Introduction to operator space theory /:
The theory of operator spaces is very recent and can be described as a non-commutative Banach space theory. An 'operator space' is simply a Banach space with an embedding into the space B(H) of all bounded operators on a Hilbert space H. The first part of this book is an introduction with...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, U.K. ; New York :
Cambridge University Press,
2003.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
294. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The theory of operator spaces is very recent and can be described as a non-commutative Banach space theory. An 'operator space' is simply a Banach space with an embedding into the space B(H) of all bounded operators on a Hilbert space H. The first part of this book is an introduction with emphasis on examples that illustrate various aspects of the theory. The second part is devoted to applications to C*-algebras, with a systematic exposition of tensor products of C* algebras. The third (and shorter) part of the book describes applications to non self-adjoint operator algebras, and similarity problems. In particular the author's counterexample to the 'Halmos problem' is presented, as well as work on the new concept of "length" of an operator algebra. Graduate students and professional mathematicians interested in functional analysis, operator algebras and theoretical physics will find that this book has much to offer |
Beschreibung: | 1 online resource (vii, 478 pages) |
Bibliographie: | Includes bibliographical references (pages 457-475) and indexes. |
ISBN: | 9780511064517 0511064519 9781107360235 1107360234 9780511205569 0511205562 9780511072970 051107297X |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn856017727 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130819s2003 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d CAMBR |d UMI |d DEBBG |d DEBSZ |d COO |d EBLCP |d IDEBK |d YDXCP |d OCLCQ |d OCLCF |d OCLCQ |d OCLCO |d TOA |d OCLCO |d AGLDB |d OCLCQ |d JBG |d OCLCQ |d UAB |d OCLCQ |d VTS |d CEF |d REC |d OCLCO |d G3B |d STF |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 855968952 |a 862975763 |a 865245043 | ||
020 | |a 9780511064517 |q (electronic bk.) | ||
020 | |a 0511064519 |q (electronic bk.) | ||
020 | |a 9781107360235 |q (electronic bk.) | ||
020 | |a 1107360234 |q (electronic bk.) | ||
020 | |a 9780511205569 |q (e-book) | ||
020 | |a 0511205562 |q (e-book) | ||
020 | |a 9780511072970 | ||
020 | |a 051107297X | ||
020 | |z 0521811651 | ||
020 | |z 9780521811651 | ||
035 | |a (OCoLC)856017727 |z (OCoLC)855968952 |z (OCoLC)862975763 |z (OCoLC)865245043 | ||
037 | |a CL0500000333 |b Safari Books Online | ||
050 | 4 | |a QA322.2 |b .P545 2003eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515/.732 |2 22 | |
084 | |a 31.46 |2 bcl | ||
084 | |a SI 320 |2 rvk | ||
084 | |a MAT 470f |2 stub | ||
084 | |a MAT 440f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Pisier, Gilles, |d 1950- |1 https://id.oclc.org/worldcat/entity/E39PBJfX4YWWCyjHc3RpMPBMfq |0 http://id.loc.gov/authorities/names/n81027226 | |
245 | 1 | 0 | |a Introduction to operator space theory / |c Gilles Pisier. |
260 | |a Cambridge, U.K. ; |a New York : |b Cambridge University Press, |c 2003. | ||
300 | |a 1 online resource (vii, 478 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 294 | |
504 | |a Includes bibliographical references (pages 457-475) and indexes. | ||
505 | 0 | |a Introduction to Operator Spaces -- Completely bounded maps -- Minimal tensor product -- Minimal and maximal operator space structures on a Banach space -- Projective tensor product -- The Haagerup tensor product -- Characterizations of operator algebras -- The operator Hilbert space -- Group C*-algebras -- Examples and comments -- Comparisons -- Operator Spaces and C*-tensor products -- C*-norms on tensor products -- Nuclearity and approximation properties -- C* -- Kirchberg's theorem on decomposable maps -- The weak expectation property -- The local lifting property -- Exactness -- Local reflexivity -- Grothendieck's theorem for operator spaces -- Estimating the norms of sums of unitaries -- Local theory of operator spaces -- Completely isomorphic C*-algebras -- Injective and projective operator spaces -- Operator Spaces and Non Self-Adjoint Operator Algebras -- Maximal tensor products and free products of non self-adjoint operator algebras -- The Blechter-Paulsen factorization -- Similarity problems -- The Sz-nagy-halmos similarity problem -- Solutions to the exercises. | |
520 | |a The theory of operator spaces is very recent and can be described as a non-commutative Banach space theory. An 'operator space' is simply a Banach space with an embedding into the space B(H) of all bounded operators on a Hilbert space H. The first part of this book is an introduction with emphasis on examples that illustrate various aspects of the theory. The second part is devoted to applications to C*-algebras, with a systematic exposition of tensor products of C* algebras. The third (and shorter) part of the book describes applications to non self-adjoint operator algebras, and similarity problems. In particular the author's counterexample to the 'Halmos problem' is presented, as well as work on the new concept of "length" of an operator algebra. Graduate students and professional mathematicians interested in functional analysis, operator algebras and theoretical physics will find that this book has much to offer | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Operator spaces. |0 http://id.loc.gov/authorities/subjects/sh2002004694 | |
