Minkowski geometry /:
Minkowski geometry is a non-Euclidean geometry in a finite number of dimensions that is different from elliptic and hyperbolic geometry (and from the Minkowskian geometry of spacetime). Here the linear structure is the same as the Euclidean one but distance is not "uniform" in all directio...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
1996.
|
Schriftenreihe: | Encyclopedia of mathematics and its applications ;
v. 63. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Minkowski geometry is a non-Euclidean geometry in a finite number of dimensions that is different from elliptic and hyperbolic geometry (and from the Minkowskian geometry of spacetime). Here the linear structure is the same as the Euclidean one but distance is not "uniform" in all directions. Instead of the usual sphere in Euclidean space, the unit ball is a general symmetric convex set. Therefore, although the parallel axiom is valid, Pythagoras' theorem is not This book begins by presenting the topological properties of Minkowski spaces, including the existence and essential uniqueness of Haar measure, followed by the fundamental metric properties - the group of isometries, the existence of certain bases and the existence of the Lowner ellipsoid. This is followed by characterizations of Euclidean space among normed spaces and a full treatment of two-dimensional spaces. The three central chapters present the theory of area and volume in normed spaces. The author describes the fascinating geometric interplay among the isoperimetrix (the convex body which solves the isoperimetric problem), the unit ball and their duals, and the ways in which various roles of the ball in Euclidean space are divided among them. The next chapter deals with trigonometry in Minkowski spaces and the last one takes a brief look at a number of numerical parameters associated with a normed space, including J.J. Schaffer's ideas on the intrinsic geometry of the unit sphere. Each chapter ends with a section of historical notes and the book ends with a list of 50 unsolved problems. . Minkowski Geometry will appeal to students and researchers interested in geometry, convexity theory and functional analysis. |
Beschreibung: | 1 online resource (xvi, 346 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 313-330) and indexes. |
ISBN: | 9781107088269 1107088267 9781107325845 1107325846 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn852898451 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130716s1996 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d CAMBR |d IDEBK |d E7B |d OCLCF |d OCLCQ |d AGLDB |d OCLCQ |d HEBIS |d OCLCO |d VTS |d STF |d M8D |d UKAHL |d INARC |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 843761719 |a 1150797408 |a 1433232356 | ||
020 | |a 9781107088269 |q (electronic bk.) | ||
020 | |a 1107088267 |q (electronic bk.) | ||
020 | |a 9781107325845 |q (electronic bk.) | ||
020 | |a 1107325846 |q (electronic bk.) | ||
020 | |z 052140472X | ||
020 | |z 9780521404723 | ||
035 | |a (OCoLC)852898451 |z (OCoLC)843761719 |z (OCoLC)1150797408 |z (OCoLC)1433232356 | ||
050 | 4 | |a QA685 |b .T48 1996eb | |
072 | 7 | |a MAT |x 012020 |2 bisacsh | |
082 | 7 | |a 516.3/74 |2 22 | |
084 | |a 31.52 |2 bcl | ||
049 | |a MAIN | ||
100 | 1 | |a Thompson, Anthony C., |d 1937- |1 https://id.oclc.org/worldcat/entity/E39PBJg8JVTkmthkGrWfKkqhHC |0 http://id.loc.gov/authorities/names/n83133654 | |
245 | 1 | 0 | |a Minkowski geometry / |c A.C. Thompson. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 1996. | ||
300 | |a 1 online resource (xvi, 346 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of mathematics and its applications ; |v v. 63 | |
504 | |a Includes bibliographical references (pages 313-330) and indexes. | ||
505 | 0 | |a The algebraic properties of linear spaces and convex sets -- 1. Norms and norm topologies -- 2. Convex bodies -- 3. Comparisons and contrasts with Euclidean space -- 4. Two-dimensional Minkowski spaces -- 5. The concept of area and content -- 6. Special properties of the Holmes-Thompson definition -- 7. Special properties of the Busemann definition -- 8. Trigonometry -- 9. Various numerical parameters -- 10. Fifty problems. | |
520 | |a Minkowski geometry is a non-Euclidean geometry in a finite number of dimensions that is different from elliptic and hyperbolic geometry (and from the Minkowskian geometry of spacetime). Here the linear structure is the same as the Euclidean one but distance is not "uniform" in all directions. Instead of the usual sphere in Euclidean space, the unit ball is a general symmetric convex set. Therefore, although the parallel axiom is valid, Pythagoras' theorem is not | ||
