On the topology and future stability of the universe /:
A general introduction to the initial value problem for Einstein's equations coupled to collisionless matter. The book contains a proof of future stability of models of the universe consistent with the current observational data and a discussion of the restrictions on the possible shapes of the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford :
Oxford University Press,
2013.
|
Schriftenreihe: | Oxford mathematical monographs.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | A general introduction to the initial value problem for Einstein's equations coupled to collisionless matter. The book contains a proof of future stability of models of the universe consistent with the current observational data and a discussion of the restrictions on the possible shapes of the universe imposed by observations. |
Beschreibung: | 1 online resource (xiv, 718 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780191669774 0191669776 9780191760235 0191760234 9780199680290 0199680299 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn846507613 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130603s2013 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d YDXCP |d STF |d COO |d OCLCQ |d EBLCP |d OCLCF |d OCLCQ |d STBDS |d OCLCQ |d YOU |d AU@ |d OCLCQ |d YDX |d OCLCQ |d OCLCO |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 922971721 | ||
020 | |a 9780191669774 |q (electronic bk.) | ||
020 | |a 0191669776 |q (electronic bk.) | ||
020 | |a 9780191760235 |q (ebook) | ||
020 | |a 0191760234 |q (ebook) | ||
020 | |a 9780199680290 |q (print) | ||
020 | |a 0199680299 |q (print) | ||
035 | |a (OCoLC)846507613 |z (OCoLC)922971721 | ||
050 | 4 | |a QA377 |b .R56 2013eb | |
072 | 7 | |a MAT |x 007020 |2 bisacsh | |
082 | 7 | |a 515.353 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Ringström, Hans. | |
245 | 1 | 0 | |a On the topology and future stability of the universe / |c Hans Ringström. |
260 | |a Oxford : |b Oxford University Press, |c 2013. | ||
300 | |a 1 online resource (xiv, 718 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Oxford mathematical monographs | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Online resource; title from pdf information screen (Ebsco, viewed June 3, 2013). | |
520 | 8 | |a A general introduction to the initial value problem for Einstein's equations coupled to collisionless matter. The book contains a proof of future stability of models of the universe consistent with the current observational data and a discussion of the restrictions on the possible shapes of the universe imposed by observations. | |
505 | 0 | |a Contents -- PART I: PROLOGUE -- 1 Introduction -- 1.1 General remarks on the limits of observations -- 1.2 The standard models of the universe -- 1.3 Approximation by matter of Vlasov type -- 2 The Cauchy problem in general relativity -- 2.1 The initial value problem in general relativity -- 2.2 Spaces of initial data and associated distance concepts -- 2.3 Minimal degree of regularity ensuring local existence -- 2.4 On linearisations -- 3 The topology of the universe -- 3.1 An example of how to characterise topology by geometry | |
505 | 8 | |a 3.2 Geometrisation of 3-manifolds3.3 A vacuum conjecture -- 4 Notions of proximity to spatial homogeneity and isotropy -- 4.1 Almost EGS theorems -- 4.2 On the relation between solutions with small spatial variation and spatially homogeneous solutions -- 5 Observational support for the standard model -- 5.1 Using observations to determine the cosmological parameters -- 5.2 Distance measurements -- 5.3 Supernovae observations -- 5.4 Concluding remarks -- 6 Concluding remarks -- 6.1 On the technical formulation of stability | |
505 | 8 | |a 6.2 Notions of proximity to spatial homogeneity and isotropy6.3 Models of the universe with arbitrary closed spatial topology -- 6.4 The cosmological principle -- 6.5 Symmetry assumption -- PART II: INTRODUCTORY MATERIAL -- 7 Main results -- 7.1 Vlasov matter -- 7.2 Scalar field matter -- 7.3 The equations -- 7.4 The constraint equations -- 7.5 Previous results -- 7.6 Background solution and intuition -- 7.7 Drawing global conclusions from local assumptions -- 7.8 Stability of spatially homogeneous solutions | |
505 | 8 | |a ""7.9 Limitations on the global topology imposed by local observations""""8 Outline, general theory of the Einstein�Vlasov system""; ""8.1 Main goals and issues""; ""8.2 Background""; ""8.3 Function spaces and estimates""; ""8.4 Existence, uniqueness and stability""; ""8.5 The Cauchy problem in general relativity""; ""9 Outline, main results""; ""9.1 Spatially homogeneous solutions""; ""9.2 Stability in the n-torus case""; ""9.3 Estimates for the Vlasov matter, future global existence and asymptotics""; ""9.4 Proof of the main results""; ""10 References to the literature and outlook"" | |
