Introduction to the statistical physics of integrable many-body systems /:
"Including topics not traditionally covered in the literature, such as (1 + 1)- dimensional quantum field theory and classical two-dimensional Coulomb gases, this book considers a wide range of models and demonstrates a number of situations to which they can be applied."--
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2013.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "Including topics not traditionally covered in the literature, such as (1 + 1)- dimensional quantum field theory and classical two-dimensional Coulomb gases, this book considers a wide range of models and demonstrates a number of situations to which they can be applied."-- |
Beschreibung: | 1 online resource (504 pages) |
Bibliographie: | Includes bibliographical references (pages 596-501) and index. |
ISBN: | 9781139343480 9781107055872 1139343483 1107055873 9781299634466 129963446X 9781107059405 1107059402 9781107058095 1107058090 1139889613 9781139889612 1107056942 9781107056947 1107054796 9781107054790 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn842932618 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130514s2013 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d E7B |d IDEBK |d CDX |d CAMBR |d YDXCP |d COO |d EBLCP |d OCLCA |d OCLCF |d DEBSZ |d OCLCQ |d MEU |d OCLCQ |d NJR |d OCLCQ |d YDX |d UUM |d KSU |d AU@ |d OCLCQ |d UWO |d U3W |d AGLDB |d SNK |d BTN |d MHW |d INTCL |d AUW |d M8D |d UKAHL |d OL$ |d OCLCQ |d A6Q |d S8J |d G3B |d UAB |d LIP |d MERUC |d LOA |d K6U |d SFB |d UX1 |d OCLCQ |d VT2 |d STF |d ESU |d SNU |d UKSSU |d RC0 |d UK7LJ |d LDP |d HS0 |d UWK |d LUN |d MM9 |d SXB |d AUD |d CN6UV |d DGN |d AJS |d DKU |d UHL |d S2H |d SDF |d OCLCQ |d OCLCO |d OCLCQ |d CNNOR |d UPM |d OCLCQ |d RDF |d DST |d SGP |d LUU |d OCLCO |d SHC |d OCLCQ |d OCLCO |d OCLCL | ||
066 | |c Grek |c (S | ||
019 | |a 1023505640 |a 1129365669 |a 1165176810 |a 1166284647 |a 1170812345 |a 1171836976 |a 1172180951 |a 1172476156 |a 1228579974 |a 1259077406 | ||
020 | |a 9781139343480 |q (electronic bk.) | ||
020 | |a 9781107055872 |q (electronic bk.) | ||
020 | |a 1139343483 |q (electronic bk.) | ||
020 | |a 1107055873 |q (electronic bk.) | ||
020 | |a 9781299634466 |q (MyiLibrary) | ||
020 | |a 129963446X |q (MyiLibrary) | ||
020 | |a 9781107059405 | ||
020 | |a 1107059402 | ||
020 | |z 9781107030435 | ||
020 | |z 1107030439 | ||
020 | |a 9781107058095 | ||
020 | |a 1107058090 | ||
020 | |a 1139889613 | ||
020 | |a 9781139889612 | ||
020 | |a 1107056942 | ||
020 | |a 9781107056947 | ||
020 | |a 1107054796 | ||
020 | |a 9781107054790 | ||
035 | |a (OCoLC)842932618 |z (OCoLC)1023505640 |z (OCoLC)1129365669 |z (OCoLC)1165176810 |z (OCoLC)1166284647 |z (OCoLC)1170812345 |z (OCoLC)1171836976 |z (OCoLC)1172180951 |z (OCoLC)1172476156 |z (OCoLC)1228579974 |z (OCoLC)1259077406 | ||
037 | |a 494696 |b MIL | ||
050 | 4 | |a QC174.17.P7 |b S26 2013eb | |
072 | 7 | |a SCI |x 057000 |2 bisacsh | |
082 | 7 | |a 530.12015195 |2 23 | |
084 | |a SCI040000 |2 bisacsh | ||
049 | |a MAIN | ||
100 | 1 | |a Šamaj, Ladislav, |d 1959- |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjC9djyfmMy9QWPh669jBX |0 http://id.loc.gov/authorities/names/n2013014652 | |
245 | 1 | 0 | |a Introduction to the statistical physics of integrable many-body systems / |c Ladislav Šamaj, Zoltán Bajnok. |
264 | 1 | |a Cambridge : |b Cambridge University Press, |c 2013. | |
300 | |a 1 online resource (504 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
546 | |a Text in English. | ||
520 | |a "Including topics not traditionally covered in the literature, such as (1 + 1)- dimensional quantum field theory and classical two-dimensional Coulomb gases, this book considers a wide range of models and demonstrates a number of situations to which they can be applied."-- |c Provided by publisher | ||
505 | 0 | |a Part I. Spinless Bose and Fermi Gases: 1. Particles with nearest-neighbour interactions: Bethe ansatz and the ground state; 2. Bethe ansatz: zero-temperature thermodynamics and excitations; 3. Bethe ansatz: finite-temperature thermodynamics; 4. Particles with inverse-square interactions; Part II. Quantum Inverse Scattering Method: 5. QISM: Yang-Baxter equation; 6. QISM: transfer matrix and its diagonalization; 7. QISM: treatment of boundary conditions; 8. Nested Bethe ansatz for spin-1/2 fermions with delta interactions; 9. Thermodynamics of spin-1/2 fermions with delta interactions; Part III. Quantum Spin Chains: 10. Quantum Ising chain in a transverse field; 11. XXZ Heisenberg chain: Bethe ansatz and the ground state; 12. XXZ Heisenberg chain: ground state in the presence of magnetic field; 13. XXZ Heisenberg chain: excited states; 14. XXX Heisenberg chain: thermodynamics with strings; 15. XXZ Heisenberg chain: thermodynamics without strings; 16. XYZ Heisenberg chain; 17. Integrable isotropic chains with arbitrary spin; Part IV. Strongly Correlated Electrons: 18. Hubbard model; 19. Kondo effect; 20. Luttinger many-fermion model; 21. Integrable BCS superconductors; Part V. Sine-Gordon Model: 22. Classical sine-Gordon theory; 23. Conformal quantization; 24. Lagrangian quantization; 25. Bootstrap quantization; 26. UV-IR relation; 27. Exact finite volume description from XXZ; 28. Two-dimensional Coulomb gas; Appendix A. Spin and spin operators on chain; Appendix B. Elliptic functions; References; Index. | |
