Lectures on mechanics /:
The use of geometric methods in classical mechanics has proven to be a fruitful exercise, with the results being of wide application to physics and engineering. Here Professor Marsden concentrates on these geometric aspects, and especially on symmetry techniques. The main points he covers are: the s...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [England] ; New York :
Cambridge University Press,
1992.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
174. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The use of geometric methods in classical mechanics has proven to be a fruitful exercise, with the results being of wide application to physics and engineering. Here Professor Marsden concentrates on these geometric aspects, and especially on symmetry techniques. The main points he covers are: the stability of relative equilibria, which is analyzed using the block diagonalization technique; geometric phases, studied using the reduction and reconstruction technique; and bifurcation of relative equilibria and chaos in mechanical systems. A unifying theme for these points is provided by reduction theory, the associated mechanical connection and techniques from dynamical systems. These methods can be applied to many control and stabilization situations, and this is illustrated using rigid bodies with internal rotors, and the use of geometric phases in mechanical systems. To illustrate the above ideas and the power of geometric arguments, the author studies a variety of specific systems, including the double spherical pendulum and the classical rotating water molecule. This book, based on the 1991 LMS Invited Lectures, will be valued by pure and applied mathematicians, physicists and engineers who work in geometry, nonlinear dynamics, mechanics, and robotics. |
Beschreibung: | 1 online resource (xi, 254 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 225-249) and index. |
ISBN: | 9781107088351 1107088356 9780511624001 051162400X |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn846494750 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130603s1992 enka ob 001 0 eng d | ||
010 | |z 93104026 | ||
040 | |a N$T |b eng |e pn |c N$T |d CAMBR |d OCLCF |d YDXCP |d OCLCQ |d LLB |d OCLCQ |d AGLDB |d OCLCQ |d UAB |d OCLCQ |d VTS |d REC |d STF |d AU@ |d M8D |d UKAHL |d OCLCQ |d K6U |d SFB |d OCLCQ |d OCLCO |d OCLCQ |d INARC |d OCLCO |d OCLCL | ||
019 | |a 818128922 |a 985344601 |a 985395810 |a 1359006722 | ||
020 | |a 9781107088351 |q (electronic bk.) | ||
020 | |a 1107088356 |q (electronic bk.) | ||
020 | |a 9780511624001 |q (electronic bk.) | ||
020 | |a 051162400X |q (electronic bk.) | ||
020 | |z 0521428440 | ||
020 | |z 9780521428446 | ||
035 | |a (OCoLC)846494750 |z (OCoLC)818128922 |z (OCoLC)985344601 |z (OCoLC)985395810 |z (OCoLC)1359006722 | ||
050 | 4 | |a QA805 |b .M367 1992eb | |
072 | 7 | |a SCI |x 041000 |2 bisacsh | |
072 | 7 | |a SCI |x 096000 |2 bisacsh | |
082 | 7 | |a 531/.01/516 |2 22 | |
084 | |a *70-01 |2 msc | ||
084 | |a 37G99 |2 msc | ||
084 | |a 70E15 |2 msc | ||
084 | |a 70Hxx |2 msc | ||
084 | |a 93B52 |2 msc | ||
049 | |a MAIN | ||
100 | 1 | |a Marsden, Jerrold E. |0 http://id.loc.gov/authorities/names/n79077360 | |
245 | 1 | 0 | |a Lectures on mechanics / |c Jerrold E. Marsden. |
260 | |a Cambridge [England] ; |a New York : |b Cambridge University Press, |c 1992. | ||
300 | |a 1 online resource (xi, 254 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 174 | |
504 | |a Includes bibliographical references (pages 225-249) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a The use of geometric methods in classical mechanics has proven to be a fruitful exercise, with the results being of wide application to physics and engineering. Here Professor Marsden concentrates on these geometric aspects, and especially on symmetry techniques. The main points he covers are: the stability of relative equilibria, which is analyzed using the block diagonalization technique; geometric phases, studied using the reduction and reconstruction technique; and bifurcation of relative equilibria and chaos in mechanical systems. A unifying theme for these points is provided by reduction theory, the associated mechanical connection and techniques from dynamical systems. These methods can be applied to many control and stabilization situations, and this is illustrated using rigid bodies with internal rotors, and the use of geometric phases in mechanical systems. To illustrate the above ideas and the power of geometric arguments, the author studies a variety of specific systems, including the double spherical pendulum and the classical rotating water molecule. This book, based on the 1991 LMS Invited Lectures, will be valued by pure and applied mathematicians, physicists and engineers who work in geometry, nonlinear dynamics, mechanics, and robotics. | ||