650 | 6 | |a Espaces d'opérateurs. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Operator spaces |2 fast | |
650 | 7 | |a Funktionalanalysis |2 gnd |0 http://d-nb.info/gnd/4018916-8 | |
650 | 7 | |a Operatorraum |2 gnd |0 http://d-nb.info/gnd/4591231-2 | |
776 | 0 | 8 | |i Print version: |a Pisier, Gilles, 1950- |t Introduction to operator space theory. |d Cambridge, U.K. ; New York : Cambridge University Press, 2003 |z 0521811651 |w (DLC) 2002031358 |w (OCoLC)50582823 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 294. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=120691 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH34203688 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385166 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL217873 | ||
938 | |a ebrary |b EBRY |n ebr10746236 | ||
938 | |a EBSCOhost |b EBSC |n 120691 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26084608 | ||
938 | |a YBP Library Services |b YANK |n 11074712 | ||
938 | |a YBP Library Services |b YANK |n 11083272 | ||
938 | |a YBP Library Services |b YANK |n 11083823 | ||
938 | |a YBP Library Services |b YANK |n 11227918 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn856017727 |
---|---|
_version_ | 1816882241824882688 |
adam_text | |
any_adam_object | |
author | Pisier, Gilles, 1950- |
author_GND | http://id.loc.gov/authorities/names/n81027226 |
author_facet | Pisier, Gilles, 1950- |
author_role | |
author_sort | Pisier, Gilles, 1950- |
author_variant | g p gp |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA322 |
callnumber-raw | QA322.2 .P545 2003eb |
callnumber-search | QA322.2 .P545 2003eb |
callnumber-sort | QA 3322.2 P545 42003EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 |
classification_tum | MAT 470f MAT 440f |
collection | ZDB-4-EBA |
contents | Introduction to Operator Spaces -- Completely bounded maps -- Minimal tensor product -- Minimal and maximal operator space structures on a Banach space -- Projective tensor product -- The Haagerup tensor product -- Characterizations of operator algebras -- The operator Hilbert space -- Group C*-algebras -- Examples and comments -- Comparisons -- Operator Spaces and C*-tensor products -- C*-norms on tensor products -- Nuclearity and approximation properties -- C* -- Kirchberg's theorem on decomposable maps -- The weak expectation property -- The local lifting property -- Exactness -- Local reflexivity -- Grothendieck's theorem for operator spaces -- Estimating the norms of sums of unitaries -- Local theory of operator spaces -- Completely isomorphic C*-algebras -- Injective and projective operator spaces -- Operator Spaces and Non Self-Adjoint Operator Algebras -- Maximal tensor products and free products of non self-adjoint operator algebras -- The Blechter-Paulsen factorization -- Similarity problems -- The Sz-nagy-halmos similarity problem -- Solutions to the exercises. |
ctrlnum | (OCoLC)856017727 |
dewey-full | 515/.732 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.732 |
dewey-search | 515/.732 |
dewey-sort | 3515 3732 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05450cam a2200769 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn856017727</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130819s2003 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">CAMBR</subfield><subfield code="d">UMI</subfield><subfield code="d">DEBBG</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">COO</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">TOA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">G3B</subfield><subfield code="d">STF</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">855968952</subfield><subfield code="a">862975763</subfield><subfield code="a">865245043</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511064517</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511064519</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107360235</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107360234</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511205569</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511205562</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511072970</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">051107297X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521811651</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521811651</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)856017727</subfield><subfield code="z">(OCoLC)855968952</subfield><subfield code="z">(OCoLC)862975763</subfield><subfield code="z">(OCoLC)865245043</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000333</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA322.2</subfield><subfield code="b">.P545 2003eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.732</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.46</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 470f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 440f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pisier, Gilles,</subfield><subfield code="d">1950-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJfX4YWWCyjHc3RpMPBMfq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n81027226</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to operator space theory /</subfield><subfield code="c">Gilles Pisier.