Linear algebraic monoids /:
This book provides an introduction to the field of linear algebraic monoids. This subject represents a synthesis of ideas from the theory of algebraic groups, algebraic geometry, matrix theory and abstract semigroup theory. Since every representation of an algebraic group gives rise to an algebraic...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [England] ; New York :
Cambridge University Press,
1988.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
133. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book provides an introduction to the field of linear algebraic monoids. This subject represents a synthesis of ideas from the theory of algebraic groups, algebraic geometry, matrix theory and abstract semigroup theory. Since every representation of an algebraic group gives rise to an algebraic monoid, the objects of study do indeed arise naturally. |
Beschreibung: | 1 online resource (x, 171 pages) |
Bibliographie: | Includes bibliographical references (pages 163-169) and index. |
ISBN: | 9781107361485 1107361486 9780511600661 0511600666 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn839302772 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130415s1988 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d IDEBK |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d UAB |d OCLCQ |d VTS |d REC |d STF |d M8D |d OCLCO |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 704520779 | ||
020 | |a 9781107361485 |q (electronic bk.) | ||
020 | |a 1107361486 |q (electronic bk.) | ||
020 | |a 9780511600661 |q (e-book) | ||
020 | |a 0511600666 |q (e-book) | ||
020 | |z 0521358094 | ||
020 | |z 9780521358095 | ||
035 | |a (OCoLC)839302772 |z (OCoLC)704520779 | ||
050 | 4 | |a QA169 |b .P87 1988eb | |
072 | 7 | |a MAT |x 002050 |2 bisacsh | |
082 | 7 | |a 512/.55 |2 22 | |
084 | |a 31.25 |2 bcl | ||
084 | |a *20M20 |2 msc | ||
084 | |a 14L17 |2 msc | ||
084 | |a 20-02 |2 msc | ||
084 | |a 20G15 |2 msc | ||
084 | |a 20M10 |2 msc | ||
049 | |a MAIN | ||
100 | 1 | |a Putcha, Mohan S., |d 1952- |1 https://id.oclc.org/worldcat/entity/E39PCjMkqtFdGfHV8qVf3kHKkC |0 http://id.loc.gov/authorities/names/n87930321 | |
245 | 1 | 0 | |a Linear algebraic monoids / |c Mohan S. Putcha. |
260 | |a Cambridge [England] ; |a New York : |b Cambridge University Press, |c 1988. | ||
300 | |a 1 online resource (x, 171 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 133 | |
504 | |a Includes bibliographical references (pages 163-169) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a This book provides an introduction to the field of linear algebraic monoids. This subject represents a synthesis of ideas from the theory of algebraic groups, algebraic geometry, matrix theory and abstract semigroup theory. Since every representation of an algebraic group gives rise to an algebraic monoid, the objects of study do indeed arise naturally. | ||
505 | 0 | |a Cover; Title; Copyright; Contents; Preface; Notation; 1. Abstract Semigroups; 2. Algebraic Geometry; 3. Linear Algebraic Semigroups; 4. Linear Algebraic Groups; 5. Connected Algebraic Semigroups; 6. Connected Algebraic Monoids; 7. Reductive Groups and Regular Semigroups; 8. Diagonal Monoids; 9. Cross-section Lattices; 10. E-Structure; 11. Renner's Decomposition and Related Finite Semigroups; 12. Biordered Sets; 13. Tits Building; 14. The System of Idempotents; 15. J-irreducible and J-co-irreducible Monoids; 16. Renner's Extension Principle and Classification; References; Index | |
650 | 0 | |a Monoids. |0 http://id.loc.gov/authorities/subjects/sh85086915 | |
650 | 6 | |a Monoïdes. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Linear. |2 bisacsh | |
650 | 7 | |a Monoids |2 fast | |
650 | 7 | |a Lineares algebraisches Monoid |2 gnd |0 http://d-nb.info/gnd/4204286-0 | |
650 | 7 | |a Algebraische Halbgruppe |2 gnd |0 http://d-nb.info/gnd/4298313-7 | |
650 | 1 | 7 | |a Lineaire algebra. |2 gtt |
650 | 1 | 7 | |a Monoïden. |2 gtt |
650 | 7 | |a Monoïdes. |2 ram | |
776 | 0 | 8 | |i Print version: |a Putcha, Mohan S., 1952- |t Linear algebraic monoids. |d Cambridge [England] ; New York : Cambridge University Press, 1988 |z 0521358094 |w (DLC) 88006103 |w (OCoLC)17619140 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 133. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552397 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552397 |3 Volltext | |
938 | |a ebrary |b EBRY |n ebr10441054 | ||
938 | |a EBSCOhost |b EBSC |n 552397 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25154515 | ||
938 | |a YBP Library Services |b YANK |n 10407402 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn839302772 |
---|---|
_version_ | 1813903608040652800 |
adam_text | |
any_adam_object | |
author | Putcha, Mohan S., 1952- |
author_GND | http://id.loc.gov/authorities/names/n87930321 |
author_facet | Putcha, Mohan S., 1952- |
author_role | |
author_sort | Putcha, Mohan S., 1952- |