505 | 0 | |a Cover; Series Page; Title; Copyright; Contents; Preface; Chapter 1 Introduction; 1.1 The Classical Water Molecule and the Ozone Molecule; 1.2 Hamiltonian Formulation; 1.3 Geometry, Symmetry, and Reduction; 1.4 Stability; 1.5 Geometric Phases; 1.6 The Rotation Group and the Poincare Sphere; Chapter 2 A Crash Course in Geometric Mechanics; 2.1 Symplectic and Poisson Manifolds; 2.2 The Flow of a Hamiltonian Vector Field; 2.3 Cotangent Bundles; 2.4 Lagrangian Mechanics; 2.5 Lie-Poisson Structures; 2.6 The Rigid Body; 2.7 Momentum Maps; 2.8 Reduction; 2.9 Singularities and Symmetry | |
505 | 8 | |a 2.10 A Particle in a Magnetic FieldChapter 3 Cotangent Bundle Reduction; 3.1 Mechanical G-systems; 3.2 The Classical Water Molecule; 3.3 The Mechanical Connection; 3.4 The Geometry and Dynamics of Cotangent Bundle Reduction; 3.5 Examples; 3.6 Lagrangian Reduction; 3. 7 Coupling to a Lie group; Chapter 4 Relative Equilibria; 4.1 Relative Equilibria on Symplectic Manifolds; 4.2 Cotangent Relative Equilibria; 4.3 Examples; 4.4 The Rigid Body; Chapter 5 The Energy-Momentum Method; 5.1 The General Technique; 5.2 Example: The Rigid Body; 5.3 Block Diagonalization | |
505 | 8 | |a 5.4 The Normal Form for the Symplectic Structure5.5 Stability of Relative Equilibria for the Double Spherical Pendulum; Chapter 6 Geometric Phases; 6.1 A Simple Example; 6.2 Reconstruction; 6.3 Cotangent Bundle Phases -- a Special Case; 6.4 Cotangent Bundles -- General Case; 6.5 Rigid Body Phases; 6.6 Moving Systems; 6.7 The Bead on the Rotating Hoop; Chapter 7 Stabilization and Control; 7.1 The Rigid Body with Internal Rotors; 7.2 The Hamiltonian Structure with Feedback Controls; 7.3 Feedback Stabilization of a Rigid Body with a Single Rotor; 7.4 Phase Shifts | |
505 | 8 | |a 7.5 The Kaluza-Klein Description of Charged Particles7.6 Optimal Control and Yang-Mills Particles; Chapter 8 Discrete reduction; 8.1 Fixed Point Sets and Discrete Reduction; 8.2 Cotangent Bundles; 8.3 Examples; 8.4 Sub-Block Diagonalization with Discrete Symmetry; 8.5 Discrete Reduction of Dual Pairs; Chapter 9 Mechanical Integrators; 9.1 Definitions and Examples; 9.2 Limitations on Mechanical Integrators; 9.3 Symplectic Integrators and Generating Functions; 9.4 Symmetric Symplectic Algorithms Conserve J; 9.5 Energy-Momentum Algorithms; 9.6 The Lie-Poisson Hamilton-Jacobi Equation | |
505 | 8 | |a 9.7 Example: The Free Rigid Body9.8 Variational Considerations; Chapter 10 Hamiltonian Bifurcation; 10.1 Some Introductory Examples; 10.2 The Role of Symmetry; 10.3 The One to One Resonance and Dual Pairs; 10.4 Bifurcations in the Double Spherical Pendulum; 10.5 Continuous Symmetry Groups and Solution Space Singularities; 10.6 The Poincare-Melnikov Method; 10.7 The Role of Dissipation; References; Index | |
650 | 0 | |a Mechanics, Analytic. |0 http://id.loc.gov/authorities/subjects/sh85082768 | |
650 | 6 | |a Mécanique analytique. | |
650 | 7 | |a SCIENCE |x Mechanics |x General. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Mechanics |x Solids. |2 bisacsh | |
650 | 7 | |a Mechanics, Analytic |2 fast | |
650 | 7 | |a Mécanique analytique. |2 ram | |
650 | 7 | |a Dynamique. |2 ram | |
650 | 7 | |a Physique mathématique. |2 ram | |
758 | |i has work: |a Lectures on mechanics (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFJPpW7QkR69BWrJ6bdJ6q |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Marsden, Jerrold E. |t Lectures on mechanics. |d Cambridge [England] ; New York : Cambridge University Press, 1992 |z 0521428440 |w (DLC) 93104026 |w (OCoLC)28149525 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 174. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570490 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24076277 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26478660 | ||
