Homological questions in local algebra /:
This book presents an account of several conjectures arising in commutative algebra from the pioneering work of Serre and Auslander-Buchsbaum. The approach is via Hochster's 'Big Cohen-Macaulay modules', though the complementary view point of Peskine-Szpiro and Roberts, who study the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
1990.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
145. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book presents an account of several conjectures arising in commutative algebra from the pioneering work of Serre and Auslander-Buchsbaum. The approach is via Hochster's 'Big Cohen-Macaulay modules', though the complementary view point of Peskine-Szpiro and Roberts, who study the homology of certain complexes, is not neglected. Various refinements of Hochster's construction, obtained in collaboration with Bartijn, are included. A special feature is a long chapter written by Van den Dries which explains how a certain type of result can be 'lifted' from prime characteristic to characteristic zero. Though this is primarily a research monograph, it does provide introductions to most of the topics treated. Non-experts may therefore find it an appealing guide into an active area of algebra. |
Beschreibung: | 1 online resource (xiii, 308 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 297-308). |
ISBN: | 9781107361287 1107361281 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn839301817 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130415s1990 enka ob 000 0 eng d | ||
010 | |z 91104401 | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCO |d IDEBK |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d OCLCO |d UAB |d VTS |d REC |d OCLCO |d STF |d M8D |d SFB |d OCLCQ |d OCLCO |d OCLCQ |d INARC |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 797839684 |a 1409550107 | ||
020 | |a 9781107361287 |q (electronic bk.) | ||
020 | |a 1107361281 |q (electronic bk.) | ||
020 | |z 0521315263 | ||
020 | |z 9780521315265 | ||
020 | |z 9780511629242 | ||
035 | |a (OCoLC)839301817 |z (OCoLC)797839684 |z (OCoLC)1409550107 | ||
050 | 4 | |a QA251.3 |b .S76 1990eb | |
072 | 7 | |a MAT |x 014000 |2 bisacsh | |
082 | 7 | |a 512/.24 |2 22 | |
084 | |a *13Hxx |2 msc | ||
084 | |a 13-02 |2 msc | ||
084 | |a 13C14 |2 msc | ||
084 | |a 13D03 |2 msc | ||
084 | |a SI 320 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Strooker, Jan R. | |
245 | 1 | 0 | |a Homological questions in local algebra / |c Jan R. Strooker. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 1990. | ||
300 | |a 1 online resource (xiii, 308 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 145 | |
504 | |a Includes bibliographical references (pages 297-308). | ||
588 | 0 | |a Print version record. | |
520 | |a This book presents an account of several conjectures arising in commutative algebra from the pioneering work of Serre and Auslander-Buchsbaum. The approach is via Hochster's 'Big Cohen-Macaulay modules', though the complementary view point of Peskine-Szpiro and Roberts, who study the homology of certain complexes, is not neglected. Various refinements of Hochster's construction, obtained in collaboration with Bartijn, are included. A special feature is a long chapter written by Van den Dries which explains how a certain type of result can be 'lifted' from prime characteristic to characteristic zero. Though this is primarily a research monograph, it does provide introductions to most of the topics treated. Non-experts may therefore find it an appealing guide into an active area of algebra. | ||
505 | 0 | |a Cover; Title; Copyright; Contents; Preface; Chapter 1 : HOMOLOGICAL PRELIMINARIES; 1.1 Acyclicity Lemma's; 1.2 A few isomorphisms of complexes; Chapter 2 : ADIC TOPOLOGIES AND COMPLETIONS; 2.1 Induced topologies and purity; 2.2 Completions; 2.3 Lifting in complete local rings; Chapter 3 : INJECTIVE ENVELOPES AND MINIMAL INJECTIVE RESOLUTIONS; 3.1 The injective envelope of a module; 3.2 Decomposition of injective modules; 3.3 Minimal injective resolutions; 3.4 Matlis Duality; Chapter 4 : LOCAL COHOMOLOGY AND KOSZUL COMPLEXES; 4.1 Local cohomology; 4.2 Koszul complexes | |