588 | 0 | |a Print version record. | |
504 | |a Includes bibliographical references (pages 596-501) and index. | ||
650 | 0 | |a Quantum theory |x Statistical methods. | |
650 | 0 | |a Many-body problem. |0 http://id.loc.gov/authorities/subjects/sh85080793 | |
650 | 6 | |a Théorie quantique |x Méthodes statistiques. | |
650 | 6 | |a Problème des N corps. | |
650 | 7 | |a SCIENCE |x Mathematical Physics. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Physics |x Quantum Theory. |2 bisacsh | |
650 | 7 | |a Many-body problem |2 fast | |
650 | 7 | |a Quantum theory |x Statistical methods |2 fast | |
700 | 1 | |a Bajnok, Zoltán, |e author. |0 http://id.loc.gov/authorities/names/n2013014655 | |
776 | 0 | 8 | |i Print version: |a Šamaj, Ladislav, 1959- |t Introduction to the statistical physics of integrable many-body systems. |d Cambridge : Cambridge University Press, 2013 |z 9781107030435 |w (DLC) 2012051080 |w (OCoLC)830674559 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569229 |3 Volltext |
880 | 0 | |6 505-00/(S |a Cover -- Contents -- Preface -- Part I Spinless Bose and Fermi gases -- 1 Particles with nearest-neighbor interactions: Bethe ansatz and the ground state -- 1.1 General formalism -- 1.2 Point interactions -- 1.3 Bosons with δ-potential: Bethe ansatz equations -- 1.4 Bound states for attractive bosons -- 1.5 Repulsive bosons -- 1.6 Particles with finite hard-core interactions -- Exercises -- 2 Bethe ansatz: Zero-temperature thermodynamics and excitations -- 2.1 Response of the ground state -- 2.2 Zero-temperature thermodynamics -- 2.3 Low-lying excitations -- Exercises -- 3 Bethe ansatz: Finite-temperature thermodynamics -- 3.1 The concept of holes -- 3.2 Thermodynamic equilibrium -- Exercises -- 4 Particles with inverse-square interactions -- 4.1 The two-body scattering problem -- 4.2 The ground-state wavefunction of a product form -- 4.3 Excited states for the trigonometric case -- Exercises -- Part II Quantum inverse-scattering method -- 5 QISM: Yang--Baxter equation -- 5.1 Generalized Bethe ansatz -- 5.2 Derivation of the Yang--Baxter equation -- 5.3 Lax operators, monodromy and transfer matrices -- 5.4 Two-state solutions of the YBE -- 5.5 Braid-group solution -- 5.6 Quantum groups -- Exercises -- 6 QISM: Transfer matrix and its diagonalization -- 6.1 Vertex models on the square lattice -- 6.2 Connection with quantum models on a chain -- 6.3 Diagonalization of the trigonometric transfer matrix -- Exercises -- 7 QISM: Treatment of boundary conditions -- 7.1 Formulation of boundary conditions -- 7.2 Boundary conditions and the inhomogeneous transfer matrix -- 7.3 Diagonalization of the inhomogeneous transfer matrix -- 8 Nested Bethe ansatz for spin-½ fermions with δ-interactions -- 8.1 The scattering problem -- 8.2 Nested Bethe equations for spin-½ fermions -- 8.3 Ground state and low-lying excitations -- Exercises. | |
880 | 8 | |6 505-00/(S |a 9 Thermodynamics of spin-½ fermions with δ-interactions -- 9.1 Repulsive regime c>0 -- 9.2 Attractive regime c<0 -- Exercises -- Part III Quantum spin chains -- 10 Quantum Ising chain in a transverse field -- 10.1 Jordan-Wigner transformation -- 10.2 Diagonalization of the quadratic form -- 10.3 Ground-state properties and thermodynamics -- 10.4 Thermodynamics of the classical 2D Ising model -- Exercises -- 11 XXZ Heisenberg chain: Bethe ansatz and the ground state -- 11.1 Symmetries of the Hamiltonian -- 11.2 Schrödinger equation -- 11.3 Coordinate Bethe ansatz -- 11.4 Orbach parameterization -- 11.5 The ground state -- 11.6 The absolute ground state for Δ<1 -- Exercises -- 12 XXZ Heisenberg chain: Ground state in the presence of a magnetic field -- 12.1 Fundamental integral equation for the λ-density -- 12.2 Formula for the magnetic field -- 12.3 Ground-state energy near half-filling -- Exercises -- 13 XXZ Heisenberg chain: Excited states -- 13.1 Strings -- 13.2 Response of the ground state to a perturbation -- 13.3 Low-lying excitations -- Exercises -- 14 XXX Heisenberg chain: Thermodynamics