938 | |a EBSCOhost |b EBSC |n 570490 | ||
938 | |a YBP Library Services |b YANK |n 9619608 | ||
938 | |a YBP Library Services |b YANK |n 10734772 | ||
938 | |a YBP Library Services |b YANK |n 10762243 | ||
938 | |a Internet Archive |b INAR |n lecturesonmechan0000mars | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn846494750 |
---|---|
_version_ | 1816882234011942912 |
adam_text | |
any_adam_object | |
author | Marsden, Jerrold E. |
author_GND | http://id.loc.gov/authorities/names/n79077360 |
author_facet | Marsden, Jerrold E. |
author_role | |
author_sort | Marsden, Jerrold E. |
author_variant | j e m je jem |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA805 |
callnumber-raw | QA805 .M367 1992eb |
callnumber-search | QA805 .M367 1992eb |
callnumber-sort | QA 3805 M367 41992EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Series Page; Title; Copyright; Contents; Preface; Chapter 1 Introduction; 1.1 The Classical Water Molecule and the Ozone Molecule; 1.2 Hamiltonian Formulation; 1.3 Geometry, Symmetry, and Reduction; 1.4 Stability; 1.5 Geometric Phases; 1.6 The Rotation Group and the Poincare Sphere; Chapter 2 A Crash Course in Geometric Mechanics; 2.1 Symplectic and Poisson Manifolds; 2.2 The Flow of a Hamiltonian Vector Field; 2.3 Cotangent Bundles; 2.4 Lagrangian Mechanics; 2.5 Lie-Poisson Structures; 2.6 The Rigid Body; 2.7 Momentum Maps; 2.8 Reduction; 2.9 Singularities and Symmetry 2.10 A Particle in a Magnetic FieldChapter 3 Cotangent Bundle Reduction; 3.1 Mechanical G-systems; 3.2 The Classical Water Molecule; 3.3 The Mechanical Connection; 3.4 The Geometry and Dynamics of Cotangent Bundle Reduction; 3.5 Examples; 3.6 Lagrangian Reduction; 3. 7 Coupling to a Lie group; Chapter 4 Relative Equilibria; 4.1 Relative Equilibria on Symplectic Manifolds; 4.2 Cotangent Relative Equilibria; 4.3 Examples; 4.4 The Rigid Body; Chapter 5 The Energy-Momentum Method; 5.1 The General Technique; 5.2 Example: The Rigid Body; 5.3 Block Diagonalization 5.4 The Normal Form for the Symplectic Structure5.5 Stability of Relative Equilibria for the Double Spherical Pendulum; Chapter 6 Geometric Phases; 6.1 A Simple Example; 6.2 Reconstruction; 6.3 Cotangent Bundle Phases -- a Special Case; 6.4 Cotangent Bundles -- General Case; 6.5 Rigid Body Phases; 6.6 Moving Systems; 6.7 The Bead on the Rotating Hoop; Chapter 7 Stabilization and Control; 7.1 The Rigid Body with Internal Rotors; 7.2 The Hamiltonian Structure with Feedback Controls; 7.3 Feedback Stabilization of a Rigid Body with a Single Rotor; 7.4 Phase Shifts 7.5 The Kaluza-Klein Description of Charged Particles7.6 Optimal Control and Yang-Mills Particles; Chapter 8 Discrete reduction; 8.1 Fixed Point Sets and Discrete Reduction; 8.2 Cotangent Bundles; 8.3 Examples; 8.4 Sub-Block Diagonalization with Discrete Symmetry; 8.5 Discrete Reduction of Dual Pairs; Chapter 9 Mechanical Integrators; 9.1 Definitions and Examples; 9.2 Limitations on Mechanical Integrators; 9.3 Symplectic Integrators and Generating Functions; 9.4 Symmetric Symplectic Algorithms Conserve J; 9.5 Energy-Momentum Algorithms; 9.6 The Lie-Poisson Hamilton-Jacobi Equation 9.7 Example: The Free Rigid Body9.8 Variational Considerations; Chapter 10 Hamiltonian Bifurcation; 10.1 Some Introductory Examples; 10.2 The Role of Symmetry; 10.3 The One to One Resonance and Dual Pairs; 10.4 Bifurcations in the Double Spherical Pendulum; 10.5 Continuous Symmetry Groups and Solution Space Singularities; 10.6 The Poincare-Melnikov Method; 10.7 The Role of Dissipation; References; Index |
ctrlnum | (OCoLC)846494750 |
dewey-full | 531/.01/516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531/.01/516 |
dewey-search | 531/.01/516 |
