Parallelisms of complete designs /:
These notes present an investigation of a condition similar to Euclid's parallel axiom for subsets of finite sets. The background material to the theory of parallelisms is introduced and the author then describes the links this theory has with other topics from the whole range of combinatorial...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
©1976.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
23. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | These notes present an investigation of a condition similar to Euclid's parallel axiom for subsets of finite sets. The background material to the theory of parallelisms is introduced and the author then describes the links this theory has with other topics from the whole range of combinatorial theory and permutation groups. These include network flows, perfect codes, Latin squares, block designs and multiply-transitive permutation groups, and long and detailed appendices are provided to serve as introductions to these various subjects. Many of the results are published for the first time. |
Beschreibung: | 1 online resource (144 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 138-142) and index. |
ISBN: | 9781107360846 1107360846 9780511662102 0511662106 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn836869636 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130408s1976 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d IDEBK |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d UAB |d OCLCQ |d VTS |d REC |d STF |d M8D |d OCLCO |d INARC |d AJS |d OCLCO |d SFB |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 715187422 | ||
020 | |a 9781107360846 |q (electronic bk.) | ||
020 | |a 1107360846 |q (electronic bk.) | ||
020 | |a 9780511662102 |q (e-book) | ||
020 | |a 0511662106 |q (e-book) | ||
020 | |z 0521211603 | ||
020 | |z 9780521211604 | ||
035 | |a (OCoLC)836869636 |z (OCoLC)715187422 | ||
050 | 4 | |a QA164 |b .C35 1976eb | |
072 | 7 | |a MAT |x 012000 |2 bisacsh | |
082 | 7 | |a 516/.13 |2 22 | |
084 | |a SI 320 |2 rvk | ||
084 | |a SK 300 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Cameron, Peter J. |q (Peter Jephson), |d 1947- |1 https://id.oclc.org/worldcat/entity/E39PBJr7Wp9w9KWmP9RdFyM773 |0 http://id.loc.gov/authorities/names/n81072709 | |
245 | 1 | 0 | |a Parallelisms of complete designs / |c Peter J. Cameron. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c ©1976. | ||
300 | |a 1 online resource (144 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 23 | |
504 | |a Includes bibliographical references (pages 138-142) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a These notes present an investigation of a condition similar to Euclid's parallel axiom for subsets of finite sets. The background material to the theory of parallelisms is introduced and the author then describes the links this theory has with other topics from the whole range of combinatorial theory and permutation groups. These include network flows, perfect codes, Latin squares, block designs and multiply-transitive permutation groups, and long and detailed appendices are provided to serve as introductions to these various subjects. Many of the results are published for the first time. | ||
505 | 0 | |a Cover; Title; Copyright; Contents; Introduction; 1 The existence theorem; APPENDIX 1A. The Integrity Theorem for network flows; 2 The parallelogram property; APPENDIX 2A. The binary perfect code theorem; APPENDIX 2B. Association schemes and metrically regular graphs; 3 Steiner points and Veblen points; APPENDIX 3A. Steiner systems; 4 Edge-colourings of complete graphs; APPENDIX 4A. Latin squares, SDRs, and permanents; 5 Biplanes and metric regularity; APPENDIX 5A. Symmetric designs; 6 Automorphism groups; APPENDIX 6A. Multiply transitive groups; 7 Resolutions and partition systems | |
650 | 0 | |a Combinatorial designs and configurations. |0 http://id.loc.gov/authorities/subjects/sh85028803 | |
650 | 0 | |a Permutation groups. |0 http://id.loc.gov/authorities/subjects/sh85099993 | |
650 | 0 | |a Parallels (Geometry) |0 http://id.loc.gov/authorities/subjects/sh85097831 | |
650 | 6 | |a Configurations et schémas combinatoires. | |
650 | 6 | |a Groupes de permutations. | |
650 | 6 | |a Parallèles (Géométrie) | |
650 | 7 | |a MATHEMATICS |x Geometry |x General. |2 bisacsh | |
650 | 7 | |a Combinatorial designs and configurations |2 fast | |
650 | 7 | |a Parallels (Geometry) |2 fast | |
650 | 7 | |a Permutation groups |2 fast | |
650 | 7 | |a Kombinatorik |2 gnd |0 http://d-nb.info/gnd/4031824-2 | |
650 | 7 | |a Parallelismus |2 gnd |0 http://d-nb.info/gnd/4247356-1 | |
655 | 4 | |a Vollständiger Entwurf. | |
776 | 0 | 8 | |i Print version: |a Cameron, Peter J. (Peter Jephson), 1947- |t Parallelisms of complete designs. |d Cambridge ; New York : Cambridge University Press, ©1976 |z 0521211603 |w (DLC) 75032912 |w (OCoLC)1993131 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 23. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552450 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10455847 | ||
938 | |a EBSCOhost |b EBSC |n 552450 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25154455 | ||
938 | |a Internet Archive |b INAR |n parallelismsofco0000came | ||
938 | |a YBP Library Services |b YANK |n 10407339 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn836869636 |
---|---|
_version_ | 1816882228374798336 |
adam_text | |
any_adam_object | |
author | Cameron, Peter J. (Peter Jephson), 1947- |
author_GND | http://id.loc.gov/authorities/names/n81072709 |
author_facet | Cameron, Peter J. (Peter Jephson), 1947- |
author_role | |
author_sort | Cameron, Peter J. 1947- |
author_variant | p j c pj pjc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA164 |
callnumber-raw | QA164 .C35 1976eb |
callnumber-search | QA164 .C35 1976eb |