with strings -- 14.1 Thermodynamic Bethe ansatz -- 14.2 High-temperature expansion -- 14.3 Low-temperature expansion -- Exercises -- 15 XXZ Heisenberg chain: Thermodynamics without strings -- 15.1 Quantum transfer matrix -- 15.2 Bethe ansatz equations -- 15.3 Nonlinear integral equations for eigenvalues -- 15.4 Representations of the free energy -- Exercises -- 16 XYZ Heisenberg chain -- 16.1 Diagonalization of the transfer matrix for the eight-vertex model -- 16.2 Restricted models and the ϕ parameter -- 16.3 XYZ chain: Bethe ansatz equations -- 16.4 XYZ chain: Ground-state energy -- 16.5 XYZ chain: Critical ground-state properties -- Exercises -- 17 Integrable isotropic chains with arbitrary spin -- 17.1 Construction of the spin-s scattering matrix. | |
938 | |a Askews and Holts Library Services |b ASKH |n AH34848888 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH34206679 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385774 | ||
938 | |a Coutts Information Services |b COUT |n 25591198 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL1182967 | ||
938 | |a ebrary |b EBRY |n ebr10695347 | ||
938 | |a EBSCOhost |b EBSC |n 569229 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25591198 | ||
938 | |a YBP Library Services |b YANK |n 10689526 | ||
938 | |a YBP Library Services |b YANK |n 10755604 | ||
938 | |a YBP Library Services |b YANK |n 10693550 | ||
938 | |a YBP Library Services |b YANK |n 10703544 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn842932618 |
---|---|
_version_ | 1816882232258723840 |
adam_text | |
any_adam_object | |
author | Šamaj, Ladislav, 1959- Bajnok, Zoltán |
author_GND | http://id.loc.gov/authorities/names/n2013014652 http://id.loc.gov/authorities/names/n2013014655 |
author_facet | Šamaj, Ladislav, 1959- Bajnok, Zoltán |
author_role | aut aut |
author_sort | Šamaj, Ladislav, 1959- |
author_variant | l s ls z b zb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.17.P7 S26 2013eb |
callnumber-search | QC174.17.P7 S26 2013eb |
callnumber-sort | QC 3174.17 P7 S26 42013EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Part I. Spinless Bose and Fermi Gases: 1. Particles with nearest-neighbour interactions: Bethe ansatz and the ground state; 2. Bethe ansatz: zero-temperature thermodynamics and excitations; 3. Bethe ansatz: finite-temperature thermodynamics; 4. Particles with inverse-square interactions; Part II. Quantum Inverse Scattering Method: 5. QISM: Yang-Baxter equation; 6. QISM: transfer matrix and its diagonalization; 7. QISM: treatment of boundary conditions; 8. Nested Bethe ansatz for spin-1/2 fermions with delta interactions; 9. Thermodynamics of spin-1/2 fermions with delta interactions; Part III. Quantum Spin Chains: 10. Quantum Ising chain in a transverse field; 11. XXZ Heisenberg chain: Bethe ansatz and the ground state; 12. XXZ Heisenberg chain: ground state in the presence of magnetic field; 13. XXZ Heisenberg chain: excited states; 14. XXX Heisenberg chain: thermodynamics with strings; 15. XXZ Heisenberg chain: thermodynamics without strings; 16. XYZ Heisenberg chain; 17. Integrable isotropic chains with arbitrary spin; Part IV. Strongly Correlated Electrons: 18. Hubbard model; 19. Kondo effect; 20. Luttinger many-fermion model; 21. Integrable BCS superconductors; Part V. Sine-Gordon Model: 22. Classical sine-Gordon theory; 23. Conformal quantization; 24. Lagrangian quantization; 25. Bootstrap quantization; 26. UV-IR relation; 27. Exact finite volume description from XXZ; 28. Two-dimensional Coulomb gas; Appendix A. Spin and spin operators on chain; Appendix B. Elliptic functions; References; Index. |
ctrlnum | (OCoLC)842932618 |
dewey-full | 530.12015195 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12015195 |
dewey-search | 530.12015195 |
dewey-sort | 3530.12015195 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>09801cam a2200889 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn842932618</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130514s2013 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">IDEBK</subfield><subfield code="d">CDX</subfield><subfield code="d">CAMBR</subfield><subfield code="d">YDXCP</subfield><subfield code="d">COO</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MEU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NJR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">UUM</subfield><subfield code="d">KSU</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UWO</subfield><subfield code="d">U3W</subfield><subfield code="d">AGLDB</subfield><subfield code="d">SNK</subfield><subfield code="d">BTN</subfield><subfield code="d">MHW</subfield><subfield code="d">INTCL</subfield><subfield