520 | 8 | |a This book begins by presenting the topological properties of Minkowski spaces, including the existence and essential uniqueness of Haar measure, followed by the fundamental metric properties - the group of isometries, the existence of certain bases and the existence of the Lowner ellipsoid. This is followed by characterizations of Euclidean space among normed spaces and a full treatment of two-dimensional spaces. The three central chapters present the theory of area and volume in normed spaces. The author describes the fascinating geometric interplay among the isoperimetrix (the convex body which solves the isoperimetric problem), the unit ball and their duals, and the ways in which various roles of the ball in Euclidean space are divided among them. The next chapter deals with trigonometry in Minkowski spaces and the last one takes a brief look at a number of numerical parameters associated with a normed space, including J.J. | |
520 | 8 | |a Schaffer's ideas on the intrinsic geometry of the unit sphere. Each chapter ends with a section of historical notes and the book ends with a list of 50 unsolved problems. | |
520 | 8 | |a . Minkowski Geometry will appeal to students and researchers interested in geometry, convexity theory and functional analysis. | |
588 | 0 | |a Print version record. | |
650 | 0 | |a Minkowski geometry. |0 http://id.loc.gov/authorities/subjects/sh95008990 | |
650 | 6 | |a Géométrie de Minkowski. | |
650 | 7 | |a MATHEMATICS |x Geometry |x Analytic. |2 bisacsh | |
650 | 7 | |a Minkowski geometry |2 fast | |
650 | 7 | |a Geometrie |2 gnd |0 http://d-nb.info/gnd/4020236-7 | |
650 | 7 | |a Minkowski-Raum |2 gnd |0 http://d-nb.info/gnd/4293944-6 | |
650 | 1 | 7 | |a Minkowski-ruimte. |2 gtt |
650 | 7 | |a Minkowski, Géométrie de. |2 ram | |
758 | |i has work: |a Minkowski geometry (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFxcp8JCWDwqGF9G4PywFq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Thompson, Anthony C., 1937- |t Minkowski geometry. |d Cambridge ; New York : Cambridge University Press, 1996 |z 052140472X |w (DLC) 95046491 |w (OCoLC)33442682 |
830 | 0 | |a Encyclopedia of mathematics and its applications ; |v v. 63. |0 http://id.loc.gov/authorities/names/n42010632 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569342 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH26385475 | ||
938 | |a ebrary |b EBRY |n ebr10733665 | ||
938 | |a EBSCOhost |b EBSC |n 569342 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26006760 | ||
938 | |a Internet Archive |b INAR |n minkowskigeometr0000thom | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn852898451 |
---|---|
_version_ | 1816882238446370816 |
adam_text | |
any_adam_object | |
author | Thompson, Anthony C., 1937- |
author_GND | http://id.loc.gov/authorities/names/n83133654 |
author_facet | Thompson, Anthony C., 1937- |
author_role | |
author_sort | Thompson, Anthony C., 1937- |
author_variant | a c t ac act |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA685 |
callnumber-raw | QA685 .T48 1996eb |
callnumber-search | QA685 .T48 1996eb |
callnumber-sort | QA 3685 T48 41996EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | The algebraic properties of linear spaces and convex sets -- 1. Norms and norm topologies -- 2. Convex bodies -- 3. Comparisons and contrasts with Euclidean space -- 4. Two-dimensional Minkowski spaces -- 5. The concept of area and content -- 6. Special properties of the Holmes-Thompson definition -- 7. Special properties of the Busemann definition -- 8. Trigonometry -- 9. Various numerical parameters -- 10. Fifty problems. |
ctrlnum | (OCoLC)852898451 |
dewey-full | 516.3/74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/74 |
dewey-search | 516.3/74 |
dewey-sort | 3516.3 274 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05137cam a2200661 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn852898451</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130716s1996 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">CAMBR</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">VTS</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">843761719</subfield><subfield code="a">1150797408</subfield><subfield code="a">1433232356</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107088269</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107088267</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107325845</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107325846</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">052140472X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521404723</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852898451</subfield><subfield code="z">(OCoLC)843761719</subfield><subfield code="z">(OCoLC)1150797408</subfield><subfield code="z">(OCoLC)1433232356</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA685</subfield><subfield code="b">.T48 1996eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.3/74</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.52</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Thompson, Anthony C.,</subfield><subfield code="d">1937-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJg8JVTkmthkGrWfKkqhHC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83133654</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minkowski geometry /</subfield><subfield code="c">A.C. Thompson.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1996.