505 | 8 | |a 4.3 Limits of Koszul complexes and local cohomologyChapter 5 : (PRE- ) REGULAR SEQUENCES AND DEPTH; 5.1 (Pre- ) regular sequences; 5.2 Pre-regularity under completion; connections with local cohomology; 5.3 Depth; Chapter 6 : EXACTNESS OF COMPLEXES AND LINEAR EQUATIONS OVER RINGS; 6.1 The Acyclicity Lemma and a few consequences; 6.2 The Buchsbaum-Eisenbud criterion; 6.3 Linear equations over rings; Chapter 7 : COMPARING HOMOLOGICAL INVARIANTS; 7.1 Auslander-Buchsbaum -- and Bass identities generalized; 7.2 Equalities and inequalities involving grade; 7.3 Annihilators of local cohomology | |
505 | 8 | |a Chapter 8 : DIMENSION8.1 Krull's Hauptidealsatz; 8.2 Parameters and dimension; 8.3 Parameters and regular sequences; 8.4 Extensions of the Hauptidealsatz; 8.5 Dimension conjectures; Chapter 9 : COHEN-MACAULAY MODULES AND REGULAR RINGS; 9.1 Cohen-Macaulay modules and rings; 9.2 Regular local rings; 9.3 Complete local rings and the Direct Summand Conjecture; Chapter 10 : GORENSTEIN RINGS, LOCAL DUALITY, AND THE DIRECT SUMMAND CONJECTURE; 10.1 Gorenstein rings; 10.2 Local duality; 10.3 The Direct Summand and Monomial Conjectures in equal characteristic | |
505 | 8 | |a Chapter 11 : FROBENIUS AND BIG COHEN-MACAULAY MODULES IN CHARACTERISTIC11.1 Modifications; 11.2 Relations between annihilators; 11.3 The Frobenius functor; 11.4 Pre-regular modules in characteristic p; 11.5 Balanced Big Cohen-Macaulay modules in characteristic; Chapter 12 : BIG COHEN-MACAULAY MODULES IN EQUAL CHARACTERISTIC; 12.0 Introduction; 12.1 Hochster algebras and equational constraints; 12.2 Constructible properties and transfer to finite fields; 12.3 Proof of Lemma IV; 12.4 The Weierstrass Theorems; 12.5 Henselian rings and henselization; 12.6 An approximation theorem of M. Artin | |
505 | 8 | |a 12.7 From noetherian to finitely generated algebrasChapter 13 : USES OF BIG COHEN-MACAULAY MODULES; 13.1 New Intersection Theorems and a few consequences; 13.2 Nonvanishing of Bass numbers; REFERENCES | |
650 | 0 | |a Commutative algebra. |0 http://id.loc.gov/authorities/subjects/sh85029267 | |
650 | 0 | |a Homology theory. |0 http://id.loc.gov/authorities/subjects/sh85061770 | |
650 | 6 | |a Algèbre commutative. | |
650 | 6 | |a Homologie. | |
650 | 7 | |a MATHEMATICS |x Group Theory. |2 bisacsh | |
650 | 7 | |a Commutative algebra |2 fast | |
650 | 7 | |a Homology theory |2 fast | |
650 | 7 | |a Homologietheorie |2 gnd |0 http://d-nb.info/gnd/4141714-8 | |
650 | 7 | |a Homologische Algebra |2 gnd |0 http://d-nb.info/gnd/4160598-6 | |
650 | 7 | |a Stellenalgebra |2 gnd |0 http://d-nb.info/gnd/4183082-9 | |
650 | 7 | |a Algèbre commutative. |2 ram | |
650 | 7 | |a Algèbre homologique. |2 ram | |
650 | 7 | |a Géométrie algébrique. |2 ram | |
776 | 0 | 8 | |i Print version: |a Strooker, Jan R. |t Homological questions in local algebra. |d Cambridge ; New York : Cambridge University Press, 1990 |z 0521315263 |w (DLC) 91104401 |w (OCoLC)22463590 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 145. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552399 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10562273 | ||
938 | |a EBSCOhost |b EBSC |n 552399 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25154496 | ||
938 | |a YBP Library Services |b YANK |n 10407383 | ||
938 | |a Internet Archive |b INAR |n homologicalquest0000stro | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn839301817 |
---|---|
_version_ | 1816882228891746304 |
adam_text | |
any_adam_object | |
author | Strooker, Jan R. |
author_facet | Strooker, Jan R. |
author_role | |
author_sort | Strooker, Jan R. |
