Integration and harmonic analysis on compact groups /:
These notes provide a reasonably self-contained introductory survey of certain aspects of harmonic analysis on compact groups. The first part of the book seeks to give a brief account of integration theory on compact Hausdorff spaces. The second, larger part starts from the existence and essential u...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [England] :
University Press,
1972.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
8. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | These notes provide a reasonably self-contained introductory survey of certain aspects of harmonic analysis on compact groups. The first part of the book seeks to give a brief account of integration theory on compact Hausdorff spaces. The second, larger part starts from the existence and essential uniqueness of an invariant integral on every compact Hausdorff group. Topics subsequently outlined include representations, the Peter-Weyl theory, positive definite functions, summability and convergence, spans of translates, closed ideals and invariant subspaces, spectral synthesis problems, the Hausdorff-Young theorem, and lacunarity. |
Beschreibung: | 1 online resource (vi, 184 pages) |
Bibliographie: | Includes bibliographical references (pages 179-184). |
ISBN: | 9781107360785 1107360781 9780511662232 0511662238 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn839304253 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130415s1972 enk ob 000 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d IDEBK |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d OCLCO |d COO |d VTS |d REC |d OCLCO |d STF |d AU@ |d OCLCO |d M8D |d OCLCQ |d K6U |d OCLCA |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 715185500 | ||
020 | |a 9781107360785 |q (electronic bk.) | ||
020 | |a 1107360781 |q (electronic bk.) | ||
020 | |a 9780511662232 |q (e-book) | ||
020 | |a 0511662238 |q (e-book) | ||
020 | |z 0521097177 | ||
020 | |z 9780521097178 | ||
035 | |a (OCoLC)839304253 |z (OCoLC)715185500 | ||
050 | 4 | |a QA387 |b .E38 1972eb | |
072 | 7 | |a MAT |x 014000 |2 bisacsh | |
082 | 7 | |a 512/.2 |2 22 | |
084 | |a 31.30 |2 bcl | ||
084 | |a SI 320 |2 rvk | ||
084 | |a SK 430 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Edwards, R. E. |q (Robert E.), |d 1926- |0 http://id.loc.gov/authorities/names/n79055832 | |
245 | 1 | 0 | |a Integration and harmonic analysis on compact groups / |c R.E. Edwards. |
260 | |a Cambridge [England] : |b University Press, |c 1972. | ||
300 | |a 1 online resource (vi, 184 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society. Lecture note series ; |v 8 | |
504 | |a Includes bibliographical references (pages 179-184). | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a pt. 1. Integration and the Riesz representation theorem -- pt. 2. Harmonic analysis on compact groups. | |
520 | |a These notes provide a reasonably self-contained introductory survey of certain aspects of harmonic analysis on compact groups. The first part of the book seeks to give a brief account of integration theory on compact Hausdorff spaces. The second, larger part starts from the existence and essential uniqueness of an invariant integral on every compact Hausdorff group. Topics subsequently outlined include representations, the Peter-Weyl theory, positive definite functions, summability and convergence, spans of translates, closed ideals and invariant subspaces, spectral synthesis problems, the Hausdorff-Young theorem, and lacunarity. | ||
650 | 0 | |a Topological groups. |0 http://id.loc.gov/authorities/subjects/sh85136082 | |
650 | 0 | |a Harmonic analysis. |0 http://id.loc.gov/authorities/subjects/sh85058939 | |
650 | 0 | |a Integrals, Generalized. |0 http://id.loc.gov/authorities/subjects/sh85067106 | |
650 | 2 | |a Fourier Analysis |0 https://id.nlm.nih.gov/mesh/D005583 | |
650 | 6 | |a Groupes topologiques. | |
650 | 6 | |a Harmonique, Analyse. | |
650 | 6 | |a Intégrales généralisées. | |
650 | 6 | |a Analyse harmonique. | |
650 | 7 | |a MATHEMATICS |x Group Theory. |2 bisacsh | |
650 | 7 | |a Harmonic analysis |2 fast | |
650 | 7 | |a Integrals, Generalized |2 fast | |
650 | 7 | |a Topological groups |2 fast | |
650 | 7 | |a Harmonische Analyse |2 gnd |0 http://d-nb.info/gnd/4023453-8 | |
650 | 7 | |a Integration |g Mathematik |2 gnd |0 http://d-nb.info/gnd/4072852-3 | |
650 | 7 | |a Integration |2 gnd | |
650 | 7 | |a Kompakte Gruppe |2 gnd |0 http://d-nb.info/gnd/4164840-7 | |
650 | 1 | 7 | |a Topologische groepen. |2 gtt |
650 | 1 | 7 | |a Harmonische analyse. |2 gtt |
650 | 1 | 7 | |a Lie-groepen. |2 gtt |
776 | 0 | 8 | |i Print version: |a Edwards, R.E. (Robert E.), 1926- |t Integration and harmonic analysis on compact groups. |d Cambridge [Eng.] University Press, 1972 |z 0521097177 |w (DLC) 77190412 |w (OCoLC)417940 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 8. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552457 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10455621 | ||
938 | |a EBSCOhost |b EBSC |n 552457 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25154450 | ||
938 | |a YBP Library Services |b YANK |n 10407334 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn839304253 |
---|---|
_version_ | 1816882228981923840 |
adam_text | |
any_adam_object | |
author | Edwards, R. E. (Robert E.), 1926- |
author_GND | http://id.loc.gov/authorities/names/n79055832 |
author_facet | Edwards, R. E. (Robert E.), 1926- |
author_role | |
author_sort | Edwards, R. E. 1926- |
author_variant | r e e re ree |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA387 |