dewey-sort | 3531 11 3516 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07226cam a2200769 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn846494750</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130603s1992 enka ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 93104026 </subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LLB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">818128922</subfield><subfield code="a">985344601</subfield><subfield code="a">985395810</subfield><subfield code="a">1359006722</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107088351</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107088356</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511624001</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">051162400X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521428440</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521428446</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)846494750</subfield><subfield code="z">(OCoLC)818128922</subfield><subfield code="z">(OCoLC)985344601</subfield><subfield code="z">(OCoLC)985395810</subfield><subfield code="z">(OCoLC)1359006722</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA805</subfield><subfield code="b">.M367 1992eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">041000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">096000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">531/.01/516</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">*70-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">37G99</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70E15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70Hxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">93B52</subfield><subfield code="2">msc</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marsden, Jerrold E.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n79077360</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on mechanics /</subfield><subfield code="c">Jerrold E. Marsden.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [England] ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1992.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 254 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">174</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 225-249) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The use of geometric methods in classical mechanics has proven to be a fruitful exercise, with the results being of wide application to physics and engineering. Here Professor Marsden concentrates on these geometric aspects, and especially on symmetry techniques. The main points he covers are: the stability of relative equilibria, which is analyzed using the block diagonalization technique; geometric phases, studied using the reduction and reconstruction technique; and bifurcation of relative equilibria and chaos in mechanical systems. A unifying theme for these points is provided by reduction theory, the associated mechanical connection and techniques from dynamical systems. These methods can be applied to many control and stabilization situations, and this is illustrated using rigid bodies with internal rotors, and the use of geometric phases in mechanical systems. To illustrate the above ideas and the power of geometric arguments, the author studies a variety of specific systems, including the double spherical pendulum and the classical rotating water molecule. This book, based on the 1991 LMS Invited Lectures, will be valued by pure and applied mathematicians, physicists and engineers who work in geometry, nonlinear dynamics, mechanics, and robotics.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Series Page; Title; Copyright; Contents; Preface; Chapter 1 Introduction; 1.1 The Classical Water Molecule and the Ozone Molecule; 1.2 Hamiltonian Formulation; 1.3 Geometry, Symmetry, and Reduction; 1.4 Stability; 1.5 Geometric Phases; 1.6 The Rotation Group and the Poincare Sphere; Chapter 2 A Crash Course in Geometric Mechanics; 2.1 Symplectic and Poisson Manifolds; 2.2 The Flow of a Hamiltonian Vector Field; 2.3 Cotangent Bundles; 2.4 Lagrangian Mechanics; 2.5 Lie-Poisson Structures; 2.6 The Rigid Body; 2.7 Momentum Maps; 2.8 Reduction; 2.9 Singularities and Symmetry</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.10 A Particle in a Magnetic FieldChapter 3 Cotangent Bundle Reduction; 3.1 Mechanical G-systems; 3.2 The Classical Water Molecule; 3.3 The Mechanical Connection; 3.4 The Geometry and Dynamics of Cotangent Bundle Reduction; 3.5 Examples; 3.6 Lagrangian Reduction; 3. 