author_variant | j r s jr jrs |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA251 |
callnumber-raw | QA251.3 .S76 1990eb |
callnumber-search | QA251.3 .S76 1990eb |
callnumber-sort | QA 3251.3 S76 41990EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; Preface; Chapter 1 : HOMOLOGICAL PRELIMINARIES; 1.1 Acyclicity Lemma's; 1.2 A few isomorphisms of complexes; Chapter 2 : ADIC TOPOLOGIES AND COMPLETIONS; 2.1 Induced topologies and purity; 2.2 Completions; 2.3 Lifting in complete local rings; Chapter 3 : INJECTIVE ENVELOPES AND MINIMAL INJECTIVE RESOLUTIONS; 3.1 The injective envelope of a module; 3.2 Decomposition of injective modules; 3.3 Minimal injective resolutions; 3.4 Matlis Duality; Chapter 4 : LOCAL COHOMOLOGY AND KOSZUL COMPLEXES; 4.1 Local cohomology; 4.2 Koszul complexes 4.3 Limits of Koszul complexes and local cohomologyChapter 5 : (PRE- ) REGULAR SEQUENCES AND DEPTH; 5.1 (Pre- ) regular sequences; 5.2 Pre-regularity under completion; connections with local cohomology; 5.3 Depth; Chapter 6 : EXACTNESS OF COMPLEXES AND LINEAR EQUATIONS OVER RINGS; 6.1 The Acyclicity Lemma and a few consequences; 6.2 The Buchsbaum-Eisenbud criterion; 6.3 Linear equations over rings; Chapter 7 : COMPARING HOMOLOGICAL INVARIANTS; 7.1 Auslander-Buchsbaum -- and Bass identities generalized; 7.2 Equalities and inequalities involving grade; 7.3 Annihilators of local cohomology Chapter 8 : DIMENSION8.1 Krull's Hauptidealsatz; 8.2 Parameters and dimension; 8.3 Parameters and regular sequences; 8.4 Extensions of the Hauptidealsatz; 8.5 Dimension conjectures; Chapter 9 : COHEN-MACAULAY MODULES AND REGULAR RINGS; 9.1 Cohen-Macaulay modules and rings; 9.2 Regular local rings; 9.3 Complete local rings and the Direct Summand Conjecture; Chapter 10 : GORENSTEIN RINGS, LOCAL DUALITY, AND THE DIRECT SUMMAND CONJECTURE; 10.1 Gorenstein rings; 10.2 Local duality; 10.3 The Direct Summand and Monomial Conjectures in equal characteristic Chapter 11 : FROBENIUS AND BIG COHEN-MACAULAY MODULES IN CHARACTERISTIC11.1 Modifications; 11.2 Relations between annihilators; 11.3 The Frobenius functor; 11.4 Pre-regular modules in characteristic p; 11.5 Balanced Big Cohen-Macaulay modules in characteristic; Chapter 12 : BIG COHEN-MACAULAY MODULES IN EQUAL CHARACTERISTIC; 12.0 Introduction; 12.1 Hochster algebras and equational constraints; 12.2 Constructible properties and transfer to finite fields; 12.3 Proof of Lemma IV; 12.4 The Weierstrass Theorems; 12.5 Henselian rings and henselization; 12.6 An approximation theorem of M. Artin 12.7 From noetherian to finitely generated algebrasChapter 13 : USES OF BIG COHEN-MACAULAY MODULES; 13.1 New Intersection Theorems and a few consequences; 13.2 Nonvanishing of Bass numbers; REFERENCES |
ctrlnum | (OCoLC)839301817 |
dewey-full | 512/.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.24 |
dewey-search | 512/.24 |
dewey-sort | 3512 224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06374cam a2200769 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn839301817</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130415s1990 enka ob 000 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 91104401 </subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">797839684</subfield><subfield code="a">1409550107</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107361287</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107361281</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521315263</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521315265</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780511629242</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839301817</subfield><subfield code="z">(OCoLC)797839684</subfield><subfield code="z">(OCoLC)1409550107</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA251.3</subfield><subfield code="b">.S76 1990eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.24</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">*13Hxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13-02</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13C14</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13D03</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Strooker, Jan R.