code="d">AUW</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OL$</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">A6Q</subfield><subfield code="d">S8J</subfield><subfield code="d">G3B</subfield><subfield code="d">UAB</subfield><subfield code="d">LIP</subfield><subfield code="d">MERUC</subfield><subfield code="d">LOA</subfield><subfield code="d">K6U</subfield><subfield code="d">SFB</subfield><subfield code="d">UX1</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VT2</subfield><subfield code="d">STF</subfield><subfield code="d">ESU</subfield><subfield code="d">SNU</subfield><subfield code="d">UKSSU</subfield><subfield code="d">RC0</subfield><subfield code="d">UK7LJ</subfield><subfield code="d">LDP</subfield><subfield code="d">HS0</subfield><subfield code="d">UWK</subfield><subfield code="d">LUN</subfield><subfield code="d">MM9</subfield><subfield code="d">SXB</subfield><subfield code="d">AUD</subfield><subfield code="d">CN6UV</subfield><subfield code="d">DGN</subfield><subfield code="d">AJS</subfield><subfield code="d">DKU</subfield><subfield code="d">UHL</subfield><subfield code="d">S2H</subfield><subfield code="d">SDF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CNNOR</subfield><subfield code="d">UPM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">RDF</subfield><subfield code="d">DST</subfield><subfield code="d">SGP</subfield><subfield code="d">LUU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SHC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">Grek</subfield><subfield code="c">(S</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1023505640</subfield><subfield code="a">1129365669</subfield><subfield code="a">1165176810</subfield><subfield code="a">1166284647</subfield><subfield code="a">1170812345</subfield><subfield code="a">1171836976</subfield><subfield code="a">1172180951</subfield><subfield code="a">1172476156</subfield><subfield code="a">1228579974</subfield><subfield code="a">1259077406</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139343480</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107055872</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139343483</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107055873</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299634466</subfield><subfield code="q">(MyiLibrary)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">129963446X</subfield><subfield code="q">(MyiLibrary)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107059405</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107059402</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107030435</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1107030439</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107058095</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107058090</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139889613</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139889612</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107056942</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107056947</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107054796</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107054790</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)842932618</subfield><subfield code="z">(OCoLC)1023505640</subfield><subfield code="z">(OCoLC)1129365669</subfield><subfield code="z">(OCoLC)1165176810</subfield><subfield code="z">(OCoLC)1166284647</subfield><subfield code="z">(OCoLC)1170812345</subfield><subfield code="z">(OCoLC)1171836976</subfield><subfield code="z">(OCoLC)1172180951</subfield><subfield code="z">(OCoLC)1172476156</subfield><subfield code="z">(OCoLC)1228579974</subfield><subfield code="z">(OCoLC)1259077406</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">494696</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC174.17.P7</subfield><subfield code="b">S26 2013eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">057000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.12015195</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SCI040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Šamaj, Ladislav,</subfield><subfield code="d">1959-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjC9djyfmMy9QWPh669jBX</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2013014652</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to the statistical physics of integrable many-body systems /</subfield><subfield code="c">Ladislav Šamaj, Zoltán Bajnok.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (504 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">Text in English.