7 Coupling to a Lie group; Chapter 4 Relative Equilibria; 4.1 Relative Equilibria on Symplectic Manifolds; 4.2 Cotangent Relative Equilibria; 4.3 Examples; 4.4 The Rigid Body; Chapter 5 The Energy-Momentum Method; 5.1 The General Technique; 5.2 Example: The Rigid Body; 5.3 Block Diagonalization</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.4 The Normal Form for the Symplectic Structure5.5 Stability of Relative Equilibria for the Double Spherical Pendulum; Chapter 6 Geometric Phases; 6.1 A Simple Example; 6.2 Reconstruction; 6.3 Cotangent Bundle Phases -- a Special Case; 6.4 Cotangent Bundles -- General Case; 6.5 Rigid Body Phases; 6.6 Moving Systems; 6.7 The Bead on the Rotating Hoop; Chapter 7 Stabilization and Control; 7.1 The Rigid Body with Internal Rotors; 7.2 The Hamiltonian Structure with Feedback Controls; 7.3 Feedback Stabilization of a Rigid Body with a Single Rotor; 7.4 Phase Shifts</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.5 The Kaluza-Klein Description of Charged Particles7.6 Optimal Control and Yang-Mills Particles; Chapter 8 Discrete reduction; 8.1 Fixed Point Sets and Discrete Reduction; 8.2 Cotangent Bundles; 8.3 Examples; 8.4 Sub-Block Diagonalization with Discrete Symmetry; 8.5 Discrete Reduction of Dual Pairs; Chapter 9 Mechanical Integrators; 9.1 Definitions and Examples; 9.2 Limitations on Mechanical Integrators; 9.3 Symplectic Integrators and Generating Functions; 9.4 Symmetric Symplectic Algorithms Conserve J; 9.5 Energy-Momentum Algorithms; 9.6 The Lie-Poisson Hamilton-Jacobi Equation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.7 Example: The Free Rigid Body9.8 Variational Considerations; Chapter 10 Hamiltonian Bifurcation; 10.1 Some Introductory Examples; 10.2 The Role of Symmetry; 10.3 The One to One Resonance and Dual Pairs; 10.4 Bifurcations in the Double Spherical Pendulum; 10.5 Continuous Symmetry Groups and Solution Space Singularities; 10.6 The Poincare-Melnikov Method; 10.7 The Role of Dissipation; References; Index</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mechanics, Analytic.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082768</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mécanique analytique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mechanics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mechanics</subfield><subfield code="x">Solids.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mechanics, Analytic</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mécanique analytique.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dynamique.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Physique mathématique.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Lectures on mechanics (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFJPpW7QkR69BWrJ6bdJ6q</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Marsden, Jerrold E.</subfield><subfield code="t">Lectures on mechanics.</subfield><subfield code="d">Cambridge [England] ; New York : Cambridge University Press, 1992</subfield><subfield code="z">0521428440</subfield><subfield code="w">(DLC) 93104026</subfield><subfield code="w">(OCoLC)28149525</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">174.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570490</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24076277</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26478660</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">570490</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9619608</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10734772</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10762243</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">lecturesonmechan0000mars</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn846494750 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:22Z |
institution | BVB |
isbn | 9781107088351 1107088356 9780511624001 051162400X |
language | English |