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, U.K. ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2003.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vii, 478 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">294</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 457-475) and indexes.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Introduction to Operator Spaces -- Completely bounded maps -- Minimal tensor product -- Minimal and maximal operator space structures on a Banach space -- Projective tensor product -- The Haagerup tensor product -- Characterizations of operator algebras -- The operator Hilbert space -- Group C*-algebras -- Examples and comments -- Comparisons -- Operator Spaces and C*-tensor products -- C*-norms on tensor products -- Nuclearity and approximation properties -- C* -- Kirchberg's theorem on decomposable maps -- The weak expectation property -- The local lifting property -- Exactness -- Local reflexivity -- Grothendieck's theorem for operator spaces -- Estimating the norms of sums of unitaries -- Local theory of operator spaces -- Completely isomorphic C*-algebras -- Injective and projective operator spaces -- Operator Spaces and Non Self-Adjoint Operator Algebras -- Maximal tensor products and free products of non self-adjoint operator algebras -- The Blechter-Paulsen factorization -- Similarity problems -- The Sz-nagy-halmos similarity problem -- Solutions to the exercises.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of operator spaces is very recent and can be described as a non-commutative Banach space theory. An 'operator space' is simply a Banach space with an embedding into the space B(H) of all bounded operators on a Hilbert space H. The first part of this book is an introduction with emphasis on examples that illustrate various aspects of the theory. The second part is devoted to applications to C*-algebras, with a systematic exposition of tensor products of C* algebras. The third (and shorter) part of the book describes applications to non self-adjoint operator algebras, and similarity problems. In particular the author's counterexample to the 'Halmos problem' is presented, as well as work on the new concept of "length" of an operator algebra. Graduate students and professional mathematicians interested in functional analysis, operator algebras and theoretical physics will find that this book has much to offer</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Operator spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2002004694</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces d'opérateurs.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Operator spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4018916-8</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Operatorraum</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4591231-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Pisier, Gilles, 1950-</subfield><subfield code="t">Introduction to operator space theory.</subfield><subfield code="d">Cambridge, U.K. ; New York : Cambridge University Press, 2003</subfield><subfield code="z">0521811651</subfield><subfield code="w">(DLC) 2002031358</subfield><subfield code="w">(OCoLC)50582823</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">294.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=120691</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH34203688</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385166</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL217873</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10746236</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">120691</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26084608</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11074712</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11083272</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11083823</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11227918</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn856017727 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:29Z |
institution | BVB |
isbn | 9780511064517 0511064519 9781107360235 1107360234 9780511205569 0511205562 9780511072970 051107297X |
language | English |
oclc_num | 856017727 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vii, 478 pages) |