author_variant | m s p ms msp |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA169 |
callnumber-raw | QA169 .P87 1988eb |
callnumber-search | QA169 .P87 1988eb |
callnumber-sort | QA 3169 P87 41988EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; Preface; Notation; 1. Abstract Semigroups; 2. Algebraic Geometry; 3. Linear Algebraic Semigroups; 4. Linear Algebraic Groups; 5. Connected Algebraic Semigroups; 6. Connected Algebraic Monoids; 7. Reductive Groups and Regular Semigroups; 8. Diagonal Monoids; 9. Cross-section Lattices; 10. E-Structure; 11. Renner's Decomposition and Related Finite Semigroups; 12. Biordered Sets; 13. Tits Building; 14. The System of Idempotents; 15. J-irreducible and J-co-irreducible Monoids; 16. Renner's Extension Principle and Classification; References; Index |
ctrlnum | (OCoLC)839302772 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03698cam a2200673 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn839302772</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130415s1988 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">704520779</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107361485</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107361486</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511600661</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511600666</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521358094</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521358095</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839302772</subfield><subfield code="z">(OCoLC)704520779</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA169</subfield><subfield code="b">.P87 1988eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002050</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.25</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">*20M20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14L17</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20-02</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20G15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20M10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Putcha, Mohan S.,</subfield><subfield code="d">1952-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjMkqtFdGfHV8qVf3kHKkC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n87930321</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear algebraic monoids /</subfield><subfield code="c">Mohan S. Putcha.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [England] ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1988.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 171 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">133</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 163-169) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides an introduction to the field of linear algebraic monoids. This subject represents a synthesis of ideas from the theory of algebraic groups, algebraic geometry, matrix theory and abstract semigroup theory. Since every representation of an algebraic group gives rise to an algebraic monoid, the objects of study do indeed arise naturally.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; Preface; Notation; 1. Abstract Semigroups; 2. Algebraic Geometry; 3. Linear Algebraic Semigroups; 4. Linear Algebraic Groups; 5. Connected Algebraic Semigroups; 6. Connected Algebraic Monoids; 7. Reductive Groups and Regular Semigroups; 8. Diagonal Monoids; 9. Cross-section Lattices; 10. E-Structure; 11. Renner's Decomposition and Related Finite Semigroups; 12. Biordered Sets; 13. Tits Building; 14. The System of Idempotents; 15. J-irreducible and J-co-irreducible Monoids; 16. Renner's Extension Principle and Classification; References; Index</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Monoids.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85086915</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Monoïdes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Linear.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Monoids</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lineares algebraisches Monoid</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4204286-0</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraische Halbgruppe</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4298313-7</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Lineaire algebra.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Monoïden.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Monoïdes.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Putcha, Mohan S., 1952-</subfield><subfield code="t">Linear algebraic monoids.</subfield><subfield code="d">Cambridge [England] ; New York : Cambridge University Press, 1988</subfield><subfield code="z">0521358094</subfield><subfield code="w">(DLC) 88006103</subfield><subfield code="w">(OCoLC)17619140</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">133.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552397</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552397</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10441054</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552397</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25154515</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10407402</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn839302772 |
