Stochastic differential equations on manifolds /:
The aims of this book, originally published in 1982, are to give an understanding of the basic ideas concerning stochastic differential equations on manifolds and their solution flows, to examine the properties of Brownian motion on Riemannian manifolds when it is constructed using the stochiastic d...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [Cambridgeshire] ; New York :
Cambridge University Press,
1982.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
70. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The aims of this book, originally published in 1982, are to give an understanding of the basic ideas concerning stochastic differential equations on manifolds and their solution flows, to examine the properties of Brownian motion on Riemannian manifolds when it is constructed using the stochiastic development and to indicate some of the uses of the theory. The author has included two appendices which summarise the manifold theory and differential geometry needed to follow the development; coordinate-free notation is used throughout. Moreover, the stochiastic integrals used are those which can be obtained from limits of the Riemann sums, thereby avoiding much of the technicalities of the general theory of processes and allowing the reader to get a quick grasp of the fundamental ideas of stochastic integration as they are needed for a variety of applications. |
Beschreibung: | 1 online resource (326 pages) |
Bibliographie: | Includes bibliographical references (pages 308-318) and index. |
ISBN: | 9781107087422 1107087422 9781107325609 1107325609 1299706924 9781299706927 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn846494694 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130603s1982 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d CAMBR |d IDEBK |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d XFH |d OCLCO |d OCLCQ |d OCLCA |d UAB |d VTS |d REC |d OCLCO |d STF |d AU@ |d OCLCO |d M8D |d UKAHL |d OCLCQ |d OCLCO |d K6U |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 843760925 |a 994504734 | ||
020 | |a 9781107087422 |q (electronic bk.) | ||
020 | |a 1107087422 |q (electronic bk.) | ||
020 | |a 9781107325609 |q (electronic bk.) | ||
020 | |a 1107325609 |q (electronic bk.) | ||
020 | |a 1299706924 | ||
020 | |a 9781299706927 | ||
020 | |z 0521287677 | ||
020 | |z 9780521287678 | ||
035 | |a (OCoLC)846494694 |z (OCoLC)843760925 |z (OCoLC)994504734 | ||
050 | 4 | |a QA274.23 |b .E38 1982eb | |
072 | 7 | |a MAT |x 029000 |2 bisacsh | |
082 | 7 | |a 519.2 |2 22 | |
084 | |a 31.70 |2 bcl | ||
084 | |a 31.55 |2 bcl | ||
084 | |a SI 320 |2 rvk | ||
084 | |a SK 820 |2 rvk | ||
084 | |a MAT 584f |2 stub | ||
084 | |a MAT 606f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Elworthy, K. D. | |
245 | 1 | 0 | |a Stochastic differential equations on manifolds / |c K.D. Elworthy. |
260 | |a Cambridge [Cambridgeshire] ; |a New York : |b Cambridge University Press, |c 1982. | ||
300 | |a 1 online resource (326 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 70 | |
504 | |a Includes bibliographical references (pages 308-318) and index. | ||
588 | 0 | |a Print version record. | |
546 | |a English. | ||
520 | |a The aims of this book, originally published in 1982, are to give an understanding of the basic ideas concerning stochastic differential equations on manifolds and their solution flows, to examine the properties of Brownian motion on Riemannian manifolds when it is constructed using the stochiastic development and to indicate some of the uses of the theory. The author has included two appendices which summarise the manifold theory and differential geometry needed to follow the development; coordinate-free notation is used throughout. Moreover, the stochiastic integrals used are those which can be obtained from limits of the Riemann sums, thereby avoiding much of the technicalities of the general theory of processes and allowing the reader to get a quick grasp of the fundamental ideas of stochastic integration as they are needed for a variety of applications. | ||
650 | 0 | |a Stochastic differential equations. |0 http://id.loc.gov/authorities/subjects/sh85128177 | |
650 | 0 | |a Manifolds (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85080549 | |
650 | 6 | |a Équations différentielles stochastiques. | |
650 | 6 | |a Variétés (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Probability & Statistics |x General. |2 bisacsh | |
650 | 7 | |a Manifolds (Mathematics) |2 fast | |
650 | 7 | |a Stochastic differential equations |2 fast | |
650 | 7 | |a Mannigfaltigkeit |2 gnd | |
650 | 7 | |a Stochastische Differentialgleichung |2 gnd |0 http://d-nb.info/gnd/4057621-8 | |
650 | 1 | 7 | |a Stochastische differentievergelijkingen. |2 gtt |
650 | 7 | |a Processus stochastiques. |2 ram | |
776 | 0 | 8 | |i Print version: |a Elworthy, K.D. |t Stochastic differential equations on manifolds. |d Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1982 |z 0521287677 |w (DLC) 82004426 |w (OCoLC)8410081 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 70. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569401 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25052469 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385445 | ||
938 | |a EBSCOhost |b EBSC |n 569401 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25780751 | ||
938 | |a YBP Library Services |b YANK |n 10705741 | ||
938 | |a YBP Library Services |b YANK |n 10734754 | ||
938 | |a YBP Library Services |b YANK |n 10762225 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn846494694 |
---|---|
_version_ | 1816882233950076929 |
adam_text | |
any_adam_object | |
author | Elworthy, K. D. |
author_facet | Elworthy, K. D. |
author_role | |
author_sort | Elworthy, K. D. |
author_variant | k d e kd kde |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA274 |
callnumber-raw | QA274.23 .E38 1982eb |
callnumber-search | QA274.23 .E38 1982eb |
callnumber-sort | QA 3274.23 E38 41982EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 SK 820 |
classification_tum | MAT 584f MAT 606f |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)846494694 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04186cam a2200757 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn846494694</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130603s1982 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">CAMBR</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">XFH</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">UAB</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">843760925</subfield><subfield code="a">994504734</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107087422</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107087422</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107325609</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107325609</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1299706924</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299706927</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521287677</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521287678</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)846494694</subfield><subfield code="z">(OCoLC)843760925</subfield><subfield code="z">(OCoLC)994504734</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA274.23</subfield><subfield code="b">.E38 1982eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">029000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.70</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.55</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 584f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 606f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Elworthy, K. D.