callnumber-raw | QA387 .E38 1972eb |
callnumber-search | QA387 .E38 1972eb |
callnumber-sort | QA 3387 E38 41972EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 SK 430 |
collection | ZDB-4-EBA |
contents | pt. 1. Integration and the Riesz representation theorem -- pt. 2. Harmonic analysis on compact groups. |
ctrlnum | (OCoLC)839304253 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03997cam a2200757 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn839304253</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130415s1972 enk ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">COO</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">715185500</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107360785</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107360781</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662232</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511662238</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521097177</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521097178</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839304253</subfield><subfield code="z">(OCoLC)715185500</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA387</subfield><subfield code="b">.E38 1972eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.30</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 430</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Edwards, R. E.</subfield><subfield code="q">(Robert E.),</subfield><subfield code="d">1926-</subfield><subfield code="0">http://id.loc.gov/authorities/names/n79055832</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integration and harmonic analysis on compact groups /</subfield><subfield code="c">R.E. Edwards.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [England] :</subfield><subfield code="b">University Press,</subfield><subfield code="c">1972.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vi, 184 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society. Lecture note series ;</subfield><subfield code="v">8</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 179-184).</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">pt. 1. Integration and the Riesz representation theorem -- pt. 2. Harmonic analysis on compact groups.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">These notes provide a reasonably self-contained introductory survey of certain aspects of harmonic analysis on compact groups. The first part of the book seeks to give a brief account of integration theory on compact Hausdorff spaces. The second, larger part starts from the existence and essential uniqueness of an invariant integral on every compact Hausdorff group. Topics subsequently outlined include representations, the Peter-Weyl theory, positive definite functions, summability and convergence, spans of translates, closed ideals and invariant subspaces, spectral synthesis problems, the Hausdorff-Young theorem, and lacunarity.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Topological groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85136082</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Harmonic analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85058939</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Integrals, Generalized.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85067106</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Fourier Analysis</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D005583</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes topologiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Harmonique, Analyse.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Intégrales généralisées.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse harmonique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Group Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonic analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integrals, Generalized</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topological groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4023453-8</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integration</subfield><subfield code="g">Mathematik</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4072852-3</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integration</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kompakte Gruppe</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4164840-7</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Topologische groepen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Harmonische analyse.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Lie-groepen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Edwards, R.E. (Robert E.), 1926-</subfield><subfield code="t">Integration and harmonic analysis on compact groups.</subfield><subfield code="d">Cambridge [Eng.] University Press, 1972</subfield><subfield code="z">0521097177</subfield><subfield code="w">(DLC) 77190412</subfield><subfield code="w">(OCoLC)417940</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">8.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552457</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10455621</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552457</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25154450</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10407334</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn839304253 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:17Z |
institution | BVB |