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Homological questions in local algebra /</subfield><subfield code="c">Jan R. Strooker.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1990.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 308 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">145</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 297-308).</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents an account of several conjectures arising in commutative algebra from the pioneering work of Serre and Auslander-Buchsbaum. The approach is via Hochster's 'Big Cohen-Macaulay modules', though the complementary view point of Peskine-Szpiro and Roberts, who study the homology of certain complexes, is not neglected. Various refinements of Hochster's construction, obtained in collaboration with Bartijn, are included. A special feature is a long chapter written by Van den Dries which explains how a certain type of result can be 'lifted' from prime characteristic to characteristic zero. Though this is primarily a research monograph, it does provide introductions to most of the topics treated. Non-experts may therefore find it an appealing guide into an active area of algebra.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; Preface; Chapter 1 : HOMOLOGICAL PRELIMINARIES; 1.1 Acyclicity Lemma's; 1.2 A few isomorphisms of complexes; Chapter 2 : ADIC TOPOLOGIES AND COMPLETIONS; 2.1 Induced topologies and purity; 2.2 Completions; 2.3 Lifting in complete local rings; Chapter 3 : INJECTIVE ENVELOPES AND MINIMAL INJECTIVE RESOLUTIONS; 3.1 The injective envelope of a module; 3.2 Decomposition of injective modules; 3.3 Minimal injective resolutions; 3.4 Matlis Duality; Chapter 4 : LOCAL COHOMOLOGY AND KOSZUL COMPLEXES; 4.1 Local cohomology; 4.2 Koszul complexes</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3 Limits of Koszul complexes and local cohomologyChapter 5 : (PRE- ) REGULAR SEQUENCES AND DEPTH; 5.1 (Pre- ) regular sequences; 5.2 Pre-regularity under completion; connections with local cohomology; 5.3 Depth; Chapter 6 : EXACTNESS OF COMPLEXES AND LINEAR EQUATIONS OVER RINGS; 6.1 The Acyclicity Lemma and a few consequences; 6.2 The Buchsbaum-Eisenbud criterion; 6.3 Linear equations over rings; Chapter 7 : COMPARING HOMOLOGICAL INVARIANTS; 7.1 Auslander-Buchsbaum -- and Bass identities generalized; 7.2 Equalities and inequalities involving grade; 7.3 Annihilators of local cohomology</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 8 : DIMENSION8.1 Krull's Hauptidealsatz; 8.2 Parameters and dimension; 8.3 Parameters and regular sequences; 8.4 Extensions of the Hauptidealsatz; 8.5 Dimension conjectures; Chapter 9 : COHEN-MACAULAY MODULES AND REGULAR RINGS; 9.1 Cohen-Macaulay modules and rings; 9.2 Regular local rings; 9.3 Complete local rings and the Direct Summand Conjecture; Chapter 10 : GORENSTEIN RINGS, LOCAL DUALITY, AND THE DIRECT SUMMAND CONJECTURE; 10.1 Gorenstein rings; 10.2 Local duality; 10.3 The Direct Summand and Monomial Conjectures in equal characteristic</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 11 : FROBENIUS AND BIG COHEN-MACAULAY MODULES IN CHARACTERISTIC11.1 Modifications; 11.2 Relations between annihilators; 11.3 The Frobenius functor; 11.4 Pre-regular modules in characteristic p; 11.5 Balanced Big Cohen-Macaulay modules in characteristic; Chapter 12 : BIG COHEN-MACAULAY MODULES IN EQUAL CHARACTERISTIC; 12.0 Introduction; 12.1 Hochster algebras and equational constraints; 12.2 Constructible properties and transfer to finite fields; 12.3 Proof of Lemma IV; 12.4 The Weierstrass Theorems; 12.5 Henselian rings and henselization; 12.6 An approximation theorem of M. Artin</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.7 From noetherian to finitely generated algebrasChapter 13 : USES OF BIG COHEN-MACAULAY MODULES; 13.1 New Intersection Theorems and a few consequences; 13.2 Nonvanishing of Bass numbers; REFERENCES</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Commutative algebra.