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Including topics not traditionally covered in the literature, such as (1 + 1)- dimensional quantum field theory and classical two-dimensional Coulomb gases, this book considers a wide range of models and demonstrates a number of situations to which they can be applied."--</subfield><subfield code="c">Provided by publisher</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Part I. Spinless Bose and Fermi Gases: 1. Particles with nearest-neighbour interactions: Bethe ansatz and the ground state; 2. Bethe ansatz: zero-temperature thermodynamics and excitations; 3. Bethe ansatz: finite-temperature thermodynamics; 4. Particles with inverse-square interactions; Part II. Quantum Inverse Scattering Method: 5. QISM: Yang-Baxter equation; 6. QISM: transfer matrix and its diagonalization; 7. QISM: treatment of boundary conditions; 8. Nested Bethe ansatz for spin-1/2 fermions with delta interactions; 9. Thermodynamics of spin-1/2 fermions with delta interactions; Part III. Quantum Spin Chains: 10. Quantum Ising chain in a transverse field; 11. XXZ Heisenberg chain: Bethe ansatz and the ground state; 12. XXZ Heisenberg chain: ground state in the presence of magnetic field; 13. XXZ Heisenberg chain: excited states; 14. XXX Heisenberg chain: thermodynamics with strings; 15. XXZ Heisenberg chain: thermodynamics without strings; 16. XYZ Heisenberg chain; 17. Integrable isotropic chains with arbitrary spin; Part IV. Strongly Correlated Electrons: 18. Hubbard model; 19. Kondo effect; 20. Luttinger many-fermion model; 21. Integrable BCS superconductors; Part V. Sine-Gordon Model: 22. Classical sine-Gordon theory; 23. Conformal quantization; 24. Lagrangian quantization; 25. Bootstrap quantization; 26. UV-IR relation; 27. Exact finite volume description from XXZ; 28. Two-dimensional Coulomb gas; Appendix A. Spin and spin operators on chain; Appendix B. Elliptic functions; References; Index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 596-501) and index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantum theory</subfield><subfield code="x">Statistical methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Many-body problem.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85080793</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie quantique</subfield><subfield code="x">Méthodes statistiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Problème des N corps.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mathematical Physics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Quantum Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Many-body problem</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum theory</subfield><subfield code="x">Statistical methods</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bajnok, Zoltán,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2013014655</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Šamaj, Ladislav, 1959-</subfield><subfield code="t">Introduction to the statistical physics of integrable many-body systems.</subfield><subfield code="d">Cambridge : Cambridge University Press, 2013</subfield><subfield code="z">9781107030435</subfield><subfield code="w">(DLC) 2012051080</subfield><subfield code="w">(OCoLC)830674559</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569229</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="0" ind2=" "><subfield code="6">505-00/(S</subfield><subfield code="a">Cover -- Contents -- Preface -- Part I Spinless Bose and Fermi gases -- 1 Particles with nearest-neighbor interactions: Bethe ansatz and the ground state -- 1.1 General formalism -- 1.2 Point interactions -- 1.3 Bosons with δ-potential: Bethe ansatz equations -- 1.4 Bound states for attractive bosons -- 1.5 Repulsive bosons -- 1.6 Particles with finite hard-core interactions -- Exercises -- 2 Bethe ansatz: Zero-temperature thermodynamics and excitations -- 2.1 Response of the ground state -- 2.2 Zero-temperature thermodynamics -- 2.3 Low-lying excitations -- Exercises -- 3 Bethe ansatz: Finite-temperature thermodynamics -- 3.1 The concept of holes -- 3.2 Thermodynamic equilibrium -- Exercises -- 4 Particles with inverse-square interactions -- 4.1 The two-body scattering problem -- 4.2 The ground-state wavefunction of a product form -- 4.3 Excited states for the trigonometric case -- Exercises -- Part II Quantum inverse-scattering method -- 5 QISM: Yang--Baxter equation -- 5.1 Generalized Bethe ansatz -- 5.2 Derivation of the Yang--Baxter equation -- 5.3 Lax operators, monodromy and transfer matrices -- 5.4 Two-state solutions of the YBE -- 5.5 Braid-group solution -- 5.6 Quantum groups -- Exercises -- 6 QISM: Transfer matrix and its diagonalization -- 6.1 Vertex models on the square lattice -- 6.2 Connection with quantum models on a chain -- 6.3 Diagonalization of the trigonometric transfer matrix -- Exercises -- 7 QISM: Treatment of boundary conditions -- 7.1 Formulation of boundary conditions -- 7.2 Boundary conditions and the inhomogeneous transfer matrix -- 7.3 Diagonalization of the inhomogeneous transfer matrix -- 8 Nested Bethe ansatz for spin-½ fermions with δ-interactions -- 8.1 The scattering problem -- 8.2 Nested Bethe equations for spin-½ fermions -- 8.3 Ground state and low-lying excitations -- Exercises.