Gravitation and spacetime /:
The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached f...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Cambridge University Press,
2013.
|
Ausgabe: | 3rd ed. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached from several perspectives: as a theory constructed by analogy with Maxwell's electrodynamics, as a relativistic generalization of Newton's theory, and as a theory of curved spacetime. The authors provide a concise overview of the important concepts and formulas, coupled with the experimental results underpinning the latest research in the field. Numerous exercises in Newtonian gravitational theory and Maxwell's equations help students master essential concepts for advanced work in general relativity, while detailed spacetime diagrams encourage them to think in terms of four-dimensional geometry. Featuring comprehensive reviews of recent experimental and observational data, the text concludes with chapters on cosmology and the physics of the Big Bang and inflation. |
Beschreibung: | 1 online resource (xvi, 528 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781139625128 1139625128 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn841809210 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130506s2013 nyua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCF |d OCLCQ |d MYUKM |d UAB |d OCLCQ |d UKAHL |d OCLCQ |d HS0 |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO | ||
020 | |a 9781139625128 |q (electronic bk.) | ||
020 | |a 1139625128 |q (electronic bk.) | ||
020 | |z 9781107012943 | ||
020 | |z 1107012945 | ||
035 | |a (OCoLC)841809210 | ||
050 | 4 | |a QC178 |b .O35 2013eb | |
072 | 7 | |a SCI |x 067000 |2 bisacsh | |
082 | 7 | |a 530.14 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Ohanian, Hans C. | |
245 | 1 | 0 | |a Gravitation and spacetime / |c Hans C. Ohanian, Remo Ruffini. |
250 | |a 3rd ed. | ||
260 | |a New York : |b Cambridge University Press, |c 2013. | ||
300 | |a 1 online resource (xvi, 528 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
520 | |a The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached from several perspectives: as a theory constructed by analogy with Maxwell's electrodynamics, as a relativistic generalization of Newton's theory, and as a theory of curved spacetime. The authors provide a concise overview of the important concepts and formulas, coupled with the experimental results underpinning the latest research in the field. Numerous exercises in Newtonian gravitational theory and Maxwell's equations help students master essential concepts for advanced work in general relativity, while detailed spacetime diagrams encourage them to think in terms of four-dimensional geometry. Featuring comprehensive reviews of recent experimental and observational data, the text concludes with chapters on cosmology and the physics of the Big Bang and inflation. | ||
505 | 0 | |a Preface; Constants; Fundamental constants; Conversion constants; Astronomical constants; Notation; 1 Newton's gravitational theory; 1.1 The law of universal gravitation; 1.2 Tests of the inverse-square law; 1.3 Gravitational potential; 1.4 Gravitational multipoles; quadrupole moment of the Sun; 1.5 Inertial and gravitational mass; 1.6 Tests of equality of gravitational and inertial mass; 1.7 Tidal forces; 1.8 Tidal field as a local measure of gravitation; Problems; 2 The formalism of special relativity; 2.1 The spacetime of special relativity; 2.2 Tensors in spacetime | |
505 | 8 | |a 2.3 Tensor fields2.4 Energy-momentum tensor; 2.5 Relativistic electrodynamics; 2.6 Differential forms and exterior calculus; Problems; 3 The linear approximation; 3.1 The example of electromagnetism; 3.2 Linear field equations for gravitation; 3.3 Variational principle and equation of motion; 3.4 Nonrelativistic limit and Newton's theory; 3.5 Geometric interpretation; curved spacetime; Problems; 4 Applications of the linear approximation; 4.1 Field of a spherical mass; 4.2 Gravitational time dilation; 4.3 Deflection of light; 4.4 Time delay of light; 4.5 Gravitational lenses | |