isbn | 9781107360785 1107360781 9780511662232 0511662238 |
language | English |
oclc_num | 839304253 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vi, 184 pages) |
psigel | ZDB-4-EBA |
publishDate | 1972 |
publishDateSearch | 1972 |
publishDateSort | 1972 |
publisher | University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society. Lecture note series ; |
spelling | Edwards, R. E. (Robert E.), 1926- http://id.loc.gov/authorities/names/n79055832 Integration and harmonic analysis on compact groups / R.E. Edwards. Cambridge [England] : University Press, 1972. 1 online resource (vi, 184 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society. Lecture note series ; 8 Includes bibliographical references (pages 179-184). Print version record. pt. 1. Integration and the Riesz representation theorem -- pt. 2. Harmonic analysis on compact groups. These notes provide a reasonably self-contained introductory survey of certain aspects of harmonic analysis on compact groups. The first part of the book seeks to give a brief account of integration theory on compact Hausdorff spaces. The second, larger part starts from the existence and essential uniqueness of an invariant integral on every compact Hausdorff group. Topics subsequently outlined include representations, the Peter-Weyl theory, positive definite functions, summability and convergence, spans of translates, closed ideals and invariant subspaces, spectral synthesis problems, the Hausdorff-Young theorem, and lacunarity. Topological groups. http://id.loc.gov/authorities/subjects/sh85136082 Harmonic analysis. http://id.loc.gov/authorities/subjects/sh85058939 Integrals, Generalized. http://id.loc.gov/authorities/subjects/sh85067106 Fourier Analysis https://id.nlm.nih.gov/mesh/D005583 Groupes topologiques. Harmonique, Analyse. Intégrales généralisées. Analyse harmonique. MATHEMATICS Group Theory. bisacsh Harmonic analysis fast Integrals, Generalized fast Topological groups fast Harmonische Analyse gnd http://d-nb.info/gnd/4023453-8 Integration Mathematik gnd http://d-nb.info/gnd/4072852-3 Integration gnd Kompakte Gruppe gnd http://d-nb.info/gnd/4164840-7 Topologische groepen. gtt Harmonische analyse. gtt Lie-groepen. gtt Print version: Edwards, R.E. (Robert E.), 1926- Integration and harmonic analysis on compact groups. Cambridge [Eng.] University Press, 1972 0521097177 (DLC) 77190412 (OCoLC)417940 London Mathematical Society lecture note series ; 8. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552457 Volltext |
spellingShingle | Edwards, R. E. (Robert E.), 1926- Integration and harmonic analysis on compact groups / London Mathematical Society lecture note series ; pt. 1. Integration and the Riesz representation theorem -- pt. 2. Harmonic analysis on compact groups. Topological groups. http://id.loc.gov/authorities/subjects/sh85136082 Harmonic analysis. http://id.loc.gov/authorities/subjects/sh85058939 Integrals, Generalized. http://id.loc.gov/authorities/subjects/sh85067106 Fourier Analysis https://id.nlm.nih.gov/mesh/D005583 Groupes topologiques. Harmonique, Analyse. Intégrales généralisées. Analyse harmonique. MATHEMATICS Group Theory. bisacsh Harmonic analysis fast Integrals, Generalized fast Topological groups fast Harmonische Analyse gnd http://d-nb.info/gnd/4023453-8 Integration Mathematik gnd http://d-nb.info/gnd/4072852-3 Integration gnd Kompakte Gruppe gnd http://d-nb.info/gnd/4164840-7 Topologische groepen. gtt Harmonische analyse. gtt Lie-groepen. gtt |
subject_GND | http://id.loc.gov/authorities/subjects/sh85136082 http://id.loc.gov/authorities/subjects/sh85058939 http://id.loc.gov/authorities/subjects/sh85067106 https://id.nlm.nih.gov/mesh/D005583 http://d-nb.info/gnd/4023453-8 http://d-nb.info/gnd/4072852-3 http://d-nb.info/gnd/4164840-7 |
title | Integration and harmonic analysis on compact groups / |
title_auth | Integration and harmonic analysis on compact groups / |
title_exact_search | Integration and harmonic analysis on compact groups / |
title_full | Integration and harmonic analysis on compact groups / R.E. Edwards. |
title_fullStr | Integration and harmonic analysis on compact groups / R.E. Edwards. |
title_full_unstemmed | Integration and harmonic analysis on compact groups / R.E. Edwards. |
title_short | Integration and harmonic analysis on compact groups / |
title_sort | integration and harmonic analysis on compact groups |
topic | Topological groups. http://id.loc.gov/authorities/subjects/sh85136082 Harmonic analysis. http://id.loc.gov/authorities/subjects/sh85058939 Integrals, Generalized. http://id.loc.gov/authorities/subjects/sh85067106 Fourier Analysis https://id.nlm.nih.gov/mesh/D005583 Groupes topologiques. Harmonique, Analyse. Intégrales généralisées. Analyse harmonique. MATHEMATICS Group Theory. bisacsh Harmonic analysis fast Integrals, Generalized fast Topological groups fast Harmonische Analyse gnd http://d-nb.info/gnd/4023453-8 Integration Mathematik gnd http://d-nb.info/gnd/4072852-3 Integration gnd Kompakte Gruppe gnd http://d-nb.info/gnd/4164840-7 Topologische groepen. gtt Harmonische analyse. gtt Lie-groepen. gtt |
topic_facet | Topological groups. Harmonic analysis. Integrals, Generalized. Fourier Analysis Groupes topologiques. Harmonique, Analyse. Intégrales généralisées. Analyse harmonique. MATHEMATICS Group Theory. Harmonic analysis Integrals, Generalized Topological groups Harmonische Analyse Integration Mathematik Integration Kompakte Gruppe Topologische groepen. Harmonische analyse. Lie-groepen. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552457 |
work_keys_str_mv | AT edwardsre integrationandharmonicanalysisoncompactgroups |