505 | 8 | |a 10.1 Local existence10.2 Generalisations -- 10.3 Potential improvements -- 10.4 References to the literature -- PART III: BACKGROUND AND BASIC CONSTRUCTIONS -- 11 Basic analysis estimates -- 11.1 Terminology concerning differentiation and weak derivatives -- 11.2 Weighted Sobolev spaces -- 11.3 Sobolev spaces on the torus -- 11.4 Sobolev spaces for distribution functions -- 11.5 Sobolev spaces corresponding to a non-integer number of derivatives -- 11.6 Basic analysis estimates -- 11.7 Locally x-compact support -- 12 Linear algebra | |
650 | 0 | |a Cauchy problem. |0 http://id.loc.gov/authorities/subjects/sh85021438 | |
651 | 0 | |a Universe. |0 http://id.loc.gov/authorities/subjects/sh2010007248 | |
650 | 6 | |a Problème de Cauchy. | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x Partial. |2 bisacsh | |
650 | 7 | |a Cauchy problem |2 fast | |
651 | 7 | |a Universe |2 fast | |
758 | |i has work: |a On the topology and future stability of the universe (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGJF3kK73KR8rdFCqfqGBK |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version |z 9780199680290 |
830 | 0 | |a Oxford mathematical monographs. |0 http://id.loc.gov/authorities/names/n83826371 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=579031 |3 Volltext |
938 | |a YBP Library Services |b YANK |n 18045702 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL3055298 | ||
938 | |a ebrary |b EBRY |n ebr10700296 | ||
938 | |a EBSCOhost |b EBSC |n 579031 | ||
938 | |a Oxford University Press USA |b OUPR |n EDZ0000132363 | ||
938 | |a YBP Library Services |b YANK |n 10712171 | ||
938 | |a YBP Library Services |b YANK |n 10710689 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn846507613 |
---|---|
_version_ | 1816882234259406848 |
adam_text | |
any_adam_object | |
author | Ringström, Hans |
author_facet | Ringström, Hans |
author_role | |
author_sort | Ringström, Hans |
author_variant | h r hr |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA377 |
callnumber-raw | QA377 .R56 2013eb |
callnumber-search | QA377 .R56 2013eb |
callnumber-sort | QA 3377 R56 42013EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Contents -- PART I: PROLOGUE -- 1 Introduction -- 1.1 General remarks on the limits of observations -- 1.2 The standard models of the universe -- 1.3 Approximation by matter of Vlasov type -- 2 The Cauchy problem in general relativity -- 2.1 The initial value problem in general relativity -- 2.2 Spaces of initial data and associated distance concepts -- 2.3 Minimal degree of regularity ensuring local existence -- 2.4 On linearisations -- 3 The topology of the universe -- 3.1 An example of how to characterise topology by geometry 3.2 Geometrisation of 3-manifolds3.3 A vacuum conjecture -- 4 Notions of proximity to spatial homogeneity and isotropy -- 4.1 Almost EGS theorems -- 4.2 On the relation between solutions with small spatial variation and spatially homogeneous solutions -- 5 Observational support for the standard model -- 5.1 Using observations to determine the cosmological parameters -- 5.2 Distance measurements -- 5.3 Supernovae observations -- 5.4 Concluding remarks -- 6 Concluding remarks -- 6.1 On the technical formulation of stability 6.2 Notions of proximity to spatial homogeneity and isotropy6.3 Models of the universe with arbitrary closed spatial topology -- 6.4 The cosmological principle -- 6.5 Symmetry assumption -- PART II: INTRODUCTORY MATERIAL -- 7 Main results -- 7.1 Vlasov matter -- 7.2 Scalar field matter -- 7.3 The equations -- 7.4 The constraint equations -- 7.5 Previous results -- 7.6 Background solution and intuition -- 7.7 Drawing global conclusions from local assumptions -- 7.8 Stability of spatially homogeneous solutions ""7.9 Limitations on the global topology imposed by local observations""""8 Outline, general theory of the Einstein�Vlasov system""; ""8.1 Main goals and issues""; ""8.2 Background""; ""8.3 Function spaces and estimates""; ""8.4 Existence, uniqueness and stability""; ""8.5 The Cauchy problem in general relativity""; ""9 Outline, main results""; ""9.1 Spatially homogeneous solutions""; ""9.2 Stability in the n-torus case""; ""9.3 Estimates for the Vlasov matter, future global existence and asymptotics""; ""9.4 Proof of the main results""; ""10 References to the literature and outlook"" 10.1 Local existence10.2 Generalisations -- 10.3 Potential improvements -- 10.4 References to the literature -- PART III: BACKGROUND AND BASIC CONSTRUCTIONS -- 11 Basic analysis estimates -- 11.1 Terminology concerning differentiation and weak derivatives -- 11.2 Weighted Sobolev spaces -- 11.3 Sobolev spaces on the torus -- 11.4 Sobolev spaces for distribution functions -- 11.5 Sobolev spaces corresponding to a non-integer number of derivatives -- 11.6 Basic analysis estimates -- 11.7 Locally x-compact support -- 12 Linear algebra |