505 | 8 | |a 4.6 Optics of gravitational lenses4.7 Field of a rotating mass; Lense-Thirring effect; Problems; 5 Gravitational waves; 5.1 Plane waves; 5.2 Interaction of particles with a gravitational wave; 5.3 Emission of gravitational radiation; 5.4 Emission by a vibrating quadrupole; 5.5 Emission by a rotating quadrupole; 5.6 Emission of bursts of gravitational radiation; 5.7 Detectors of gravitational radiation; Problems; 6 Riemannian geometry; 6.1 General coordinates and tensors; 6.2 Parallel transport; covariant derivative; 6.3 Geodesic equation; 6.4 Metric tensor; 6.5 Riemann curvature tensor | |
505 | 8 | |a 6.6 Geodesic deviation and tidal forces Fermi-Walker transport; 6.7 Differential forms in curved spacetime; 6.8 Isometries of spacetime; Killing vectors; Problems; 7 Einstein's gravitational theory; 7.1 General covariance and invariance; gauge transformations; 7.2 Einstein's field equation; 7.3 Another approach to Einsteins equation; cosmological term; 7.4 Schwarzschild solution and Birkhoff theorem; 7.5 Motion of planets; perihelion precession; 7.6 Propagation of light; gravitational redshift; 7.7 Geodetic precession; Problems; 8 Black holes and gravitational collapse | |
505 | 8 | |a 8.1 Singularities and pseudosingularities8.2 The black hole and its horizon; 8.3 Maximal Schwarzschild geometry; 8.4 Kerr solution and Reissner-Nordstrøm solution; 8.5 Horizons and singularities of the rotating black hole; 8.6 Maximal Kerr geometry; 8.7 Black-hole thermodynamics; Hawking process; 8.8 Gravitational collapse and formation of black holes; 8.9 In search of black holes; Problems; 9 Cosmology; 9.1 Large-scale structure of the universe; 9.2 Cosmic distances; 9.3 Expansion of the universe; Hubble's law; 9.4 Age of the universe; 9.5 Cosmic background radiation; 9.6 Mass density | |
650 | 0 | |a Gravitation. |0 http://id.loc.gov/authorities/subjects/sh85056558 | |
650 | 0 | |a Space and time. |0 http://id.loc.gov/authorities/subjects/sh85125911 | |
650 | 2 | |a Gravitation |0 https://id.nlm.nih.gov/mesh/D006112 | |
650 | 6 | |a Gravitation. | |
650 | 7 | |a SCIENCE |x Waves & Wave Mechanics. |2 bisacsh | |
650 | 7 | |a Gravitation |2 fast | |
650 | 7 | |a Space and time |2 fast | |
700 | 1 | |a Ruffini, Remo. | |
776 | 0 | 8 | |i Print version: |a Ohanian, Hans C. |t Gravitation and spacetime. |b 3rd ed. |d New York : Cambridge University Press, 2013 |z 9781107012943 |w (DLC) 2012027666 |w (OCoLC)809122994 |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=508909 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=508909 |3 Volltext | |
938 | |a Askews and Holts Library Services |b ASKH |n AH33350993 | ||
938 | |a EBSCOhost |b EBSC |n 508909 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn841809210 |
---|---|
_version_ | 1813903609072451586 |
adam_text | |
any_adam_object | |
author | Ohanian, Hans C. |
author2 | Ruffini, Remo |
author2_role | |
author2_variant | r r rr |
author_facet | Ohanian, Hans C. Ruffini, Remo |
author_role | |
author_sort | Ohanian, Hans C. |
author_variant | h c o hc hco |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC178 |
callnumber-raw | QC178 .O35 2013eb |
callnumber-search | QC178 .O35 2013eb |
callnumber-sort | QC 3178 O35 42013EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Preface; Constants; Fundamental constants; Conversion constants; Astronomical constants; Notation; 1 Newton's gravitational theory; 1.1 The law of universal gravitation; 1.2 Tests of the inverse-square law; 1.3 Gravitational potential; 1.4 Gravitational multipoles; quadrupole moment of the Sun; 1.5 Inertial and gravitational mass; 1.6 Tests of equality of gravitational and inertial mass; 1.7 Tidal forces; 1.8 Tidal field as a local measure of gravitation; Problems; 2 The formalism of special relativity; 2.1 The spacetime of special relativity; 2.2 Tensors in spacetime 2.3 Tensor fields2.4 Energy-momentum tensor; 2.5 Relativistic electrodynamics; 2.6 Differential forms and exterior calculus; Problems; 3 The linear approximation; 3.1 The example of electromagnetism; 3.2 Linear field equations for gravitation; 3.3 Variational principle and equation of motion; 3.4 Nonrelativistic limit and Newton's theory; 3.5 Geometric interpretation; curved spacetime; Problems; 4 Applications of the linear approximation; 4.1 Field of a spherical mass; 4.2 Gravitational time dilation; 4.3 Deflection of light; 4.4 Time delay of light; 4.5 Gravitational lenses 4.6 Optics of gravitational lenses4.7 Field of a rotating mass; Lense-Thirring effect; Problems; 5 Gravitational waves; 5.1 Plane waves; 5.2 Interaction of particles with a gravitational wave; 5.3 Emission of gravitational radiation; 5.4 Emission by