</subfield></datafield><datafield tag="880" ind1="8" ind2=" "><subfield code="6">505-00/(S</subfield><subfield code="a">9 Thermodynamics of spin-½ fermions with δ-interactions -- 9.1 Repulsive regime c>0 -- 9.2 Attractive regime c<0 -- Exercises -- Part III Quantum spin chains -- 10 Quantum Ising chain in a transverse field -- 10.1 Jordan-Wigner transformation -- 10.2 Diagonalization of the quadratic form -- 10.3 Ground-state properties and thermodynamics -- 10.4 Thermodynamics of the classical 2D Ising model -- Exercises -- 11 XXZ Heisenberg chain: Bethe ansatz and the ground state -- 11.1 Symmetries of the Hamiltonian -- 11.2 Schrödinger equation -- 11.3 Coordinate Bethe ansatz -- 11.4 Orbach parameterization -- 11.5 The ground state -- 11.6 The absolute ground state for Δ<1 -- Exercises -- 12 XXZ Heisenberg chain: Ground state in the presence of a magnetic field -- 12.1 Fundamental integral equation for the λ-density -- 12.2 Formula for the magnetic field -- 12.3 Ground-state energy near half-filling -- Exercises -- 13 XXZ Heisenberg chain: Excited states -- 13.1 Strings -- 13.2 Response of the ground state to a perturbation -- 13.3 Low-lying excitations -- Exercises -- 14 XXX Heisenberg chain: Thermodynamics with strings -- 14.1 Thermodynamic Bethe ansatz -- 14.2 High-temperature expansion -- 14.3 Low-temperature expansion -- Exercises -- 15 XXZ Heisenberg chain: Thermodynamics without strings -- 15.1 Quantum transfer matrix -- 15.2 Bethe ansatz equations -- 15.3 Nonlinear integral equations for eigenvalues -- 15.4 Representations of the free energy -- Exercises -- 16 XYZ Heisenberg chain -- 16.1 Diagonalization of the transfer matrix for the eight-vertex model -- 16.2 Restricted models and the ϕ parameter -- 16.3 XYZ chain: Bethe ansatz equations -- 16.4 XYZ chain: Ground-state energy -- 16.5 XYZ chain: Critical ground-state properties -- Exercises -- 17 Integrable isotropic chains with arbitrary spin -- 17.1 Construction of the spin-s scattering matrix.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH34848888</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH34206679</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385774</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">25591198</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1182967</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10695347</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">569229</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25591198</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10689526</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10755604</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10693550</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10703544</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn842932618 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:20Z |
institution | BVB |
isbn | 9781139343480 9781107055872 1139343483 1107055873 9781299634466 129963446X 9781107059405 1107059402 9781107058095 1107058090 1139889613 9781139889612 1107056942 9781107056947 1107054796 9781107054790 |
language | English |
oclc_num | 842932618 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (504 pages) |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Cambridge University Press, |
record_format | marc |
spelling | Šamaj, Ladislav, 1959- author. https://id.oclc.org/worldcat/entity/E39PCjC9djyfmMy9QWPh669jBX http://id.loc.gov/authorities/names/n2013014652 Introduction to the statistical physics of integrable many-body systems / Ladislav Šamaj, Zoltán Bajnok. Cambridge : Cambridge University Press, 2013. 1 online resource (504 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Text in English. "Including topics not traditionally covered in the literature, such as (1 + 1)- dimensional quantum field theory and classical two-dimensional Coulomb gases, this book considers a wide range of models and demonstrates a number of situations to which they can be applied."