53</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 514-516) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Half-title; Title; Copyright; Dedication; Contents; Preface to volume; Introduction to this handbook; 1 Locales; 1.1 The intuitionistic propositional calculus; 1.2 Heyting algebras; 1.3 Locales; 1.4 Limits and colimits of locales; 1.5 Nuclei; 1.6 Open morphisms of locales; 1.7 Etale morphisms of locales; 1.8 The points of a locale; 1.9 Sober spaces; 1.10 Compactness conditions; 1.11 Regularity conditions; 1.12 Exercises; 2 Sheaves; 2.1 Sheaves on a locale; 2.2 Closed subobjects; 2.3 Some categorical properties of sheaves; 2.4 Etale spaces; 2.5 The stalks of a topological sheaf</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2 The classifying topos of a finite limit theory4.3 The classifying topos of a geometric sketch; 4.4 The classifying topos of a coherent theory; 4.5 Diaconescu's theorem; 4.6 Exercises; 5 Elementary toposes; 5.1 The notion of a topos; 5.2 Examples of toposes; 5.3 Monomorphisms in a topos; 5.4 Some set theoretical notions in a topos; 5.5 Partial morphisms; 5.6 Injective objects; 5.7 Finite colimits; 5.8 The slice toposes; 5.9 Exactness properties of toposes; 5.10 Union of subobjects; 5.11 Morphisms of toposes; 5.12 Exercises; 6 Internal logic of a topos; 6.1 The language of a topos</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8 The axiom of infinity8.1 The natural number object; 8.2 Infinite objects in a topos; 8.3 Arithmetic in a topos; 8.4 The trichotomy; 8.5 Finite objects in a topos; 8.6 Exercises; 9 Sheaves in a topos; 9.1 Topologies in a topos; 9.2 Sheaves for a topology; 9.3 The localizations of a topos; 9.4 The double negation sheaves; 9.5 Exercises; Bibliography; Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Handbook of Categorical Algebra is intended to give, in three volumes, a rather detailed account of what, ideally, everybody working in category theory should know, whatever the specific topic of research they have chosen. The book is planned also to serve as a reference book for both specialists in the field and all those using category theory as a tool. Volume 3 begins with the essential aspects of the theory of locales, proceeding to a study in chapter 2 of the sheaves on a locale and on a topological space, in their various equivalent presentations: functors, etale maps or W-sets. Next, this situation is generalized to the case of sheaves on a site and the corresponding notion of Grothendieck topos is introduced. Chapter 4 relates the theory of Grothendieck toposes with that of accessible categories and sketches, by proving the existence of a classifying topos for all coherent theories.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Categories (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85020992</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algebra, Homological.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003432</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Abelian categories.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85000127</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Catégories (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbre homologique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Catégories abéliennes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Essays.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Pre-Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Reference.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Abelian categories</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebra, Homological</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Categories (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Catégories (Mathématiques)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Faisceaux, théorie des.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topos (Mathématiques)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Handbook of categorical algebra 3 Categories of sheaves (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFrPYtC9JQxRHwtFhvTtmm</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Borceux, Francis, 1948-</subfield><subfield code="t">Handbook of categorical algebra 3</subfield><subfield code="z">0521441803</subfield><subfield code="w">(OCoLC)31978406</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">volume 53.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42010632</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569273</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">569273</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11817876</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn861692376 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:36Z |