a vibrating quadrupole; 5.5 Emission by a rotating quadrupole; 5.6 Emission of bursts of gravitational radiation; 5.7 Detectors of gravitational radiation; Problems; 6 Riemannian geometry; 6.1 General coordinates and tensors; 6.2 Parallel transport; covariant derivative; 6.3 Geodesic equation; 6.4 Metric tensor; 6.5 Riemann curvature tensor 6.6 Geodesic deviation and tidal forces Fermi-Walker transport; 6.7 Differential forms in curved spacetime; 6.8 Isometries of spacetime; Killing vectors; Problems; 7 Einstein's gravitational theory; 7.1 General covariance and invariance; gauge transformations; 7.2 Einstein's field equation; 7.3 Another approach to Einsteins equation; cosmological term; 7.4 Schwarzschild solution and Birkhoff theorem; 7.5 Motion of planets; perihelion precession; 7.6 Propagation of light; gravitational redshift; 7.7 Geodetic precession; Problems; 8 Black holes and gravitational collapse 8.1 Singularities and pseudosingularities8.2 The black hole and its horizon; 8.3 Maximal Schwarzschild geometry; 8.4 Kerr solution and Reissner-Nordstrøm solution; 8.5 Horizons and singularities of the rotating black hole; 8.6 Maximal Kerr geometry; 8.7 Black-hole thermodynamics; Hawking process; 8.8 Gravitational collapse and formation of black holes; 8.9 In search of black holes; Problems; 9 Cosmology; 9.1 Large-scale structure of the universe; 9.2 Cosmic distances; 9.3 Expansion of the universe; Hubble's law; 9.4 Age of the universe; 9.5 Cosmic background radiation; 9.6 Mass density |
ctrlnum | (OCoLC)841809210 |
dewey-full | 530.14 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.14 |
dewey-search | 530.14 |
dewey-sort | 3530.14 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | 3rd ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06032cam a2200565 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn841809210</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130506s2013 nyua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MYUKM</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HS0</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139625128</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139625128</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107012943</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1107012945</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)841809210</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC178</subfield><subfield code="b">.O35 2013eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">067000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.14</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ohanian, Hans C.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gravitation and spacetime /</subfield><subfield code="c">Hans C. Ohanian, Remo Ruffini.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3rd ed.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 528 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached from several perspectives: as a theory constructed by analogy with Maxwell's electrodynamics, as a relativistic generalization of Newton's theory, and as a theory of curved spacetime. The authors provide a concise overview of the important concepts and formulas, coupled with the experimental results underpinning the latest research in the field. Numerous exercises in Newtonian gravitational theory and Maxwell's equations help students master essential concepts for advanced work in general relativity, while detailed spacetime diagrams encourage them to think in terms of four-dimensional geometry. Featuring comprehensive reviews of recent experimental and observational data, the text concludes with chapters on cosmology and the physics of the Big Bang and inflation.