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85029267</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Homology theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85061770</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbre commutative.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Homologie.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Group Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Commutative algebra</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homology theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homologietheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4141714-8</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homologische Algebra</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4160598-6</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stellenalgebra</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4183082-9</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algèbre commutative.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algèbre homologique.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Géométrie algébrique.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Strooker, Jan R.</subfield><subfield code="t">Homological questions in local algebra.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 1990</subfield><subfield code="z">0521315263</subfield><subfield code="w">(DLC) 91104401</subfield><subfield code="w">(OCoLC)22463590</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">145.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552399</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10562273</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552399</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25154496</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10407383</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">homologicalquest0000stro</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn839301817 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:17Z |
institution | BVB |
isbn | 9781107361287 1107361281 |
language | English |
oclc_num | 839301817 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiii, 308 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Strooker, Jan R. Homological questions in local algebra / Jan R. Strooker. Cambridge ; New York : Cambridge University Press, 1990. 1 online resource (xiii, 308 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 145 Includes bibliographical references (pages 297-308). Print version record. This book presents an account of several conjectures arising in commutative algebra from the pioneering work of Serre and Auslander-Buchsbaum. The approach is via Hochster's 'Big Cohen-Macaulay modules', though the complementary view point of Peskine-Szpiro and Roberts, who study the homology of certain complexes, is not neglected. Various refinements of Hochster's construction, obtained in collaboration with Bartijn, are included. A special feature is a long chapter written by Van den Dries which explains how a certain type of result can be 'lifted' from prime characteristic to characteristic zero. Though this is primarily a research monograph, it does provide introductions to most of the topics treated. Non-experts may therefore find it an appealing guide into an active area of algebra. Cover; Title; Copyright; Contents; Preface; Chapter 1 : HOMOLOGICAL PRELIMINARIES; 1.1 Acyclicity Lemma's; 1.2 A few isomorphisms of complexes; Chapter 2 : ADIC