ctrlnum | (OCoLC)846507613 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05702cam a2200661 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn846507613</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130603s2013 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">YDXCP</subfield><subfield code="d">STF</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STBDS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YOU</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">922971721</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191669774</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191669776</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191760235</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191760234</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199680290</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0199680299</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)846507613</subfield><subfield code="z">(OCoLC)922971721</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA377</subfield><subfield code="b">.R56 2013eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">007020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ringström, Hans.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the topology and future stability of the universe /</subfield><subfield code="c">Hans Ringström.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Oxford :</subfield><subfield code="b">Oxford University Press,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 718 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Oxford mathematical monographs</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from pdf information screen (Ebsco, viewed June 3, 2013).</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">A general introduction to the initial value problem for Einstein's equations coupled to collisionless matter. The book contains a proof of future stability of models of the universe consistent with the current observational data and a discussion of the restrictions on the possible shapes of the universe imposed by observations.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Contents -- PART I: PROLOGUE -- 1 Introduction -- 1.1 General remarks on the limits of observations -- 1.2 The standard models of the universe -- 1.3 Approximation by matter of Vlasov type -- 2 The Cauchy problem in general relativity -- 2.1 The initial value problem in general relativity -- 2.2 Spaces of initial data and associated distance concepts -- 2.3 Minimal degree of regularity ensuring local existence -- 2.4 On linearisations -- 3 The topology of the universe -- 3.1 An example of how to characterise topology by geometry</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2 Geometrisation of 3-manifolds3.3 A vacuum conjecture -- 4 Notions of proximity to spatial homogeneity and isotropy -- 4.1 Almost EGS theorems -- 4.2 On the relation between solutions with small spatial variation and spatially homogeneous solutions -- 5 Observational support for the standard model -- 5.1 Using observations to determine the cosmological parameters -- 5.2 Distance measurements -- 5.3 Supernovae observations -- 5.4 Concluding remarks -- 6 Concluding remarks -- 6.1 On the technical formulation of stability</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2 Notions of proximity to spatial homogeneity and isotropy6.3 Models of the universe with arbitrary closed spatial topology -- 6.4 The cosmological principle -- 6.5 Symmetry assumption -- PART II: INTRODUCTORY MATERIAL -- 7 Main results -- 7.1 Vlasov matter -- 7.2 Scalar field matter -- 7.3 The equations -- 7.4 The constraint equations -- 7.5 Previous results -- 7.6 Background solution and intuition -- 7.7 Drawing global conclusions from local assumptions -- 7.8 Stability of spatially homogeneous solutions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">""7.9 Limitations on the global topology imposed by local observations""""8 Outline, general theory of the Einsteinâ€?Vlasov system""; ""8.1 Main goals and issues""; ""8.2 Background""; ""8.3 Function spaces and estimates""; ""8.4 Existence, uniqueness and stability""; ""8.5 The Cauchy problem in general relativity""; ""9 Outline, main results""; ""9.1 Spatially homogeneous solutions""; ""9.2 Stability in the n-torus case""; ""9.3 Estimates for the Vlasov matter, future global existence and asymptotics""; ""9.4 Proof of the main results""; ""10 References to the literature and outlook""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.1 Local existence10.2 Generalisations -- 10.3 Potential improvements -- 10.4 References to the literature -- PART III: BACKGROUND AND BASIC CONSTRUCTIONS -- 11 Basic analysis estimates -- 11.1 Terminology concerning differentiation and weak derivatives -- 11.2 Weighted Sobolev spaces -- 11.3 Sobolev spaces on the torus -- 11.4 Sobolev spaces for distribution functions -- 11.5 Sobolev spaces corresponding to a non-integer number of derivatives -- 11.6 Basic analysis estimates -- 11.7 Locally x-compact support -- 12 Linear algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Cauchy problem.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85021438</subfield></datafield><datafield tag="651" ind1=" " ind2="0"><subfield code="a">Universe.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2010007248</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Problème de Cauchy.