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; Constants; Fundamental constants; Conversion constants; Astronomical constants; Notation; 1 Newton's gravitational theory; 1.1 The law of universal gravitation; 1.2 Tests of the inverse-square law; 1.3 Gravitational potential; 1.4 Gravitational multipoles; quadrupole moment of the Sun; 1.5 Inertial and gravitational mass; 1.6 Tests of equality of gravitational and inertial mass; 1.7 Tidal forces; 1.8 Tidal field as a local measure of gravitation; Problems; 2 The formalism of special relativity; 2.1 The spacetime of special relativity; 2.2 Tensors in spacetime</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3 Tensor fields2.4 Energy-momentum tensor; 2.5 Relativistic electrodynamics; 2.6 Differential forms and exterior calculus; Problems; 3 The linear approximation; 3.1 The example of electromagnetism; 3.2 Linear field equations for gravitation; 3.3 Variational principle and equation of motion; 3.4 Nonrelativistic limit and Newton's theory; 3.5 Geometric interpretation; curved spacetime; Problems; 4 Applications of the linear approximation; 4.1 Field of a spherical mass; 4.2 Gravitational time dilation; 4.3 Deflection of light; 4.4 Time delay of light; 4.5 Gravitational lenses</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.6 Optics of gravitational lenses4.7 Field of a rotating mass; Lense-Thirring effect; Problems; 5 Gravitational waves; 5.1 Plane waves; 5.2 Interaction of particles with a gravitational wave; 5.3 Emission of gravitational radiation; 5.4 Emission by a vibrating quadrupole; 5.5 Emission by a rotating quadrupole; 5.6 Emission of bursts of gravitational radiation; 5.7 Detectors of gravitational radiation; Problems; 6 Riemannian geometry; 6.1 General coordinates and tensors; 6.2 Parallel transport; covariant derivative; 6.3 Geodesic equation; 6.4 Metric tensor; 6.5 Riemann curvature tensor</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.6 Geodesic deviation and tidal forces Fermi-Walker transport; 6.7 Differential forms in curved spacetime; 6.8 Isometries of spacetime; Killing vectors; Problems; 7 Einstein's gravitational theory; 7.1 General covariance and invariance; gauge transformations; 7.2 Einstein's field equation; 7.3 Another approach to Einsteins equation; cosmological term; 7.4 Schwarzschild solution and Birkhoff theorem; 7.5 Motion of planets; perihelion precession; 7.6 Propagation of light; gravitational redshift; 7.7 Geodetic precession; Problems; 8 Black holes and gravitational collapse</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.1 Singularities and pseudosingularities8.2 The black hole and its horizon; 8.3 Maximal Schwarzschild geometry; 8.4 Kerr solution and Reissner-Nordstrøm solution; 8.5 Horizons and singularities of the rotating black hole; 8.6 Maximal Kerr geometry; 8.7 Black-hole thermodynamics; Hawking process; 8.8 Gravitational collapse and formation of black holes; 8.9 In search of black holes; Problems; 9 Cosmology; 9.1 Large-scale structure of the universe; 9.2 Cosmic distances; 9.3 Expansion of the universe; Hubble's law; 9.4 Age of the universe; 9.5 Cosmic background radiation; 9.6 Mass density</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Gravitation.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85056558</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Space and time.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85125911</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Gravitation</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D006112</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Gravitation.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Waves & Wave Mechanics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gravitation</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Space and time</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ruffini, Remo.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Ohanian, Hans C.</subfield><subfield code="t">Gravitation and spacetime.</subfield><subfield code="b">3rd ed.</subfield><subfield code="d">New York : Cambridge University Press, 2013</subfield><subfield code="z">9781107012943</subfield><subfield code="w">(DLC) 2012027666</subfield><subfield code="w">(OCoLC)809122994</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=508909</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=508909</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH33350993</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">508909</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn841809210 |
illustrated | Illustrated |
indexdate | 2024-10-25T16:21:24Z |
institution | BVB |
isbn | 9781139625128 1139625128 |
language | English |
oclc_num | 841809210 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (xvi, 528 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Cambridge University Press, |
record_format | marc |