oclc_num | 846494750 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 254 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Marsden, Jerrold E. http://id.loc.gov/authorities/names/n79077360 Lectures on mechanics / Jerrold E. Marsden. Cambridge [England] ; New York : Cambridge University Press, 1992. 1 online resource (xi, 254 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 174 Includes bibliographical references (pages 225-249) and index. Print version record. The use of geometric methods in classical mechanics has proven to be a fruitful exercise, with the results being of wide application to physics and engineering. Here Professor Marsden concentrates on these geometric aspects, and especially on symmetry techniques. The main points he covers are: the stability of relative equilibria, which is analyzed using the block diagonalization technique; geometric phases, studied using the reduction and reconstruction technique; and bifurcation of relative equilibria and chaos in mechanical systems. A unifying theme for these points is provided by reduction theory, the associated mechanical connection and techniques from dynamical systems. These methods can be applied to many control and stabilization situations, and this is illustrated using rigid bodies with internal rotors, and the use of geometric phases in mechanical systems. To illustrate the above ideas and the power of geometric arguments, the author studies a variety of specific systems, including the double spherical pendulum and the classical rotating water molecule. This book, based on the 1991 LMS Invited Lectures, will be valued by pure and applied mathematicians, physicists and engineers who work in geometry, nonlinear dynamics, mechanics, and robotics. Cover; Series Page; Title; Copyright; Contents; Preface; Chapter 1 Introduction; 1.1 The Classical Water Molecule and the Ozone Molecule; 1.2 Hamiltonian Formulation; 1.3 Geometry, Symmetry, and Reduction; 1.4 Stability; 1.5 Geometric Phases; 1.6 The Rotation Group and the Poincare Sphere; Chapter 2 A Crash Course in Geometric Mechanics; 2.1 Symplectic and Poisson Manifolds; 2.2 The Flow of a Hamiltonian Vector Field; 2.3 Cotangent Bundles; 2.4 Lagrangian Mechanics; 2.5 Lie-Poisson Structures; 2.6 The Rigid Body; 2.7 Momentum Maps; 2.8 Reduction; 2.9 Singularities and Symmetry 2.10 A Particle in a Magnetic FieldChapter 3 Cotangent Bundle Reduction; 3.1 Mechanical G-systems; 3.2 The Classical Water Molecule; 3.3 The Mechanical Connection; 3.4 The Geometry and Dynamics of Cotangent Bundle Reduction; 3.5 Examples; 3.6 Lagrangian Reduction; 3. 7 Coupling to a Lie group; Chapter 4 Relative Equilibria; 4.1 Relative Equilibria on Symplectic Manifolds; 4.2 Cotangent Relative Equilibria; 4.3 Examples; 4.4 The Rigid Body; Chapter 5 The Energy-Momentum Method; 5.1 The General Technique; 5.2 Example: The Rigid Body; 5.3 Block Diagonalization 5.4 The Normal Form for the Symplectic Structure5.5 Stability of Relative Equilibria for the Double Spherical Pendulum; Chapter 6 Geometric Phases; 6.1 A Simple Example; 6.2 Reconstruction; 6.3 Cotangent Bundle Phases -- a Special Case; 6.4 Cotangent Bundles -- General Case; 6.5 Rigid Body Phases; 6.6 Moving Systems; 6.7 The Bead on the Rotating Hoop; Chapter 7 Stabilization and Control; 7.1 The Rigid Body with Internal Rotors; 7.2 The Hamiltonian Structure with Feedback Controls; 7.3 Feedback Stabilization of a Rigid Body with a Single Rotor; 7.4 Phase Shifts 7.5 The Kaluza-Klein Description of Charged Particles7.6 Optimal Control and Yang-Mills Particles; Chapter 8 Discrete reduction; 8.1 Fixed Point Sets and Discrete Reduction; 8.2 Cotangent Bundles; 8.3 Examples; 8.4 Sub-Block Diagonalization with Discrete Symmetry; 8.5 Discrete Reduction of Dual Pairs; Chapter 9 Mechanical Integrators; 9.1 Definitions and Examples; 9.2 Limitations on Mechanical Integrators; 9.3 Symplectic Integrators and Generating Functions; 9.4 Symmetric Symplectic Algorithms Conserve J; 9.5 Energy-Momentum Algorithms; 9.6 The Lie-Poisson Hamilton-Jacobi Equation 9.7 Example: The Free Rigid Body9.8 Variational Considerations; Chapter 10 Hamiltonian Bifurcation; 10.1 Some Introductory Examples; 10.2 The Role of Symmetry; 10.3 The One to One Resonance and Dual Pairs; 10.4 Bifurcations in the Double Spherical Pendulum; 10.5 Continuous Symmetry Groups and Solution Space Singularities; 10.6 The Poincare-Melnikov Method; 10.7 The Role of Dissipation; References; Index Mechanics, Analytic. http://id.loc.gov/authorities/subjects/sh85082768 Mécanique analytique. SCIENCE Mechanics General. bisacsh SCIENCE Mechanics Solids. bisacsh Mechanics, Analytic fast Mécanique analytique. ram Dynamique. ram Physique mathématique. ram has work: Lectures on mechanics (Text) https://id.oclc.org/worldcat/entity/E39PCFJPpW7QkR69BWrJ6bdJ6q https://id.oclc.org/worldcat/ontology/hasWork Print version: Marsden, Jerrold E. Lectures on mechanics. Cambridge [England] ; New York : Cambridge University Press, 1992 0521428440 (DLC) 93104026 (OCoLC)28149525 London Mathematical Society lecture note series ; 174. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570490 Volltext |