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 346 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">v. 63</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 313-330) and indexes.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">The algebraic properties of linear spaces and convex sets -- 1. Norms and norm topologies -- 2. Convex bodies -- 3. Comparisons and contrasts with Euclidean space -- 4. Two-dimensional Minkowski spaces -- 5. The concept of area and content -- 6. Special properties of the Holmes-Thompson definition -- 7. Special properties of the Busemann definition -- 8. Trigonometry -- 9. Various numerical parameters -- 10. Fifty problems.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Minkowski geometry is a non-Euclidean geometry in a finite number of dimensions that is different from elliptic and hyperbolic geometry (and from the Minkowskian geometry of spacetime). Here the linear structure is the same as the Euclidean one but distance is not "uniform" in all directions. Instead of the usual sphere in Euclidean space, the unit ball is a general symmetric convex set. Therefore, although the parallel axiom is valid, Pythagoras' theorem is not</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">This book begins by presenting the topological properties of Minkowski spaces, including the existence and essential uniqueness of Haar measure, followed by the fundamental metric properties - the group of isometries, the existence of certain bases and the existence of the Lowner ellipsoid. This is followed by characterizations of Euclidean space among normed spaces and a full treatment of two-dimensional spaces. The three central chapters present the theory of area and volume in normed spaces. The author describes the fascinating geometric interplay among the isoperimetrix (the convex body which solves the isoperimetric problem), the unit ball and their duals, and the ways in which various roles of the ball in Euclidean space are divided among them. The next chapter deals with trigonometry in Minkowski spaces and the last one takes a brief look at a number of numerical parameters associated with a normed space, including J.J.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">Schaffer's ideas on the intrinsic geometry of the unit sphere. Each chapter ends with a section of historical notes and the book ends with a list of 50 unsolved problems.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">. Minkowski Geometry will appeal to students and researchers interested in geometry, convexity theory and functional analysis.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Minkowski geometry.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh95008990</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie de Minkowski.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">Analytic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Minkowski geometry</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometrie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4020236-7</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Minkowski-Raum</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4293944-6</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Minkowski-ruimte.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Minkowski, Géométrie de.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Minkowski geometry (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFxcp8JCWDwqGF9G4PywFq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Thompson, Anthony C., 1937-</subfield><subfield code="t">Minkowski geometry.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 1996</subfield><subfield code="z">052140472X</subfield><subfield code="w">(DLC) 95046491</subfield><subfield code="w">(OCoLC)33442682</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">v. 63.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42010632</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569342</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385475</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10733665</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">569342</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26006760</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">minkowskigeometr0000thom</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn852898451 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:26Z |
institution | BVB |
isbn | 9781107088269 1107088267 9781107325845 1107325846 |
language | English |
oclc_num | 852898451 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xvi, 346 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Cambridge University Press, |
record_format | marc |
series | Encyclopedia of mathematics and its applications ; |
series2 | Encyclopedia of mathematics and its applications ; |