TOPOLOGIES AND COMPLETIONS; 2.1 Induced topologies and purity; 2.2 Completions; 2.3 Lifting in complete local rings; Chapter 3 : INJECTIVE ENVELOPES AND MINIMAL INJECTIVE RESOLUTIONS; 3.1 The injective envelope of a module; 3.2 Decomposition of injective modules; 3.3 Minimal injective resolutions; 3.4 Matlis Duality; Chapter 4 : LOCAL COHOMOLOGY AND KOSZUL COMPLEXES; 4.1 Local cohomology; 4.2 Koszul complexes 4.3 Limits of Koszul complexes and local cohomologyChapter 5 : (PRE- ) REGULAR SEQUENCES AND DEPTH; 5.1 (Pre- ) regular sequences; 5.2 Pre-regularity under completion; connections with local cohomology; 5.3 Depth; Chapter 6 : EXACTNESS OF COMPLEXES AND LINEAR EQUATIONS OVER RINGS; 6.1 The Acyclicity Lemma and a few consequences; 6.2 The Buchsbaum-Eisenbud criterion; 6.3 Linear equations over rings; Chapter 7 : COMPARING HOMOLOGICAL INVARIANTS; 7.1 Auslander-Buchsbaum -- and Bass identities generalized; 7.2 Equalities and inequalities involving grade; 7.3 Annihilators of local cohomology Chapter 8 : DIMENSION8.1 Krull's Hauptidealsatz; 8.2 Parameters and dimension; 8.3 Parameters and regular sequences; 8.4 Extensions of the Hauptidealsatz; 8.5 Dimension conjectures; Chapter 9 : COHEN-MACAULAY MODULES AND REGULAR RINGS; 9.1 Cohen-Macaulay modules and rings; 9.2 Regular local rings; 9.3 Complete local rings and the Direct Summand Conjecture; Chapter 10 : GORENSTEIN RINGS, LOCAL DUALITY, AND THE DIRECT SUMMAND CONJECTURE; 10.1 Gorenstein rings; 10.2 Local duality; 10.3 The Direct Summand and Monomial Conjectures in equal characteristic Chapter 11 : FROBENIUS AND BIG COHEN-MACAULAY MODULES IN CHARACTERISTIC11.1 Modifications; 11.2 Relations between annihilators; 11.3 The Frobenius functor; 11.4 Pre-regular modules in characteristic p; 11.5 Balanced Big Cohen-Macaulay modules in characteristic; Chapter 12 : BIG COHEN-MACAULAY MODULES IN EQUAL CHARACTERISTIC; 12.0 Introduction; 12.1 Hochster algebras and equational constraints; 12.2 Constructible properties and transfer to finite fields; 12.3 Proof of Lemma IV; 12.4 The Weierstrass Theorems; 12.5 Henselian rings and henselization; 12.6 An approximation theorem of M. Artin 12.7 From noetherian to finitely generated algebrasChapter 13 : USES OF BIG COHEN-MACAULAY MODULES; 13.1 New Intersection Theorems and a few consequences; 13.2 Nonvanishing of Bass numbers; REFERENCES Commutative algebra. http://id.loc.gov/authorities/subjects/sh85029267 Homology theory. http://id.loc.gov/authorities/subjects/sh85061770 Algèbre commutative. Homologie. MATHEMATICS Group Theory. bisacsh Commutative algebra fast Homology theory fast Homologietheorie gnd http://d-nb.info/gnd/4141714-8 Homologische Algebra gnd http://d-nb.info/gnd/4160598-6 Stellenalgebra gnd http://d-nb.info/gnd/4183082-9 Algèbre commutative. ram Algèbre homologique. ram Géométrie algébrique. ram Print version: Strooker, Jan R. Homological questions in local algebra. Cambridge ; New York : Cambridge University Press, 1990 0521315263 (DLC) 91104401 (OCoLC)22463590 London Mathematical Society lecture note series ; 145. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552399 Volltext |
spellingShingle | Strooker, Jan R. Homological questions in local algebra / London Mathematical Society lecture note series ; Cover; Title; Copyright; Contents; Preface; Chapter 1 : HOMOLOGICAL PRELIMINARIES; 1.1 Acyclicity Lemma's; 1.2 A few isomorphisms of complexes; Chapter 2 : ADIC TOPOLOGIES AND COMPLETIONS; 2.1 Induced topologies and purity; 2.2 Completions; 2.3 Lifting in complete local rings; Chapter 3 : INJECTIVE ENVELOPES AND MINIMAL INJECTIVE RESOLUTIONS; 3.1 The injective envelope of a module; 3.2 Decomposition of injective modules; 3.3 Minimal injective resolutions; 3.4 Matlis Duality; Chapter 4 : LOCAL COHOMOLOGY AND KOSZUL COMPLEXES; 4.1 Local cohomology; 4.2 Koszul complexes 4.3 Limits of Koszul complexes and local cohomologyChapter 5 : (PRE- ) REGULAR SEQUENCES