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations</subfield><subfield code="x">Partial.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cauchy problem</subfield><subfield code="2">fast</subfield></datafield><datafield tag="651" ind1=" " ind2="7"><subfield code="a">Universe</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">On the topology and future stability of the universe (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGJF3kK73KR8rdFCqfqGBK</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version</subfield><subfield code="z">9780199680290</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Oxford mathematical monographs.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83826371</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=579031</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">18045702</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3055298</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10700296</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">579031</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Oxford University Press USA</subfield><subfield code="b">OUPR</subfield><subfield code="n">EDZ0000132363</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10712171</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10710689</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
geographic | Universe. http://id.loc.gov/authorities/subjects/sh2010007248 Universe fast |
geographic_facet | Universe. Universe |
id | ZDB-4-EBA-ocn846507613 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:22Z |
institution | BVB |
isbn | 9780191669774 0191669776 9780191760235 0191760234 9780199680290 0199680299 |
language | English |
oclc_num | 846507613 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 718 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Oxford University Press, |
record_format | marc |
series | Oxford mathematical monographs. |
series2 | Oxford mathematical monographs |
spelling | Ringström, Hans. On the topology and future stability of the universe / Hans Ringström. Oxford : Oxford University Press, 2013. 1 online resource (xiv, 718 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Oxford mathematical monographs Includes bibliographical references and index. Online resource; title from pdf information screen (Ebsco, viewed June 3, 2013). A general introduction to the initial value problem for Einstein's equations coupled to collisionless matter. The book contains a proof of future stability of models of the universe consistent with the current observational data and a discussion of the restrictions on the possible shapes of the universe imposed by observations. Contents -- PART I: PROLOGUE -- 1 Introduction -- 1.1 General remarks on the limits of observations -- 1.2 The standard models of the universe -- 1.3 Approximation by matter of Vlasov type -- 2 The Cauchy problem in general relativity -- 2.1 The initial value problem in general relativity -- 2.2 Spaces of initial data and associated distance concepts -- 2.3 Minimal degree of regularity ensuring local existence -- 2.4 On linearisations -- 3 The topology of the universe -- 3.1 An example of how to characterise topology by geometry 3.2 Geometrisation of 3-manifolds3.3 A vacuum conjecture -- 4 Notions of proximity to spatial homogeneity and isotropy -- 4.1 Almost EGS theorems -- 4.2 On the relation between solutions with small spatial variation and spatially homogeneous solutions -- 5 Observational support for the standard model -- 5.1 Using observations to determine the cosmological parameters -- 5.2 Distance measurements -- 5.3 Supernovae observations -- 5.4 Concluding remarks -- 6 Concluding remarks -- 6.1 On the technical formulation of stability 6.2 Notions of proximity to spatial homogeneity and isotropy6.3 Models of the universe with arbitrary closed spatial topology -- 6.4 The cosmological principle -- 6.5 Symmetry assumption -- PART II: INTRODUCTORY MATERIAL -- 7 Main results -- 7.1 Vlasov matter -- 7.2 Scalar field matter -- 7.3 The equations -- 7.4 The constraint equations -- 7.5 Previous results -- 7.6 Background solution and intuition -- 7.7 Drawing global conclusions from local assumptions -- 7.8 Stability of spatially homogeneous solutions ""7.9 Limitations on the global topology imposed by local observations""""8 Outline, general theory of the Einsteinâ€?Vlasov system""; ""8.1 Main goals and issues""; ""8.2 Background""; ""8.3 Function spaces and estimates""; ""8.4 Existence, uniqueness and stability""; ""8.5 The Cauchy problem in general relativity""; ""9 Outline, main results""; ""9.1 Spatially homogeneous solutions""; ""9.2 Stability in the n-torus case""; ""9.3 Estimates for the Vlasov matter, future global existence and asymptotics""; ""9.4 Proof of the main results""; ""10 References to the literature and outlook"" 10.1 Local existence10.2 Generalisations -- 10.3 Potential improvements -- 10.4 References to the literature -- PART III: BACKGROUND AND BASIC CONSTRUCTIONS -- 11 Basic analysis estimates -- 11.1 Terminology