Representation of rings over skew fields /:
The first half of the book is a general study of homomorphisms to simple artinian rings; the techniques developed here should be of interest to many algebraists. The second half is a more detailed study of special types of skew fields which have arisen from the work of P.M. Cohn and the author. A nu...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [Cambridgeshire] ; New York :
Cambridge University Press,
1985.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
92. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The first half of the book is a general study of homomorphisms to simple artinian rings; the techniques developed here should be of interest to many algebraists. The second half is a more detailed study of special types of skew fields which have arisen from the work of P.M. Cohn and the author. A number of questions are settled; a version of the Jacobian conjecture for free algebras is proved and there are examples of skew field extensions of different but finite left and right dimension. |
Beschreibung: | 1 online resource (xii, 223 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 219-221) and index. |
ISBN: | 9781107361041 1107361044 9780511661914 0511661916 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn839304433 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130415s1985 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d IDEBK |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d UAB |d OCLCQ |d VTS |d REC |d M8D |d OCLCO |d UKAHL |d OCLCO |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 715182170 | ||
020 | |a 9781107361041 |q (electronic bk.) | ||
020 | |a 1107361044 |q (electronic bk.) | ||
020 | |a 9780511661914 |q (e-book) | ||
020 | |a 0511661916 |q (e-book) | ||
020 | |z 0521278538 | ||
020 | |z 9780521278539 | ||
035 | |a (OCoLC)839304433 |z (OCoLC)715182170 | ||
050 | 4 | |a QA251.3 |b .S34 1985eb | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512/.4 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Schofield, A. H. |q (Aidan Harry), |d 1957- |1 https://id.oclc.org/worldcat/entity/E39PCjFcbfHmYgD4gQgyWdrVP3 |0 http://id.loc.gov/authorities/names/n84122790 | |
245 | 1 | 0 | |a Representation of rings over skew fields / |c A.H. Schofield. |
260 | |a Cambridge [Cambridgeshire] ; |a New York : |b Cambridge University Press, |c 1985. | ||
300 | |a 1 online resource (xii, 223 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 92 | |
504 | |a Includes bibliographical references (pages 219-221) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a pt. 1. Homomorphisms to simple artinian rings -- pt. 2. Skew subfields of simple artinian coproducts. | |
520 | |a The first half of the book is a general study of homomorphisms to simple artinian rings; the techniques developed here should be of interest to many algebraists. The second half is a more detailed study of special types of skew fields which have arisen from the work of P.M. Cohn and the author. A number of questions are settled; a version of the Jacobian conjecture for free algebras is proved and there are examples of skew field extensions of different but finite left and right dimension. | ||
650 | 0 | |a Commutative rings. |0 http://id.loc.gov/authorities/subjects/sh85029269 | |
650 | 0 | |a Representations of rings (Algebra) |0 http://id.loc.gov/authorities/subjects/sh85112945 | |
650 | 0 | |a Skew fields. |0 http://id.loc.gov/authorities/subjects/sh85123128 | |
650 | 6 | |a Anneaux commutatifs. | |
650 | 6 | |a Représentations d'anneaux (Algèbre) | |
650 | 6 | |a Corps gauches. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Commutative rings |2 fast | |
650 | 7 | |a Representations of rings (Algebra) |2 fast | |
650 | 7 | |a Skew fields |2 fast | |
650 | 7 | |a Artinscher Ring |2 gnd |0 http://d-nb.info/gnd/4202669-6 | |
650 | 7 | |a Schiefkörper |2 gnd |0 http://d-nb.info/gnd/4052359-7 | |
650 | 7 | |a Darstellungstheorie |2 gnd |0 http://d-nb.info/gnd/4148816-7 | |
650 | 7 | |a Ring |g Mathematik |2 gnd |0 http://d-nb.info/gnd/4128084-2 | |
650 | 7 | |a Ringtheorie |2 gnd |0 http://d-nb.info/gnd/4126571-3 | |
650 | 7 | |a Anneaux commutatifs. |2 ram | |
650 | 7 | |a Corps gauches. |2 ram | |
776 | 0 | 8 | |i Print version: |a Schofield, A.H. (Aidan Harry), 1957- |t Representation of rings over skew fields. |d Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1985 |z 0521278538 |w (DLC) 84022996 |w (OCoLC)11469962 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 92. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552432 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH13428469 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385253 | ||
938 | |a ebrary |b EBRY |n ebr10454554 | ||
938 | |a EBSCOhost |b EBSC |n 552432 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25154473 | ||
938 | |a YBP Library Services |b YANK |n 10407359 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn839304433 |
---|---|
_version_ | 1816882229041692672 |
adam_text | |
any_adam_object | |
author | Schofield, A. H. (Aidan Harry), 1957- |
author_GND | http://id.loc.gov/authorities/names/n84122790 |
author_facet | Schofield, A. H. (Aidan Harry), 1957- |
author_role | |
author_sort | Schofield, A. H. 1957- |