AND DEPTH; 5.1 (Pre- ) regular sequences; 5.2 Pre-regularity under completion; connections with local cohomology; 5.3 Depth; Chapter 6 : EXACTNESS OF COMPLEXES AND LINEAR EQUATIONS OVER RINGS; 6.1 The Acyclicity Lemma and a few consequences; 6.2 The Buchsbaum-Eisenbud criterion; 6.3 Linear equations over rings; Chapter 7 : COMPARING HOMOLOGICAL INVARIANTS; 7.1 Auslander-Buchsbaum -- and Bass identities generalized; 7.2 Equalities and inequalities involving grade; 7.3 Annihilators of local cohomology Chapter 8 : DIMENSION8.1 Krull's Hauptidealsatz; 8.2 Parameters and dimension; 8.3 Parameters and regular sequences; 8.4 Extensions of the Hauptidealsatz; 8.5 Dimension conjectures; Chapter 9 : COHEN-MACAULAY MODULES AND REGULAR RINGS; 9.1 Cohen-Macaulay modules and rings; 9.2 Regular local rings; 9.3 Complete local rings and the Direct Summand Conjecture; Chapter 10 : GORENSTEIN RINGS, LOCAL DUALITY, AND THE DIRECT SUMMAND CONJECTURE; 10.1 Gorenstein rings; 10.2 Local duality; 10.3 The Direct Summand and Monomial Conjectures in equal characteristic Chapter 11 : FROBENIUS AND BIG COHEN-MACAULAY MODULES IN CHARACTERISTIC11.1 Modifications; 11.2 Relations between annihilators; 11.3 The Frobenius functor; 11.4 Pre-regular modules in characteristic p; 11.5 Balanced Big Cohen-Macaulay modules in characteristic; Chapter 12 : BIG COHEN-MACAULAY MODULES IN EQUAL CHARACTERISTIC; 12.0 Introduction; 12.1 Hochster algebras and equational constraints; 12.2 Constructible properties and transfer to finite fields; 12.3 Proof of Lemma IV; 12.4 The Weierstrass Theorems; 12.5 Henselian rings and henselization; 12.6 An approximation theorem of M. Artin 12.7 From noetherian to finitely generated algebrasChapter 13 : USES OF BIG COHEN-MACAULAY MODULES; 13.1 New Intersection Theorems and a few consequences; 13.2 Nonvanishing of Bass numbers; REFERENCES Commutative algebra. http://id.loc.gov/authorities/subjects/sh85029267 Homology theory. http://id.loc.gov/authorities/subjects/sh85061770 Algèbre commutative. Homologie. MATHEMATICS Group Theory. bisacsh Commutative algebra fast Homology theory fast Homologietheorie gnd http://d-nb.info/gnd/4141714-8 Homologische Algebra gnd http://d-nb.info/gnd/4160598-6 Stellenalgebra gnd http://d-nb.info/gnd/4183082-9 Algèbre commutative. ram Algèbre homologique. ram Géométrie algébrique. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85029267 http://id.loc.gov/authorities/subjects/sh85061770 http://d-nb.info/gnd/4141714-8 http://d-nb.info/gnd/4160598-6 http://d-nb.info/gnd/4183082-9 |
title | Homological questions in local algebra / |
title_auth | Homological questions in local algebra / |
title_exact_search | Homological questions in local algebra / |
title_full | Homological questions in local algebra / Jan R. Strooker. |
title_fullStr | Homological questions in local algebra / Jan R. Strooker. |
title_full_unstemmed | Homological questions in local algebra / Jan R. Strooker. |
title_short | Homological questions in local algebra / |
title_sort | homological questions in local algebra |
topic | Commutative algebra. http://id.loc.gov/authorities/subjects/sh85029267 Homology theory. http://id.loc.gov/authorities/subjects/sh85061770 Algèbre commutative. Homologie. MATHEMATICS Group Theory. bisacsh Commutative algebra fast Homology theory fast Homologietheorie gnd http://d-nb.info/gnd/4141714-8 Homologische Algebra gnd http://d-nb.info/gnd/4160598-6 Stellenalgebra gnd http://d-nb.info/gnd/4183082-9 Algèbre commutative. ram Algèbre homologique. ram Géométrie algébrique. ram |
topic_facet | Commutative algebra. Homology theory. Algèbre commutative. Homologie. MATHEMATICS Group Theory. Commutative algebra Homology theory Homologietheorie Homologische Algebra Stellenalgebra Algèbre homologique. Géométrie algébrique. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552399 |
work_keys_str_mv | AT strookerjanr homologicalquestionsinlocalalgebra |