spelling | Ohanian, Hans C. Gravitation and spacetime / Hans C. Ohanian, Remo Ruffini. 3rd ed. New York : Cambridge University Press, 2013. 1 online resource (xvi, 528 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Print version record. The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached from several perspectives: as a theory constructed by analogy with Maxwell's electrodynamics, as a relativistic generalization of Newton's theory, and as a theory of curved spacetime. The authors provide a concise overview of the important concepts and formulas, coupled with the experimental results underpinning the latest research in the field. Numerous exercises in Newtonian gravitational theory and Maxwell's equations help students master essential concepts for advanced work in general relativity, while detailed spacetime diagrams encourage them to think in terms of four-dimensional geometry. Featuring comprehensive reviews of recent experimental and observational data, the text concludes with chapters on cosmology and the physics of the Big Bang and inflation. Preface; Constants; Fundamental constants; Conversion constants; Astronomical constants; Notation; 1 Newton's gravitational theory; 1.1 The law of universal gravitation; 1.2 Tests of the inverse-square law; 1.3 Gravitational potential; 1.4 Gravitational multipoles; quadrupole moment of the Sun; 1.5 Inertial and gravitational mass; 1.6 Tests of equality of gravitational and inertial mass; 1.7 Tidal forces; 1.8 Tidal field as a local measure of gravitation; Problems; 2 The formalism of special relativity; 2.1 The spacetime of special relativity; 2.2 Tensors in spacetime 2.3 Tensor fields2.4 Energy-momentum tensor; 2.5 Relativistic electrodynamics; 2.6 Differential forms and exterior calculus; Problems; 3 The linear approximation; 3.1 The example of electromagnetism; 3.2 Linear field equations for gravitation; 3.3 Variational principle and equation of motion; 3.4 Nonrelativistic limit and Newton's theory; 3.5 Geometric interpretation; curved spacetime; Problems; 4 Applications of the linear approximation; 4.1 Field of a spherical mass; 4.2 Gravitational time dilation; 4.3 Deflection of light; 4.4 Time delay of light; 4.5 Gravitational lenses 4.6 Optics of gravitational lenses4.7 Field of a rotating mass; Lense-Thirring effect; Problems; 5 Gravitational waves; 5.1 Plane waves; 5.2 Interaction of particles with a gravitational wave; 5.3 Emission of gravitational radiation; 5.4 Emission by a vibrating quadrupole; 5.5 Emission by a rotating quadrupole; 5.6 Emission of bursts of gravitational radiation; 5.7 Detectors of gravitational radiation; Problems; 6 Riemannian geometry; 6.1 General coordinates and tensors; 6.2 Parallel transport; covariant derivative; 6.3 Geodesic equation; 6.4 Metric tensor; 6.5 Riemann curvature tensor 6.6 Geodesic deviation and tidal forces Fermi-Walker transport; 6.7 Differential forms in curved spacetime; 6.8 Isometries of spacetime; Killing vectors; Problems; 7 Einstein's gravitational theory; 7.1 General covariance and invariance; gauge transformations; 7.2 Einstein's field equation; 7.3 Another approach to Einsteins equation; cosmological term; 7.4 Schwarzschild solution and Birkhoff theorem; 7.5 Motion of planets; perihelion precession; 7.6 Propagation of light; gravitational redshift; 7.7 Geodetic precession; Problems; 8 Black holes and gravitational collapse 8.1 Singularities and pseudosingularities8.2 The black hole and its horizon; 8.3 Maximal Schwarzschild geometry; 8.4 Kerr solution and Reissner-Nordstrøm solution; 8.5 Horizons and singularities of the rotating black hole; 8.6 Maximal Kerr geometry; 8.7 Black-hole thermodynamics; Hawking process; 8.8 Gravitational collapse and formation of black holes; 8.9 In search of black holes; Problems; 9 Cosmology; 9.1 Large-scale structure of the universe; 9.2 Cosmic distances; 9.3 Expansion of the universe; Hubble's law; 9.4 Age of the universe; 9.5 Cosmic background radiation; 9.6 Mass density Gravitation. http://id.loc.gov/authorities/subjects/sh85056558 Space and time. http://id.loc.gov/authorities/subjects/sh85125911 Gravitation https://id.nlm.nih.gov/mesh/D006112 Gravitation. SCIENCE Waves & Wave Mechanics. bisacsh Gravitation fast Space and time fast Ruffini, Remo. Print version: Ohanian, Hans C. Gravitation and spacetime. 3rd ed. New York : Cambridge University Press, 2013 9781107012943 (DLC) 2012027666 (OCoLC)809122994 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=508909 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=508909 Volltext |