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic differential equations on manifolds /</subfield><subfield code="c">K.D. Elworthy.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [Cambridgeshire] ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1982.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (326 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">70</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 308-318) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aims of this book, originally published in 1982, are to give an understanding of the basic ideas concerning stochastic differential equations on manifolds and their solution flows, to examine the properties of Brownian motion on Riemannian manifolds when it is constructed using the stochiastic development and to indicate some of the uses of the theory. The author has included two appendices which summarise the manifold theory and differential geometry needed to follow the development; coordinate-free notation is used throughout. Moreover, the stochiastic integrals used are those which can be obtained from limits of the Riemann sums, thereby avoiding much of the technicalities of the general theory of processes and allowing the reader to get a quick grasp of the fundamental ideas of stochastic integration as they are needed for a variety of applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Stochastic differential equations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85128177</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85080549</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations différentielles stochastiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Probability & Statistics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastic differential equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4057621-8</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Stochastische differentievergelijkingen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Processus stochastiques.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Elworthy, K.D.</subfield><subfield code="t">Stochastic differential equations on manifolds.</subfield><subfield code="d">Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1982</subfield><subfield code="z">0521287677</subfield><subfield code="w">(DLC) 82004426</subfield><subfield code="w">(OCoLC)8410081</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">70.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569401</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25052469</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385445</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">569401</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25780751</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10705741</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10734754</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10762225</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn846494694 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:22Z |
institution | BVB |
isbn | 9781107087422 1107087422 9781107325609 1107325609 1299706924 9781299706927 |
language | English |
oclc_num | 846494694 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (326 pages) |
psigel | ZDB-4-EBA |
publishDate | 1982 |
publishDateSearch | 1982 |
publishDateSort | 1982 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Elworthy, K. D. Stochastic differential equations on manifolds / K.D. Elworthy. Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1982. 1 online resource (326 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 70 Includes bibliographical references (pages 308-318) and index. Print version record. English. The aims of this book, originally published in 1982, are to give an understanding of the basic ideas concerning stochastic differential equations on manifolds and their solution flows, to examine the properties of Brownian motion on Riemannian manifolds when it is constructed using the stochiastic development and to indicate some of the uses of the theory. The author has included two appendices which summarise the manifold theory and differential geometry needed to follow the development; coordinate-free notation is used throughout. Moreover, the stochiastic integrals used are those which can be obtained from limits of the Riemann sums, thereby avoiding much of the technicalities of the general theory of processes and allowing the reader to get a quick grasp of the fundamental ideas of stochastic integration as they are needed for a variety of applications. Stochastic differential equations. http://id.loc.gov/authorities/subjects/sh85128177 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Équations différentielles stochastiques. Variétés (Mathématiques) MATHEMATICS Probability & Statistics General. bisacsh Manifolds (Mathematics) fast Stochastic differential equations fast Mannigfaltigkeit gnd Stochastische Differentialgleichung gnd http://d-nb.info/gnd/4057621-8 Stochastische differentievergelijkingen. gtt Processus stochastiques. ram Print version: Elworthy, K.D. Stochastic differential equations on manifolds. Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1982 0521287677 (DLC) 82004426 (OCoLC)8410081 London Mathematical Society lecture note series ; 70. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569401 Volltext |
spellingShingle | Elworthy, K. D. Stochastic differential equations on manifolds / London Mathematical Society lecture note series ; Stochastic differential equations. http://id.loc.gov/authorities/subjects/sh85128177 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Équations différentielles stochastiques. Variétés (Mathématiques) MATHEMATICS Probability & Statistics General. bisacsh Manifolds (Mathematics) fast Stochastic differential equations fast Mannigfaltigkeit gnd Stochastische Differentialgleichung gnd http://d-nb.info/gnd/4057621-8 Stochastische differentievergelijkingen. gtt Processus stochastiques. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85128177 http://id.loc.gov/authorities/subjects/sh85080549 http://d-nb.info/gnd/4057621-8 |
title | Stochastic differential equations on manifolds / |
title_auth | Stochastic differential equations on manifolds / |
title_exact_search | Stochastic differential equations on manifolds / |
title_full | Stochastic differential equations on manifolds / K.D. Elworthy. |
title_fullStr | Stochastic differential equations on manifolds / K.D. Elworthy. |
title_full_unstemmed | Stochastic differential equations on manifolds / K.D. Elworthy. |
title_short | Stochastic differential equations on manifolds / |
title_sort | stochastic differential equations on manifolds |
topic | Stochastic differential equations. http://id.loc.gov/authorities/subjects/sh85128177 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Équations différentielles stochastiques. Variétés (Mathématiques) MATHEMATICS Probability & Statistics General. bisacsh Manifolds (Mathematics) fast Stochastic differential equations fast Mannigfaltigkeit gnd Stochastische Differentialgleichung gnd http://d-nb.info/gnd/4057621-8 Stochastische differentievergelijkingen. gtt Processus stochastiques. ram |
topic_facet | Stochastic differential equations. Manifolds (Mathematics) Équations différentielles stochastiques. Variétés (Mathématiques) MATHEMATICS Probability & Statistics General. Stochastic differential equations Mannigfaltigkeit Stochastische Differentialgleichung Stochastische differentievergelijkingen. Processus stochastiques. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569401 |
work_keys_str_mv | AT elworthykd stochasticdifferentialequationsonmanifolds |