spelling | Thompson, Anthony C., 1937- https://id.oclc.org/worldcat/entity/E39PBJg8JVTkmthkGrWfKkqhHC http://id.loc.gov/authorities/names/n83133654 Minkowski geometry / A.C. Thompson. Cambridge ; New York : Cambridge University Press, 1996. 1 online resource (xvi, 346 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Encyclopedia of mathematics and its applications ; v. 63 Includes bibliographical references (pages 313-330) and indexes. The algebraic properties of linear spaces and convex sets -- 1. Norms and norm topologies -- 2. Convex bodies -- 3. Comparisons and contrasts with Euclidean space -- 4. Two-dimensional Minkowski spaces -- 5. The concept of area and content -- 6. Special properties of the Holmes-Thompson definition -- 7. Special properties of the Busemann definition -- 8. Trigonometry -- 9. Various numerical parameters -- 10. Fifty problems. Minkowski geometry is a non-Euclidean geometry in a finite number of dimensions that is different from elliptic and hyperbolic geometry (and from the Minkowskian geometry of spacetime). Here the linear structure is the same as the Euclidean one but distance is not "uniform" in all directions. Instead of the usual sphere in Euclidean space, the unit ball is a general symmetric convex set. Therefore, although the parallel axiom is valid, Pythagoras' theorem is not This book begins by presenting the topological properties of Minkowski spaces, including the existence and essential uniqueness of Haar measure, followed by the fundamental metric properties - the group of isometries, the existence of certain bases and the existence of the Lowner ellipsoid. This is followed by characterizations of Euclidean space among normed spaces and a full treatment of two-dimensional spaces. The three central chapters present the theory of area and volume in normed spaces. The author describes the fascinating geometric interplay among the isoperimetrix (the convex body which solves the isoperimetric problem), the unit ball and their duals, and the ways in which various roles of the ball in Euclidean space are divided among them. The next chapter deals with trigonometry in Minkowski spaces and the last one takes a brief look at a number of numerical parameters associated with a normed space, including J.J. Schaffer's ideas on the intrinsic geometry of the unit sphere. Each chapter ends with a section of historical notes and the book ends with a list of 50 unsolved problems. . Minkowski Geometry will appeal to students and researchers interested in geometry, convexity theory and functional analysis. Print version record. Minkowski geometry. http://id.loc.gov/authorities/subjects/sh95008990 Géométrie de Minkowski. MATHEMATICS Geometry Analytic. bisacsh Minkowski geometry fast Geometrie gnd http://d-nb.info/gnd/4020236-7 Minkowski-Raum gnd http://d-nb.info/gnd/4293944-6 Minkowski-ruimte. gtt Minkowski, Géométrie de. ram has work: Minkowski geometry (Text) https://id.oclc.org/worldcat/entity/E39PCFxcp8JCWDwqGF9G4PywFq https://id.oclc.org/worldcat/ontology/hasWork Print version: Thompson, Anthony C., 1937- Minkowski geometry. Cambridge ; New York : Cambridge University Press, 1996 052140472X (DLC) 95046491 (OCoLC)33442682 Encyclopedia of mathematics and its applications ; v. 63. http://id.loc.gov/authorities/names/n42010632 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569342 Volltext |
spellingShingle | Thompson, Anthony C., 1937- Minkowski geometry / Encyclopedia of mathematics and its applications ; The algebraic properties of linear spaces and convex sets -- 1. Norms and norm topologies -- 2. Convex bodies -- 3. Comparisons and contrasts with Euclidean space -- 4. Two-dimensional Minkowski spaces -- 5. The concept of area and content -- 6. Special properties of the Holmes-Thompson definition -- 7. Special properties of the Busemann definition -- 8. Trigonometry -- 9. Various numerical parameters -- 10. Fifty problems. Minkowski geometry. http://id.loc.gov/authorities/subjects/sh95008990 Géométrie de Minkowski. MATHEMATICS Geometry Analytic. bisacsh Minkowski geometry fast Geometrie gnd http://d-nb.info/gnd/4020236-7 Minkowski-Raum gnd http://d-nb.info/gnd/4293944-6 Minkowski-ruimte. gtt Minkowski, Géométrie de. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh95008990 http://d-nb.info/gnd/4020236-7 http://d-nb.info/gnd/4293944-6 |
title | Minkowski geometry / |
title_auth | Minkowski geometry / |
title_exact_search | Minkowski geometry / |
title_full | Minkowski geometry / A.C. Thompson. |
title_fullStr | Minkowski geometry / A.C. Thompson. |
title_full_unstemmed | Minkowski geometry / A.C. Thompson. |
title_short | Minkowski geometry / |
title_sort | minkowski geometry |
topic | Minkowski geometry. http://id.loc.gov/authorities/subjects/sh95008990 Géométrie de Minkowski. MATHEMATICS Geometry Analytic. bisacsh Minkowski geometry fast Geometrie gnd http://d-nb.info/gnd/4020236-7 Minkowski-Raum gnd http://d-nb.info/gnd/4293944-6 Minkowski-ruimte. gtt Minkowski, Géométrie de. ram |
topic_facet | Minkowski geometry. Géométrie de Minkowski. MATHEMATICS Geometry Analytic. Minkowski geometry Geometrie Minkowski-Raum Minkowski-ruimte. Minkowski, Géométrie de. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569342 |
work_keys_str_mv | AT thompsonanthonyc minkowskigeometry |