spellingShingle | Ohanian, Hans C. Gravitation and spacetime / Preface; Constants; Fundamental constants; Conversion constants; Astronomical constants; Notation; 1 Newton's gravitational theory; 1.1 The law of universal gravitation; 1.2 Tests of the inverse-square law; 1.3 Gravitational potential; 1.4 Gravitational multipoles; quadrupole moment of the Sun; 1.5 Inertial and gravitational mass; 1.6 Tests of equality of gravitational and inertial mass; 1.7 Tidal forces; 1.8 Tidal field as a local measure of gravitation; Problems; 2 The formalism of special relativity; 2.1 The spacetime of special relativity; 2.2 Tensors in spacetime 2.3 Tensor fields2.4 Energy-momentum tensor; 2.5 Relativistic electrodynamics; 2.6 Differential forms and exterior calculus; Problems; 3 The linear approximation; 3.1 The example of electromagnetism; 3.2 Linear field equations for gravitation; 3.3 Variational principle and equation of motion; 3.4 Nonrelativistic limit and Newton's theory; 3.5 Geometric interpretation; curved spacetime; Problems; 4 Applications of the linear approximation; 4.1 Field of a spherical mass; 4.2 Gravitational time dilation; 4.3 Deflection of light; 4.4 Time delay of light; 4.5 Gravitational lenses 4.6 Optics of gravitational lenses4.7 Field of a rotating mass; Lense-Thirring effect; Problems; 5 Gravitational waves; 5.1 Plane waves; 5.2 Interaction of particles with a gravitational wave; 5.3 Emission of gravitational radiation; 5.4 Emission by a vibrating quadrupole; 5.5 Emission by a rotating quadrupole; 5.6 Emission of bursts of gravitational radiation; 5.7 Detectors of gravitational radiation; Problems; 6 Riemannian geometry; 6.1 General coordinates and tensors; 6.2 Parallel transport; covariant derivative; 6.3 Geodesic equation; 6.4 Metric tensor; 6.5 Riemann curvature tensor 6.6 Geodesic deviation and tidal forces Fermi-Walker transport; 6.7 Differential forms in curved spacetime; 6.8 Isometries of spacetime; Killing vectors; Problems; 7 Einstein's gravitational theory; 7.1 General covariance and invariance; gauge transformations; 7.2 Einstein's field equation; 7.3 Another approach to Einsteins equation; cosmological term; 7.4 Schwarzschild solution and Birkhoff theorem; 7.5 Motion of planets; perihelion precession; 7.6 Propagation of light; gravitational redshift; 7.7 Geodetic precession; Problems; 8 Black holes and gravitational collapse 8.1 Singularities and pseudosingularities8.2 The black hole and its horizon; 8.3 Maximal Schwarzschild geometry; 8.4 Kerr solution and Reissner-Nordstrøm solution; 8.5 Horizons and singularities of the rotating black hole; 8.6 Maximal Kerr geometry; 8.7 Black-hole thermodynamics; Hawking process; 8.8 Gravitational collapse and formation of black holes; 8.9 In search of black holes; Problems; 9 Cosmology; 9.1 Large-scale structure of the universe; 9.2 Cosmic distances; 9.3 Expansion of the universe; Hubble's law; 9.4 Age of the universe; 9.5 Cosmic background radiation; 9.6 Mass density Gravitation. http://id.loc.gov/authorities/subjects/sh85056558 Space and time. http://id.loc.gov/authorities/subjects/sh85125911 Gravitation https://id.nlm.nih.gov/mesh/D006112 Gravitation. SCIENCE Waves & Wave Mechanics. bisacsh Gravitation fast Space and time fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85056558 http://id.loc.gov/authorities/subjects/sh85125911 https://id.nlm.nih.gov/mesh/D006112 |
title | Gravitation and spacetime / |
title_auth | Gravitation and spacetime / |
title_exact_search | Gravitation and spacetime / |
title_full | Gravitation and spacetime / Hans C. Ohanian, Remo Ruffini. |
title_fullStr | Gravitation and spacetime / Hans C. Ohanian, Remo Ruffini. |
title_full_unstemmed | Gravitation and spacetime / Hans C. Ohanian, Remo Ruffini. |
title_short | Gravitation and spacetime / |
title_sort | gravitation and spacetime |
topic | Gravitation. http://id.loc.gov/authorities/subjects/sh85056558 Space and time. http://id.loc.gov/authorities/subjects/sh85125911 Gravitation https://id.nlm.nih.gov/mesh/D006112 Gravitation. SCIENCE Waves & Wave Mechanics. bisacsh Gravitation fast Space and time fast |
topic_facet | Gravitation. Space and time. Gravitation SCIENCE Waves & Wave Mechanics. Space and time |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=508909 |
work_keys_str_mv | AT ohanianhansc gravitationandspacetime AT ruffiniremo gravitationandspacetime |