-- Provided by publisher Part I. Spinless Bose and Fermi Gases: 1. Particles with nearest-neighbour interactions: Bethe ansatz and the ground state; 2. Bethe ansatz: zero-temperature thermodynamics and excitations; 3. Bethe ansatz: finite-temperature thermodynamics; 4. Particles with inverse-square interactions; Part II. Quantum Inverse Scattering Method: 5. QISM: Yang-Baxter equation; 6. QISM: transfer matrix and its diagonalization; 7. QISM: treatment of boundary conditions; 8. Nested Bethe ansatz for spin-1/2 fermions with delta interactions; 9. Thermodynamics of spin-1/2 fermions with delta interactions; Part III. Quantum Spin Chains: 10. Quantum Ising chain in a transverse field; 11. XXZ Heisenberg chain: Bethe ansatz and the ground state; 12. XXZ Heisenberg chain: ground state in the presence of magnetic field; 13. XXZ Heisenberg chain: excited states; 14. XXX Heisenberg chain: thermodynamics with strings; 15. XXZ Heisenberg chain: thermodynamics without strings; 16. XYZ Heisenberg chain; 17. Integrable isotropic chains with arbitrary spin; Part IV. Strongly Correlated Electrons: 18. Hubbard model; 19. Kondo effect; 20. Luttinger many-fermion model; 21. Integrable BCS superconductors; Part V. Sine-Gordon Model: 22. Classical sine-Gordon theory; 23. Conformal quantization; 24. Lagrangian quantization; 25. Bootstrap quantization; 26. UV-IR relation; 27. Exact finite volume description from XXZ; 28. Two-dimensional Coulomb gas; Appendix A. Spin and spin operators on chain; Appendix B. Elliptic functions; References; Index. Print version record. Includes bibliographical references (pages 596-501) and index. Quantum theory Statistical methods. Many-body problem. http://id.loc.gov/authorities/subjects/sh85080793 Théorie quantique Méthodes statistiques. Problème des N corps. SCIENCE Mathematical Physics. bisacsh SCIENCE Physics Quantum Theory. bisacsh Many-body problem fast Quantum theory Statistical methods fast Bajnok, Zoltán, author. http://id.loc.gov/authorities/names/n2013014655 Print version: Šamaj, Ladislav, 1959- Introduction to the statistical physics of integrable many-body systems. Cambridge : Cambridge University Press, 2013 9781107030435 (DLC) 2012051080 (OCoLC)830674559 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569229 Volltext 505-00/(S Cover -- Contents -- Preface -- Part I Spinless Bose and Fermi gases -- 1 Particles with nearest-neighbor interactions: Bethe ansatz and the ground state -- 1.1 General formalism -- 1.2 Point interactions -- 1.3 Bosons with δ-potential: Bethe ansatz equations -- 1.4 Bound states for attractive bosons -- 1.5 Repulsive bosons -- 1.6 Particles with finite hard-core interactions -- Exercises -- 2 Bethe ansatz: Zero-temperature thermodynamics and excitations -- 2.1 Response of the ground state -- 2.2 Zero-temperature thermodynamics -- 2.3 Low-lying excitations -- Exercises -- 3 Bethe ansatz: Finite-temperature thermodynamics -- 3.1 The concept of holes -- 3.2 Thermodynamic equilibrium -- Exercises -- 4 Particles with inverse-square interactions -- 4.1 The two-body scattering problem -- 4.2 The ground-state wavefunction of a product form -- 4.3 Excited states for the trigonometric case -- Exercises -- Part II Quantum inverse-scattering method -- 5 QISM: Yang--Baxter equation -- 5.1 Generalized Bethe ansatz -- 5.2 Derivation of the Yang--Baxter equation -- 5.3 Lax operators, monodromy and transfer matrices -- 5.4 Two-state solutions of the YBE -- 5.5 Braid-group solution -- 5.6 Quantum groups -- Exercises -- 6 QISM: Transfer matrix and its diagonalization -- 6.1 Vertex models on the square lattice -- 6.2 Connection with quantum models on a chain -- 6.3 Diagonalization of the trigonometric transfer matrix -- Exercises -- 7 QISM: Treatment of boundary conditions -- 7.1 Formulation of boundary conditions -- 7.2 Boundary conditions and the inhomogeneous transfer matrix -- 7.3 Diagonalization of the inhomogeneous transfer matrix -- 8 Nested Bethe ansatz for spin-½ fermions with δ-interactions -- 8.1 The scattering problem -- 8.2 Nested Bethe equations for spin-½ fermions -- 8.3 Ground state and low-lying excitations -- Exercises. 505-00/(S 9 Thermodynamics of spin-½ fermions with δ-interactions -- 9.1 Repulsive regime c>0 -- 9.2 Attractive regime c<0 -- Exercises -- Part III Quantum spin chains -- 10 Quantum Ising chain in a transverse field -- 10.1 Jordan-Wigner transformation -- 10.2 Diagonalization of the quadratic form -- 10.3 Ground-state properties and thermodynamics -- 10.4 Thermodynamics of the classical 2D Ising model -- Exercises -- 11 XXZ Heisenberg chain: Bethe ansatz and the ground state -- 11.1 Symmetries of the Hamiltonian -- 11.2 Schrödinger equation -- 11.3 Coordinate Bethe ansatz -- 11.4 Orbach parameterization -- 11.5 The ground state -- 11.6 The absolute ground state for Δ<1 -- Exercises -- 12 XXZ Heisenberg chain: Ground state in the presence of a magnetic field -- 12.1 Fundamental integral equation for the