institution | BVB |
isbn | 9781107088504 110708850X |
language | English |
oclc_num | 861692376 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xvii, 522 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Cambridge University Press, |
record_format | marc |
series | Encyclopedia of mathematics and its applications ; |
series2 | Encyclopedia of mathematics and its applications ; |
spelling | Borceux, Francis, 1948- https://id.oclc.org/worldcat/entity/E39PBJqQvPRwXB3YBQmRkC3JDq http://id.loc.gov/authorities/names/n83129031 Handbook of categorical algebra 3 : categories of sheaves / Francis Borceux. Categories of sheaves Cambridge [England] ; New York : Cambridge University Press, [1994] ©1994 1 online resource (xvii, 522 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Encyclopedia of mathematics and its applications ; volume 53 Includes bibliographical references (pages 514-516) and index. Print version record. Cover; Half-title; Title; Copyright; Dedication; Contents; Preface to volume; Introduction to this handbook; 1 Locales; 1.1 The intuitionistic propositional calculus; 1.2 Heyting algebras; 1.3 Locales; 1.4 Limits and colimits of locales; 1.5 Nuclei; 1.6 Open morphisms of locales; 1.7 Etale morphisms of locales; 1.8 The points of a locale; 1.9 Sober spaces; 1.10 Compactness conditions; 1.11 Regularity conditions; 1.12 Exercises; 2 Sheaves; 2.1 Sheaves on a locale; 2.2 Closed subobjects; 2.3 Some categorical properties of sheaves; 2.4 Etale spaces; 2.5 The stalks of a topological sheaf 4.2 The classifying topos of a finite limit theory4.3 The classifying topos of a geometric sketch; 4.4 The classifying topos of a coherent theory; 4.5 Diaconescu's theorem; 4.6 Exercises; 5 Elementary toposes; 5.1 The notion of a topos; 5.2 Examples of toposes; 5.3 Monomorphisms in a topos; 5.4 Some set theoretical notions in a topos; 5.5 Partial morphisms; 5.6 Injective objects; 5.7 Finite colimits; 5.8 The slice toposes; 5.9 Exactness properties of toposes; 5.10 Union of subobjects; 5.11 Morphisms of toposes; 5.12 Exercises; 6 Internal logic of a topos; 6.1 The language of a topos 8 The axiom of infinity8.1 The natural number object; 8.2 Infinite objects in a topos; 8.3 Arithmetic in a topos; 8.4 The trichotomy; 8.5 Finite objects in a topos; 8.6 Exercises; 9 Sheaves in a topos; 9.1 Topologies in a topos; 9.2 Sheaves for a topology; 9.3 The localizations of a topos; 9.4 The double negation sheaves; 9.5 Exercises; Bibliography; Index The Handbook of Categorical Algebra is intended to give, in three volumes, a rather detailed account of what, ideally, everybody working in category theory should know, whatever the specific topic of research they have chosen. The book is planned also to serve as a reference book for both specialists in the field and all those using category theory as a tool. Volume 3 begins with the essential aspects of the theory of locales, proceeding to a study in chapter 2 of the sheaves on a locale and on a topological space, in their various equivalent presentations: functors, etale maps or W-sets. Next, this situation is generalized to the case of sheaves on a site and the corresponding notion of Grothendieck topos is introduced. Chapter 4 relates the theory of Grothendieck toposes with that of accessible categories and sketches, by proving the existence of a classifying topos for all coherent theories. Categories (Mathematics) http://id.loc.gov/authorities/subjects/sh85020992 Algebra, Homological. http://id.loc.gov/authorities/subjects/sh85003432 Abelian categories. http://id.loc.gov/authorities/subjects/sh85000127 Catégories (Mathématiques) Algèbre homologique. Catégories abéliennes. MATHEMATICS Essays. bisacsh MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh Abelian categories fast Algebra, Homological fast Categories (Mathematics) fast Catégories (Mathématiques) ram Faisceaux, théorie des. ram Topos (Mathématiques) ram has work: Handbook of categorical algebra 3 Categories of sheaves (Text) https://id.oclc.org/worldcat/entity/E39PCFrPYtC9JQxRHwtFhvTtmm https://id.oclc.org/worldcat/ontology/hasWork Print version: Borceux, Francis, 1948- Handbook of categorical algebra 3 0521441803 (OCoLC)31978406 Encyclopedia of mathematics and its applications ; volume 53. http://id.loc.gov/authorities/names/n42010632 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569273 Volltext |