illustrated | Not Illustrated |
indexdate | 2024-10-25T16:21:22Z |
institution | BVB |
isbn | 9781107361485 1107361486 9780511600661 0511600666 |
language | English |
oclc_num | 839302772 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (x, 171 pages) |
psigel | ZDB-4-EBA |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Putcha, Mohan S., 1952- https://id.oclc.org/worldcat/entity/E39PCjMkqtFdGfHV8qVf3kHKkC http://id.loc.gov/authorities/names/n87930321 Linear algebraic monoids / Mohan S. Putcha. Cambridge [England] ; New York : Cambridge University Press, 1988. 1 online resource (x, 171 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 133 Includes bibliographical references (pages 163-169) and index. Print version record. This book provides an introduction to the field of linear algebraic monoids. This subject represents a synthesis of ideas from the theory of algebraic groups, algebraic geometry, matrix theory and abstract semigroup theory. Since every representation of an algebraic group gives rise to an algebraic monoid, the objects of study do indeed arise naturally. Cover; Title; Copyright; Contents; Preface; Notation; 1. Abstract Semigroups; 2. Algebraic Geometry; 3. Linear Algebraic Semigroups; 4. Linear Algebraic Groups; 5. Connected Algebraic Semigroups; 6. Connected Algebraic Monoids; 7. Reductive Groups and Regular Semigroups; 8. Diagonal Monoids; 9. Cross-section Lattices; 10. E-Structure; 11. Renner's Decomposition and Related Finite Semigroups; 12. Biordered Sets; 13. Tits Building; 14. The System of Idempotents; 15. J-irreducible and J-co-irreducible Monoids; 16. Renner's Extension Principle and Classification; References; Index Monoids. http://id.loc.gov/authorities/subjects/sh85086915 Monoïdes. MATHEMATICS Algebra Linear. bisacsh Monoids fast Lineares algebraisches Monoid gnd http://d-nb.info/gnd/4204286-0 Algebraische Halbgruppe gnd http://d-nb.info/gnd/4298313-7 Lineaire algebra. gtt Monoïden. gtt Monoïdes. ram Print version: Putcha, Mohan S., 1952- Linear algebraic monoids. Cambridge [England] ; New York : Cambridge University Press, 1988 0521358094 (DLC) 88006103 (OCoLC)17619140 London Mathematical Society lecture note series ; 133. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552397 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552397 Volltext |
spellingShingle | Putcha, Mohan S., 1952- Linear algebraic monoids / London Mathematical Society lecture note series ; Cover; Title; Copyright; Contents; Preface; Notation; 1. Abstract Semigroups; 2. Algebraic Geometry; 3. Linear Algebraic Semigroups; 4. Linear Algebraic Groups; 5. Connected Algebraic Semigroups; 6. Connected Algebraic Monoids; 7. Reductive Groups and Regular Semigroups; 8. Diagonal Monoids; 9. Cross-section Lattices; 10. E-Structure; 11. Renner's Decomposition and Related Finite Semigroups; 12. Biordered Sets; 13. Tits Building; 14. The System of Idempotents; 15. J-irreducible and J-co-irreducible Monoids; 16. Renner's Extension Principle and Classification; References; Index Monoids. http://id.loc.gov/authorities/subjects/sh85086915 Monoïdes. MATHEMATICS Algebra Linear. bisacsh Monoids fast Lineares algebraisches Monoid gnd http://d-nb.info/gnd/4204286-0 Algebraische Halbgruppe gnd http://d-nb.info/gnd/4298313-7 Lineaire algebra. gtt Monoïden. gtt Monoïdes. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85086915 http://d-nb.info/gnd/4204286-0 http://d-nb.info/gnd/4298313-7 |
title | Linear algebraic monoids / |
title_auth | Linear algebraic monoids / |
title_exact_search | Linear algebraic monoids / |
title_full | Linear algebraic monoids / Mohan S. Putcha. |
title_fullStr | Linear algebraic monoids / Mohan S. Putcha. |
title_full_unstemmed | Linear algebraic monoids / Mohan S. Putcha. |
title_short | Linear algebraic monoids / |
title_sort | linear algebraic monoids |
topic | Monoids. http://id.loc.gov/authorities/subjects/sh85086915 Monoïdes. MATHEMATICS Algebra Linear. bisacsh Monoids fast Lineares algebraisches Monoid gnd http://d-nb.info/gnd/4204286-0 Algebraische Halbgruppe gnd http://d-nb.info/gnd/4298313-7 Lineaire algebra. gtt Monoïden. gtt Monoïdes. ram |
topic_facet | Monoids. Monoïdes. MATHEMATICS Algebra Linear. Monoids Lineares algebraisches Monoid Algebraische Halbgruppe Lineaire algebra. Monoïden. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552397 |
work_keys_str_mv | AT putchamohans linearalgebraicmonoids |