concerning differentiation and weak derivatives -- 11.2 Weighted Sobolev spaces -- 11.3 Sobolev spaces on the torus -- 11.4 Sobolev spaces for distribution functions -- 11.5 Sobolev spaces corresponding to a non-integer number of derivatives -- 11.6 Basic analysis estimates -- 11.7 Locally x-compact support -- 12 Linear algebra Cauchy problem. http://id.loc.gov/authorities/subjects/sh85021438 Universe. http://id.loc.gov/authorities/subjects/sh2010007248 Problème de Cauchy. MATHEMATICS Differential Equations Partial. bisacsh Cauchy problem fast Universe fast has work: On the topology and future stability of the universe (Text) https://id.oclc.org/worldcat/entity/E39PCGJF3kK73KR8rdFCqfqGBK https://id.oclc.org/worldcat/ontology/hasWork Print version 9780199680290 Oxford mathematical monographs. http://id.loc.gov/authorities/names/n83826371 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=579031 Volltext |
spellingShingle | Ringström, Hans On the topology and future stability of the universe / Oxford mathematical monographs. Contents -- PART I: PROLOGUE -- 1 Introduction -- 1.1 General remarks on the limits of observations -- 1.2 The standard models of the universe -- 1.3 Approximation by matter of Vlasov type -- 2 The Cauchy problem in general relativity -- 2.1 The initial value problem in general relativity -- 2.2 Spaces of initial data and associated distance concepts -- 2.3 Minimal degree of regularity ensuring local existence -- 2.4 On linearisations -- 3 The topology of the universe -- 3.1 An example of how to characterise topology by geometry 3.2 Geometrisation of 3-manifolds3.3 A vacuum conjecture -- 4 Notions of proximity to spatial homogeneity and isotropy -- 4.1 Almost EGS theorems -- 4.2 On the relation between solutions with small spatial variation and spatially homogeneous solutions -- 5 Observational support for the standard model -- 5.1 Using observations to determine the cosmological parameters -- 5.2 Distance measurements -- 5.3 Supernovae observations -- 5.4 Concluding remarks -- 6 Concluding remarks -- 6.1 On the technical formulation of stability 6.2 Notions of proximity to spatial homogeneity and isotropy6.3 Models of the universe with arbitrary closed spatial topology -- 6.4 The cosmological principle -- 6.5 Symmetry assumption -- PART II: INTRODUCTORY MATERIAL -- 7 Main results -- 7.1 Vlasov matter -- 7.2 Scalar field matter -- 7.3 The equations -- 7.4 The constraint equations -- 7.5 Previous results -- 7.6 Background solution and intuition -- 7.7 Drawing global conclusions from local assumptions -- 7.8 Stability of spatially homogeneous solutions ""7.9 Limitations on the global topology imposed by local observations""""8 Outline, general theory of the Einsteinâ€?Vlasov system""; ""8.1 Main goals and issues""; ""8.2 Background""; ""8.3 Function spaces and estimates""; ""8.4 Existence, uniqueness and stability""; ""8.5 The Cauchy problem in general relativity""; ""9 Outline, main results""; ""9.1 Spatially homogeneous solutions""; ""9.2 Stability in the n-torus case""; ""9.3 Estimates for the Vlasov matter, future global existence and asymptotics""; ""9.4 Proof of the main results""; ""10 References to the literature and outlook"" 10.1 Local existence10.2 Generalisations -- 10.3 Potential improvements -- 10.4 References to the literature -- PART III: BACKGROUND AND BASIC CONSTRUCTIONS -- 11 Basic analysis estimates -- 11.1 Terminology concerning differentiation and weak derivatives -- 11.2 Weighted Sobolev spaces -- 11.3 Sobolev spaces on the torus -- 11.4 Sobolev spaces for distribution functions -- 11.5 Sobolev spaces corresponding to a non-integer number of derivatives -- 11.6 Basic analysis estimates -- 11.7 Locally x-compact support -- 12 Linear algebra Cauchy problem. http://id.loc.gov/authorities/subjects/sh85021438 Problème de Cauchy. MATHEMATICS Differential Equations Partial. bisacsh Cauchy problem fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85021438 http://id.loc.gov/authorities/subjects/sh2010007248 |
title | On the topology and future stability of the universe / |
title_auth | On the topology and future stability of the universe / |
title_exact_search | On the topology and future stability of the universe / |
title_full | On the topology and future stability of the universe / Hans Ringström. |
title_fullStr | On the topology and future stability of the universe / Hans Ringström. |
title_full_unstemmed | On the topology and future stability of the universe / Hans Ringström. |
title_short | On the topology and future stability of the universe / |
title_sort | on the topology and future stability of the universe |
topic | Cauchy problem. http://id.loc.gov/authorities/subjects/sh85021438 Problème de Cauchy. MATHEMATICS Differential Equations Partial. bisacsh Cauchy problem fast |
topic_facet | Cauchy problem. Universe. Problème de Cauchy. MATHEMATICS Differential Equations Partial. Cauchy problem Universe |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=579031 |
work_keys_str_mv | AT ringstromhans onthetopologyandfuturestabilityoftheuniverse |