author_variant | a h s ah ahs |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA251 |
callnumber-raw | QA251.3 .S34 1985eb |
callnumber-search | QA251.3 .S34 1985eb |
callnumber-sort | QA 3251.3 S34 41985EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | pt. 1. Homomorphisms to simple artinian rings -- pt. 2. Skew subfields of simple artinian coproducts. |
ctrlnum | (OCoLC)839304433 |
dewey-full | 512/.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.4 |
dewey-search | 512/.4 |
dewey-sort | 3512 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03999cam a2200721 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn839304433</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130415s1985 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">715182170</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107361041</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107361044</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511661914</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511661916</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521278538</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521278539</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839304433</subfield><subfield code="z">(OCoLC)715182170</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA251.3</subfield><subfield code="b">.S34 1985eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.4</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schofield, A. H.</subfield><subfield code="q">(Aidan Harry),</subfield><subfield code="d">1957-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjFcbfHmYgD4gQgyWdrVP3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84122790</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representation of rings over skew fields /</subfield><subfield code="c">A.H. Schofield.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [Cambridgeshire] ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1985.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 223 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">92</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 219-221) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">pt. 1. Homomorphisms to simple artinian rings -- pt. 2. Skew subfields of simple artinian coproducts.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The first half of the book is a general study of homomorphisms to simple artinian rings; the techniques developed here should be of interest to many algebraists. The second half is a more detailed study of special types of skew fields which have arisen from the work of P.M. Cohn and the author. A number of questions are settled; a version of the Jacobian conjecture for free algebras is proved and there are examples of skew field extensions of different but finite left and right dimension.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Commutative rings.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85029269</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Representations of rings (Algebra)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85112945</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Skew fields.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85123128</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Anneaux commutatifs.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Représentations d'anneaux (Algèbre)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Corps gauches.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Commutative rings</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Representations of rings (Algebra)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Skew fields</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artinscher Ring</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4202669-6</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Schiefkörper</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4052359-7</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4148816-7</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4128084-2</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ringtheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4126571-3</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Anneaux commutatifs.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Corps gauches.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Schofield, A.H. (Aidan Harry), 1957-</subfield><subfield code="t">Representation of rings over skew fields.</subfield><subfield code="d">Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1985</subfield><subfield code="z">0521278538</subfield><subfield code="w">(DLC) 84022996</subfield><subfield code="w">(OCoLC)11469962</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">92.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552432</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH13428469</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385253</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10454554</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552432</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25154473</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10407359</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn839304433 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:17Z |