spellingShingle | Borceux, Francis, 1948- Handbook of categorical algebra 3 : categories of sheaves / Encyclopedia of mathematics and its applications ; Cover; Half-title; Title; Copyright; Dedication; Contents; Preface to volume; Introduction to this handbook; 1 Locales; 1.1 The intuitionistic propositional calculus; 1.2 Heyting algebras; 1.3 Locales; 1.4 Limits and colimits of locales; 1.5 Nuclei; 1.6 Open morphisms of locales; 1.7 Etale morphisms of locales; 1.8 The points of a locale; 1.9 Sober spaces; 1.10 Compactness conditions; 1.11 Regularity conditions; 1.12 Exercises; 2 Sheaves; 2.1 Sheaves on a locale; 2.2 Closed subobjects; 2.3 Some categorical properties of sheaves; 2.4 Etale spaces; 2.5 The stalks of a topological sheaf 4.2 The classifying topos of a finite limit theory4.3 The classifying topos of a geometric sketch; 4.4 The classifying topos of a coherent theory; 4.5 Diaconescu's theorem; 4.6 Exercises; 5 Elementary toposes; 5.1 The notion of a topos; 5.2 Examples of toposes; 5.3 Monomorphisms in a topos; 5.4 Some set theoretical notions in a topos; 5.5 Partial morphisms; 5.6 Injective objects; 5.7 Finite colimits; 5.8 The slice toposes; 5.9 Exactness properties of toposes; 5.10 Union of subobjects; 5.11 Morphisms of toposes; 5.12 Exercises; 6 Internal logic of a topos; 6.1 The language of a topos 8 The axiom of infinity8.1 The natural number object; 8.2 Infinite objects in a topos; 8.3 Arithmetic in a topos; 8.4 The trichotomy; 8.5 Finite objects in a topos; 8.6 Exercises; 9 Sheaves in a topos; 9.1 Topologies in a topos; 9.2 Sheaves for a topology; 9.3 The localizations of a topos; 9.4 The double negation sheaves; 9.5 Exercises; Bibliography; Index Categories (Mathematics) http://id.loc.gov/authorities/subjects/sh85020992 Algebra, Homological. http://id.loc.gov/authorities/subjects/sh85003432 Abelian categories. http://id.loc.gov/authorities/subjects/sh85000127 Catégories (Mathématiques) Algèbre homologique. Catégories abéliennes. MATHEMATICS Essays. bisacsh MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh Abelian categories fast Algebra, Homological fast Categories (Mathematics) fast Catégories (Mathématiques) ram Faisceaux, théorie des. ram Topos (Mathématiques) ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85020992 http://id.loc.gov/authorities/subjects/sh85003432 http://id.loc.gov/authorities/subjects/sh85000127 |
title | Handbook of categorical algebra 3 : categories of sheaves / |
title_alt | Categories of sheaves |
title_auth | Handbook of categorical algebra 3 : categories of sheaves / |
title_exact_search | Handbook of categorical algebra 3 : categories of sheaves / |
title_full | Handbook of categorical algebra 3 : categories of sheaves / Francis Borceux. |
title_fullStr | Handbook of categorical algebra 3 : categories of sheaves / Francis Borceux. |
title_full_unstemmed | Handbook of categorical algebra 3 : categories of sheaves / Francis Borceux. |
title_short | Handbook of categorical algebra 3 : |
title_sort | handbook of categorical algebra 3 categories of sheaves |
title_sub | categories of sheaves / |
topic | Categories (Mathematics) http://id.loc.gov/authorities/subjects/sh85020992 Algebra, Homological. http://id.loc.gov/authorities/subjects/sh85003432 Abelian categories. http://id.loc.gov/authorities/subjects/sh85000127 Catégories (Mathématiques) Algèbre homologique. Catégories abéliennes. MATHEMATICS Essays. bisacsh MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh Abelian categories fast Algebra, Homological fast Categories (Mathematics) fast Catégories (Mathématiques) ram Faisceaux, théorie des. ram Topos (Mathématiques) ram |
topic_facet | Categories (Mathematics) Algebra, Homological. Abelian categories. Catégories (Mathématiques) Algèbre homologique. Catégories abéliennes. MATHEMATICS Essays. MATHEMATICS Pre-Calculus. MATHEMATICS Reference. Abelian categories Algebra, Homological Faisceaux, théorie des. Topos (Mathématiques) |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569273 |
work_keys_str_mv | AT borceuxfrancis handbookofcategoricalalgebra3categoriesofsheaves AT borceuxfrancis categoriesofsheaves |