spellingShingle | Marsden, Jerrold E. Lectures on mechanics / London Mathematical Society lecture note series ; Cover; Series Page; Title; Copyright; Contents; Preface; Chapter 1 Introduction; 1.1 The Classical Water Molecule and the Ozone Molecule; 1.2 Hamiltonian Formulation; 1.3 Geometry, Symmetry, and Reduction; 1.4 Stability; 1.5 Geometric Phases; 1.6 The Rotation Group and the Poincare Sphere; Chapter 2 A Crash Course in Geometric Mechanics; 2.1 Symplectic and Poisson Manifolds; 2.2 The Flow of a Hamiltonian Vector Field; 2.3 Cotangent Bundles; 2.4 Lagrangian Mechanics; 2.5 Lie-Poisson Structures; 2.6 The Rigid Body; 2.7 Momentum Maps; 2.8 Reduction; 2.9 Singularities and Symmetry 2.10 A Particle in a Magnetic FieldChapter 3 Cotangent Bundle Reduction; 3.1 Mechanical G-systems; 3.2 The Classical Water Molecule; 3.3 The Mechanical Connection; 3.4 The Geometry and Dynamics of Cotangent Bundle Reduction; 3.5 Examples; 3.6 Lagrangian Reduction; 3. 7 Coupling to a Lie group; Chapter 4 Relative Equilibria; 4.1 Relative Equilibria on Symplectic Manifolds; 4.2 Cotangent Relative Equilibria; 4.3 Examples; 4.4 The Rigid Body; Chapter 5 The Energy-Momentum Method; 5.1 The General Technique; 5.2 Example: The Rigid Body; 5.3 Block Diagonalization 5.4 The Normal Form for the Symplectic Structure5.5 Stability of Relative Equilibria for the Double Spherical Pendulum; Chapter 6 Geometric Phases; 6.1 A Simple Example; 6.2 Reconstruction; 6.3 Cotangent Bundle Phases -- a Special Case; 6.4 Cotangent Bundles -- General Case; 6.5 Rigid Body Phases; 6.6 Moving Systems; 6.7 The Bead on the Rotating Hoop; Chapter 7 Stabilization and Control; 7.1 The Rigid Body with Internal Rotors; 7.2 The Hamiltonian Structure with Feedback Controls; 7.3 Feedback Stabilization of a Rigid Body with a Single Rotor; 7.4 Phase Shifts 7.5 The Kaluza-Klein Description of Charged Particles7.6 Optimal Control and Yang-Mills Particles; Chapter 8 Discrete reduction; 8.1 Fixed Point Sets and Discrete Reduction; 8.2 Cotangent Bundles; 8.3 Examples; 8.4 Sub-Block Diagonalization with Discrete Symmetry; 8.5 Discrete Reduction of Dual Pairs; Chapter 9 Mechanical Integrators; 9.1 Definitions and Examples; 9.2 Limitations on Mechanical Integrators; 9.3 Symplectic Integrators and Generating Functions; 9.4 Symmetric Symplectic Algorithms Conserve J; 9.5 Energy-Momentum Algorithms; 9.6 The Lie-Poisson Hamilton-Jacobi Equation 9.7 Example: The Free Rigid Body9.8 Variational Considerations; Chapter 10 Hamiltonian Bifurcation; 10.1 Some Introductory Examples; 10.2 The Role of Symmetry; 10.3 The One to One Resonance and Dual Pairs; 10.4 Bifurcations in the Double Spherical Pendulum; 10.5 Continuous Symmetry Groups and Solution Space Singularities; 10.6 The Poincare-Melnikov Method; 10.7 The Role of Dissipation; References; Index Mechanics, Analytic. http://id.loc.gov/authorities/subjects/sh85082768 Mécanique analytique. SCIENCE Mechanics General. bisacsh SCIENCE Mechanics Solids. bisacsh Mechanics, Analytic fast Mécanique analytique. ram Dynamique. ram Physique mathématique. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082768 |
title | Lectures on mechanics / |
title_auth | Lectures on mechanics / |
title_exact_search | Lectures on mechanics / |
title_full | Lectures on mechanics / Jerrold E. Marsden. |
title_fullStr | Lectures on mechanics / Jerrold E. Marsden. |
title_full_unstemmed | Lectures on mechanics / Jerrold E. Marsden. |
title_short | Lectures on mechanics / |
title_sort | lectures on mechanics |
topic | Mechanics, Analytic. http://id.loc.gov/authorities/subjects/sh85082768 Mécanique analytique. SCIENCE Mechanics General. bisacsh SCIENCE Mechanics Solids. bisacsh Mechanics, Analytic fast Mécanique analytique. ram Dynamique. ram Physique mathématique. ram |
topic_facet | Mechanics, Analytic. Mécanique analytique. SCIENCE Mechanics General. SCIENCE Mechanics Solids. Mechanics, Analytic Dynamique. Physique mathématique. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570490 |
work_keys_str_mv | AT marsdenjerrolde lecturesonmechanics |