callnumber-sort | QA 3164 C35 41976EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 SK 300 |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; Introduction; 1 The existence theorem; APPENDIX 1A. The Integrity Theorem for network flows; 2 The parallelogram property; APPENDIX 2A. The binary perfect code theorem; APPENDIX 2B. Association schemes and metrically regular graphs; 3 Steiner points and Veblen points; APPENDIX 3A. Steiner systems; 4 Edge-colourings of complete graphs; APPENDIX 4A. Latin squares, SDRs, and permanents; 5 Biplanes and metric regularity; APPENDIX 5A. Symmetric designs; 6 Automorphism groups; APPENDIX 6A. Multiply transitive groups; 7 Resolutions and partition systems |
ctrlnum | (OCoLC)836869636 |
dewey-full | 516/.13 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516/.13 |
dewey-search | 516/.13 |
dewey-sort | 3516 213 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04326cam a2200685 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn836869636</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130408s1976 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">INARC</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">715187422</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107360846</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107360846</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662102</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511662106</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521211603</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521211604</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)836869636</subfield><subfield code="z">(OCoLC)715187422</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA164</subfield><subfield code="b">.C35 1976eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516/.13</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cameron, Peter J.</subfield><subfield code="q">(Peter Jephson),</subfield><subfield code="d">1947-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJr7Wp9w9KWmP9RdFyM773</subfield><subfield code="0">http://id.loc.gov/authorities/names/n81072709</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parallelisms of complete designs /</subfield><subfield code="c">Peter J. Cameron.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">©1976.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (144 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">23</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 138-142) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">These notes present an investigation of a condition similar to Euclid's parallel axiom for subsets of finite sets. The background material to the theory of parallelisms is introduced and the author then describes the links this theory has with other topics from the whole range of combinatorial theory and permutation groups. These include network flows, perfect codes, Latin squares, block designs and multiply-transitive permutation groups, and long and detailed appendices are provided to serve as introductions to these various subjects. Many of the results are published for the first time.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; Introduction; 1 The existence theorem; APPENDIX 1A. The Integrity Theorem for network flows; 2 The parallelogram property; APPENDIX 2A. The binary perfect code theorem; APPENDIX 2B. Association schemes and metrically regular graphs; 3 Steiner points and Veblen points; APPENDIX 3A. Steiner systems; 4 Edge-colourings of complete graphs; APPENDIX 4A. Latin squares, SDRs, and permanents; 5 Biplanes and metric regularity; APPENDIX 5A. Symmetric designs; 6 Automorphism groups; APPENDIX 6A. Multiply transitive groups; 7 Resolutions and partition systems</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Combinatorial designs and configurations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85028803</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Permutation groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85099993</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Parallels (Geometry)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85097831</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Configurations et schémas combinatoires.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes de permutations.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Parallèles (Géométrie)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combinatorial designs and configurations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Parallels (Geometry)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Permutation groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kombinatorik</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4031824-2</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Parallelismus</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4247356-1</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Vollständiger Entwurf.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Cameron, Peter J. (Peter Jephson), 1947-</subfield><subfield code="t">Parallelisms of complete designs.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, ©1976</subfield><subfield code="z">0521211603</subfield><subfield code="w">(DLC) 75032912</subfield><subfield code="w">(OCoLC)1993131</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">23.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552450</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10455847</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552450</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25154455</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">parallelismsofco0000came</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10407339</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Vollständiger Entwurf. |
genre_facet | Vollständiger Entwurf. |