psigel | ZDB-4-EBA |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Pisier, Gilles, 1950- https://id.oclc.org/worldcat/entity/E39PBJfX4YWWCyjHc3RpMPBMfq http://id.loc.gov/authorities/names/n81027226 Introduction to operator space theory / Gilles Pisier. Cambridge, U.K. ; New York : Cambridge University Press, 2003. 1 online resource (vii, 478 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 294 Includes bibliographical references (pages 457-475) and indexes. Introduction to Operator Spaces -- Completely bounded maps -- Minimal tensor product -- Minimal and maximal operator space structures on a Banach space -- Projective tensor product -- The Haagerup tensor product -- Characterizations of operator algebras -- The operator Hilbert space -- Group C*-algebras -- Examples and comments -- Comparisons -- Operator Spaces and C*-tensor products -- C*-norms on tensor products -- Nuclearity and approximation properties -- C* -- Kirchberg's theorem on decomposable maps -- The weak expectation property -- The local lifting property -- Exactness -- Local reflexivity -- Grothendieck's theorem for operator spaces -- Estimating the norms of sums of unitaries -- Local theory of operator spaces -- Completely isomorphic C*-algebras -- Injective and projective operator spaces -- Operator Spaces and Non Self-Adjoint Operator Algebras -- Maximal tensor products and free products of non self-adjoint operator algebras -- The Blechter-Paulsen factorization -- Similarity problems -- The Sz-nagy-halmos similarity problem -- Solutions to the exercises. The theory of operator spaces is very recent and can be described as a non-commutative Banach space theory. An 'operator space' is simply a Banach space with an embedding into the space B(H) of all bounded operators on a Hilbert space H. The first part of this book is an introduction with emphasis on examples that illustrate various aspects of the theory. The second part is devoted to applications to C*-algebras, with a systematic exposition of tensor products of C* algebras. The third (and shorter) part of the book describes applications to non self-adjoint operator algebras, and similarity problems. In particular the author's counterexample to the 'Halmos problem' is presented, as well as work on the new concept of "length" of an operator algebra. Graduate students and professional mathematicians interested in functional analysis, operator algebras and theoretical physics will find that this book has much to offer Print version record. Operator spaces. http://id.loc.gov/authorities/subjects/sh2002004694 Espaces d'opérateurs. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Operator spaces fast Funktionalanalysis gnd http://d-nb.info/gnd/4018916-8 Operatorraum gnd http://d-nb.info/gnd/4591231-2 Print version: Pisier, Gilles, 1950- Introduction to operator space theory. Cambridge, U.K. ; New York : Cambridge University Press, 2003 0521811651 (DLC) 2002031358 (OCoLC)50582823 London Mathematical Society lecture note series ; 294. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=120691 Volltext |
spellingShingle | Pisier, Gilles, 1950- Introduction to operator space theory / London Mathematical Society lecture note series ; Introduction to Operator Spaces -- Completely bounded maps -- Minimal tensor product -- Minimal and maximal operator space structures on a Banach space -- Projective tensor product -- The Haagerup tensor product -- Characterizations of operator algebras -- The operator Hilbert space -- Group C*-algebras -- Examples and comments -- Comparisons -- Operator Spaces and C*-tensor products -- C*-norms on tensor products -- Nuclearity and approximation properties -- C* -- Kirchberg's theorem on decomposable maps -- The weak expectation property -- The local lifting property -- Exactness -- Local reflexivity -- Grothendieck's theorem for operator spaces -- Estimating the norms of sums of unitaries -- Local theory of operator spaces -- Completely isomorphic C*-algebras -- Injective and projective operator spaces -- Operator Spaces and Non Self-Adjoint Operator Algebras -- Maximal tensor products and free products of non self-adjoint operator algebras -- The Blechter-Paulsen factorization -- Similarity problems -- The Sz-nagy-halmos similarity problem -- Solutions to the exercises. Operator spaces. http://id.loc.gov/authorities/subjects/sh2002004694 Espaces d'opérateurs. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Operator spaces fast Funktionalanalysis gnd http://d-nb.info/gnd/4018916-8 Operatorraum gnd http://d-nb.info/gnd/4591231-2 |
subject_GND | http://id.loc.gov/authorities/subjects/sh2002004694 http://d-nb.info/gnd/4018916-8 http://d-nb.info/gnd/4591231-2 |
title | Introduction to operator space theory / |
title_auth | Introduction to operator space theory / |
title_exact_search | Introduction to operator space theory / |
title_full | Introduction to operator space theory / Gilles Pisier. |
title_fullStr | Introduction to operator space theory / Gilles Pisier. |
title_full_unstemmed | Introduction to operator space theory / Gilles Pisier. |
title_short | Introduction to operator space theory / |
title_sort | introduction to operator space theory |
topic | Operator spaces. http://id.loc.gov/authorities/subjects/sh2002004694 Espaces d'opérateurs. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Operator spaces fast Funktionalanalysis gnd http://d-nb.info/gnd/4018916-8 Operatorraum gnd http://d-nb.info/gnd/4591231-2 |
topic_facet | Operator spaces. Espaces d'opérateurs. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Operator spaces Funktionalanalysis Operatorraum |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=120691 |
work_keys_str_mv | AT pisiergilles introductiontooperatorspacetheory |