institution | BVB |
isbn | 9781107361041 1107361044 9780511661914 0511661916 |
language | English |
oclc_num | 839304433 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 223 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Schofield, A. H. (Aidan Harry), 1957- https://id.oclc.org/worldcat/entity/E39PCjFcbfHmYgD4gQgyWdrVP3 http://id.loc.gov/authorities/names/n84122790 Representation of rings over skew fields / A.H. Schofield. Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1985. 1 online resource (xii, 223 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 92 Includes bibliographical references (pages 219-221) and index. Print version record. pt. 1. Homomorphisms to simple artinian rings -- pt. 2. Skew subfields of simple artinian coproducts. The first half of the book is a general study of homomorphisms to simple artinian rings; the techniques developed here should be of interest to many algebraists. The second half is a more detailed study of special types of skew fields which have arisen from the work of P.M. Cohn and the author. A number of questions are settled; a version of the Jacobian conjecture for free algebras is proved and there are examples of skew field extensions of different but finite left and right dimension. Commutative rings. http://id.loc.gov/authorities/subjects/sh85029269 Representations of rings (Algebra) http://id.loc.gov/authorities/subjects/sh85112945 Skew fields. http://id.loc.gov/authorities/subjects/sh85123128 Anneaux commutatifs. Représentations d'anneaux (Algèbre) Corps gauches. MATHEMATICS Algebra Intermediate. bisacsh Commutative rings fast Representations of rings (Algebra) fast Skew fields fast Artinscher Ring gnd http://d-nb.info/gnd/4202669-6 Schiefkörper gnd http://d-nb.info/gnd/4052359-7 Darstellungstheorie gnd http://d-nb.info/gnd/4148816-7 Ring Mathematik gnd http://d-nb.info/gnd/4128084-2 Ringtheorie gnd http://d-nb.info/gnd/4126571-3 Anneaux commutatifs. ram Corps gauches. ram Print version: Schofield, A.H. (Aidan Harry), 1957- Representation of rings over skew fields. Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1985 0521278538 (DLC) 84022996 (OCoLC)11469962 London Mathematical Society lecture note series ; 92. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552432 Volltext |
spellingShingle | Schofield, A. H. (Aidan Harry), 1957- Representation of rings over skew fields / London Mathematical Society lecture note series ; pt. 1. Homomorphisms to simple artinian rings -- pt. 2. Skew subfields of simple artinian coproducts. Commutative rings. http://id.loc.gov/authorities/subjects/sh85029269 Representations of rings (Algebra) http://id.loc.gov/authorities/subjects/sh85112945 Skew fields. http://id.loc.gov/authorities/subjects/sh85123128 Anneaux commutatifs. Représentations d'anneaux (Algèbre) Corps gauches. MATHEMATICS Algebra Intermediate. bisacsh Commutative rings fast Representations of rings (Algebra) fast Skew fields fast Artinscher Ring gnd http://d-nb.info/gnd/4202669-6 Schiefkörper gnd http://d-nb.info/gnd/4052359-7 Darstellungstheorie gnd http://d-nb.info/gnd/4148816-7 Ring Mathematik gnd http://d-nb.info/gnd/4128084-2 Ringtheorie gnd http://d-nb.info/gnd/4126571-3 Anneaux commutatifs. ram Corps gauches. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85029269 http://id.loc.gov/authorities/subjects/sh85112945 http://id.loc.gov/authorities/subjects/sh85123128 http://d-nb.info/gnd/4202669-6 http://d-nb.info/gnd/4052359-7 http://d-nb.info/gnd/4148816-7 http://d-nb.info/gnd/4128084-2 http://d-nb.info/gnd/4126571-3 |
title | Representation of rings over skew fields / |
title_auth | Representation of rings over skew fields / |
title_exact_search | Representation of rings over skew fields / |
title_full | Representation of rings over skew fields / A.H. Schofield. |
title_fullStr | Representation of rings over skew fields / A.H. Schofield. |
title_full_unstemmed | Representation of rings over skew fields / A.H. Schofield. |
title_short | Representation of rings over skew fields / |
title_sort | representation of rings over skew fields |
topic | Commutative rings. http://id.loc.gov/authorities/subjects/sh85029269 Representations of rings (Algebra) http://id.loc.gov/authorities/subjects/sh85112945 Skew fields. http://id.loc.gov/authorities/subjects/sh85123128 Anneaux commutatifs. Représentations d'anneaux (Algèbre) Corps gauches. MATHEMATICS Algebra Intermediate. bisacsh Commutative rings fast Representations of rings (Algebra) fast Skew fields fast Artinscher Ring gnd http://d-nb.info/gnd/4202669-6 Schiefkörper gnd http://d-nb.info/gnd/4052359-7 Darstellungstheorie gnd http://d-nb.info/gnd/4148816-7 Ring Mathematik gnd http://d-nb.info/gnd/4128084-2 Ringtheorie gnd http://d-nb.info/gnd/4126571-3 Anneaux commutatifs. ram Corps gauches. ram |
topic_facet | Commutative rings. Representations of rings (Algebra) Skew fields. Anneaux commutatifs. Représentations d'anneaux (Algèbre) Corps gauches. MATHEMATICS Algebra Intermediate. Commutative rings Skew fields Artinscher Ring Schiefkörper Darstellungstheorie Ring Mathematik Ringtheorie |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552432 |
work_keys_str_mv | AT schofieldah representationofringsoverskewfields |