id | ZDB-4-EBA-ocn836869636 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:17Z |
institution | BVB |
isbn | 9781107360846 1107360846 9780511662102 0511662106 |
language | English |
oclc_num | 836869636 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (144 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1976 |
publishDateSearch | 1976 |
publishDateSort | 1976 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Cameron, Peter J. (Peter Jephson), 1947- https://id.oclc.org/worldcat/entity/E39PBJr7Wp9w9KWmP9RdFyM773 http://id.loc.gov/authorities/names/n81072709 Parallelisms of complete designs / Peter J. Cameron. Cambridge ; New York : Cambridge University Press, ©1976. 1 online resource (144 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 23 Includes bibliographical references (pages 138-142) and index. Print version record. These notes present an investigation of a condition similar to Euclid's parallel axiom for subsets of finite sets. The background material to the theory of parallelisms is introduced and the author then describes the links this theory has with other topics from the whole range of combinatorial theory and permutation groups. These include network flows, perfect codes, Latin squares, block designs and multiply-transitive permutation groups, and long and detailed appendices are provided to serve as introductions to these various subjects. Many of the results are published for the first time. Cover; Title; Copyright; Contents; Introduction; 1 The existence theorem; APPENDIX 1A. The Integrity Theorem for network flows; 2 The parallelogram property; APPENDIX 2A. The binary perfect code theorem; APPENDIX 2B. Association schemes and metrically regular graphs; 3 Steiner points and Veblen points; APPENDIX 3A. Steiner systems; 4 Edge-colourings of complete graphs; APPENDIX 4A. Latin squares, SDRs, and permanents; 5 Biplanes and metric regularity; APPENDIX 5A. Symmetric designs; 6 Automorphism groups; APPENDIX 6A. Multiply transitive groups; 7 Resolutions and partition systems Combinatorial designs and configurations. http://id.loc.gov/authorities/subjects/sh85028803 Permutation groups. http://id.loc.gov/authorities/subjects/sh85099993 Parallels (Geometry) http://id.loc.gov/authorities/subjects/sh85097831 Configurations et schémas combinatoires. Groupes de permutations. Parallèles (Géométrie) MATHEMATICS Geometry General. bisacsh Combinatorial designs and configurations fast Parallels (Geometry) fast Permutation groups fast Kombinatorik gnd http://d-nb.info/gnd/4031824-2 Parallelismus gnd http://d-nb.info/gnd/4247356-1 Vollständiger Entwurf. Print version: Cameron, Peter J. (Peter Jephson), 1947- Parallelisms of complete designs. Cambridge ; New York : Cambridge University Press, ©1976 0521211603 (DLC) 75032912 (OCoLC)1993131 London Mathematical Society lecture note series ; 23. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552450 Volltext |
spellingShingle | Cameron, Peter J. (Peter Jephson), 1947- Parallelisms of complete designs / London Mathematical Society lecture note series ; Cover; Title; Copyright; Contents; Introduction; 1 The existence theorem; APPENDIX 1A. The Integrity Theorem for network flows; 2 The parallelogram property; APPENDIX 2A. The binary perfect code theorem; APPENDIX 2B. Association schemes and metrically regular graphs; 3 Steiner points and Veblen points; APPENDIX 3A. Steiner systems; 4 Edge-colourings of complete graphs; APPENDIX 4A. Latin squares, SDRs, and permanents; 5 Biplanes and metric regularity; APPENDIX 5A. Symmetric designs; 6 Automorphism groups; APPENDIX 6A. Multiply transitive groups; 7 Resolutions and partition systems Combinatorial designs and configurations. http://id.loc.gov/authorities/subjects/sh85028803 Permutation groups. http://id.loc.gov/authorities/subjects/sh85099993 Parallels (Geometry) http://id.loc.gov/authorities/subjects/sh85097831 Configurations et schémas combinatoires. Groupes de permutations. Parallèles (Géométrie) MATHEMATICS Geometry General. bisacsh Combinatorial designs and configurations fast Parallels (Geometry) fast Permutation groups fast Kombinatorik gnd http://d-nb.info/gnd/4031824-2 Parallelismus gnd http://d-nb.info/gnd/4247356-1 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85028803 http://id.loc.gov/authorities/subjects/sh85099993 http://id.loc.gov/authorities/subjects/sh85097831 http://d-nb.info/gnd/4031824-2 http://d-nb.info/gnd/4247356-1 |
title | Parallelisms of complete designs / |
title_auth | Parallelisms of complete designs / |
title_exact_search | Parallelisms of complete designs / |
title_full | Parallelisms of complete designs / Peter J. Cameron. |
title_fullStr | Parallelisms of complete designs / Peter J. Cameron. |
title_full_unstemmed | Parallelisms of complete designs / Peter J. Cameron. |
title_short | Parallelisms of complete designs / |
title_sort | parallelisms of complete designs |
topic | Combinatorial designs and configurations. http://id.loc.gov/authorities/subjects/sh85028803 Permutation groups. http://id.loc.gov/authorities/subjects/sh85099993 Parallels (Geometry) http://id.loc.gov/authorities/subjects/sh85097831 Configurations et schémas combinatoires. Groupes de permutations. Parallèles (Géométrie) MATHEMATICS Geometry General. bisacsh Combinatorial designs and configurations fast Parallels (Geometry) fast Permutation groups fast Kombinatorik gnd http://d-nb.info/gnd/4031824-2 Parallelismus gnd http://d-nb.info/gnd/4247356-1 |
topic_facet | Combinatorial designs and configurations. Permutation groups. Parallels (Geometry) Configurations et schémas combinatoires. Groupes de permutations. Parallèles (Géométrie) MATHEMATICS Geometry General. Combinatorial designs and configurations Permutation groups Kombinatorik Parallelismus Vollständiger Entwurf. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552450 |
work_keys_str_mv | AT cameronpeterj parallelismsofcompletedesigns |