λ-density -- 12.2 Formula for the magnetic field -- 12.3 Ground-state energy near half-filling -- Exercises -- 13 XXZ Heisenberg chain: Excited states -- 13.1 Strings -- 13.2 Response of the ground state to a perturbation -- 13.3 Low-lying excitations -- Exercises -- 14 XXX Heisenberg chain: Thermodynamics with strings -- 14.1 Thermodynamic Bethe ansatz -- 14.2 High-temperature expansion -- 14.3 Low-temperature expansion -- Exercises -- 15 XXZ Heisenberg chain: Thermodynamics without strings -- 15.1 Quantum transfer matrix -- 15.2 Bethe ansatz equations -- 15.3 Nonlinear integral equations for eigenvalues -- 15.4 Representations of the free energy -- Exercises -- 16 XYZ Heisenberg chain -- 16.1 Diagonalization of the transfer matrix for the eight-vertex model -- 16.2 Restricted models and the ϕ parameter -- 16.3 XYZ chain: Bethe ansatz equations -- 16.4 XYZ chain: Ground-state energy -- 16.5 XYZ chain: Critical ground-state properties -- Exercises -- 17 Integrable isotropic chains with arbitrary spin -- 17.1 Construction of the spin-s scattering matrix. |
spellingShingle | Šamaj, Ladislav, 1959- Bajnok, Zoltán Introduction to the statistical physics of integrable many-body systems / Part I. Spinless Bose and Fermi Gases: 1. Particles with nearest-neighbour interactions: Bethe ansatz and the ground state; 2. Bethe ansatz: zero-temperature thermodynamics and excitations; 3. Bethe ansatz: finite-temperature thermodynamics; 4. Particles with inverse-square interactions; Part II. Quantum Inverse Scattering Method: 5. QISM: Yang-Baxter equation; 6. QISM: transfer matrix and its diagonalization; 7. QISM: treatment of boundary conditions; 8. Nested Bethe ansatz for spin-1/2 fermions with delta interactions; 9. Thermodynamics of spin-1/2 fermions with delta interactions; Part III. Quantum Spin Chains: 10. Quantum Ising chain in a transverse field; 11. XXZ Heisenberg chain: Bethe ansatz and the ground state; 12. XXZ Heisenberg chain: ground state in the presence of magnetic field; 13. XXZ Heisenberg chain: excited states; 14. XXX Heisenberg chain: thermodynamics with strings; 15. XXZ Heisenberg chain: thermodynamics without strings; 16. XYZ Heisenberg chain; 17. Integrable isotropic chains with arbitrary spin; Part IV. Strongly Correlated Electrons: 18. Hubbard model; 19. Kondo effect; 20. Luttinger many-fermion model; 21. Integrable BCS superconductors; Part V. Sine-Gordon Model: 22. Classical sine-Gordon theory; 23. Conformal quantization; 24. Lagrangian quantization; 25. Bootstrap quantization; 26. UV-IR relation; 27. Exact finite volume description from XXZ; 28. Two-dimensional Coulomb gas; Appendix A. Spin and spin operators on chain; Appendix B. Elliptic functions; References; Index. Quantum theory Statistical methods. Many-body problem. http://id.loc.gov/authorities/subjects/sh85080793 Théorie quantique Méthodes statistiques. Problème des N corps. SCIENCE Mathematical Physics. bisacsh SCIENCE Physics Quantum Theory. bisacsh Many-body problem fast Quantum theory Statistical methods fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85080793 |
title | Introduction to the statistical physics of integrable many-body systems / |
title_auth | Introduction to the statistical physics of integrable many-body systems / |
title_exact_search | Introduction to the statistical physics of integrable many-body systems / |
title_full | Introduction to the statistical physics of integrable many-body systems / Ladislav Šamaj, Zoltán Bajnok. |
title_fullStr | Introduction to the statistical physics of integrable many-body systems / Ladislav Šamaj, Zoltán Bajnok. |
title_full_unstemmed | Introduction to the statistical physics of integrable many-body systems / Ladislav Šamaj, Zoltán Bajnok. |
title_short | Introduction to the statistical physics of integrable many-body systems / |
title_sort | introduction to the statistical physics of integrable many body systems |
topic | Quantum theory Statistical methods. Many-body problem. http://id.loc.gov/authorities/subjects/sh85080793 Théorie quantique Méthodes statistiques. Problème des N corps. SCIENCE Mathematical Physics. bisacsh SCIENCE Physics Quantum Theory. bisacsh Many-body problem fast Quantum theory Statistical methods fast |
topic_facet | Quantum theory Statistical methods. Many-body problem. Théorie quantique Méthodes statistiques. Problème des N corps. SCIENCE Mathematical Physics. SCIENCE Physics Quantum Theory. Many-body problem Quantum theory Statistical methods |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569229 |
work_keys_str_mv | AT samajladislav introductiontothestatisticalphysicsofintegrablemanybodysystems AT bajnokzoltan introductiontothestatisticalphysicsofintegrablemanybodysystems |