Stable modules and the D(2)-problem /:
This 2003 book is concerned with two fundamental problems in low-dimensional topology. Firstly, the D(2)-problem, which asks whether cohomology detects dimension, and secondly the realization problem, which asks whether every algebraic 2-complex is geometrically realizable. The author shows that for...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK ; New York :
Cambridge University Press,
2003.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
301. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This 2003 book is concerned with two fundamental problems in low-dimensional topology. Firstly, the D(2)-problem, which asks whether cohomology detects dimension, and secondly the realization problem, which asks whether every algebraic 2-complex is geometrically realizable. The author shows that for a large class of fundamental groups these problems are equivalent. Moreover, in the case of finite groups, Professor Johnson develops general methods and gives complete solutions in a number of cases. In particular, he presents a complete treatment of Yoneda extension theory from the viewpoint of derived objects and proves that for groups of period four, two-dimensional homotopy types are parametrized by isomorphism classes of projective modules. This book is carefully written with an eye on the wider context and as such is suitable for graduate students wanting to learn low-dimensional homotopy theory as well as established researchers in the field. |
Beschreibung: | 1 online resource (ix, 267 pages) |
Bibliographie: | Includes bibliographical references (pages 262-265) and index. |
ISBN: | 9781107362284 1107362288 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn836869102 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130408s2003 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d COO |d OCLCQ |d VTS |d REC |d STF |d M8D |d OCLCO |d AJS |d OCLCO |d OCLCQ |d OCLCO |d INARC |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
020 | |a 9781107362284 |q (electronic bk.) | ||
020 | |a 1107362288 |q (electronic bk.) | ||
020 | |z 0521537495 | ||
020 | |z 9780521537490 | ||
035 | |a (OCoLC)836869102 | ||
050 | 4 | |a QA612.14 |b .J64 2003eb | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
082 | 7 | |a 514/.2 |2 22 | |
084 | |a 31.61 |2 bcl | ||
084 | |a SK 260 |2 rvk | ||
084 | |a SK 280 |2 rvk | ||
084 | |a MAT 553f |2 stub | ||
084 | |a MAT 572f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Johnson, F. E. A. |q (Francis Edward Anthony), |d 1946- |1 https://id.oclc.org/worldcat/entity/E39PCjC73QhvK7KT44k49DMxwy |0 http://id.loc.gov/authorities/names/n2003007164 | |
245 | 1 | 0 | |a Stable modules and the D(2)-problem / |c F.E.A. Johnson. |
260 | |a Cambridge, UK ; |a New York : |b Cambridge University Press, |c 2003. | ||
300 | |a 1 online resource (ix, 267 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 301 | |
504 | |a Includes bibliographical references (pages 262-265) and index. | ||
505 | 0 | |a 1. Orders in semisimple algebras -- 2. Representation of finite groups -- 3. Stable modules and cancellation theorems -- 4. Relative homological algebra -- 5. The derived category of a finite group -- 6. k-invariants -- 7. Groups of periodic cohomology -- 8. Algebraic homotopy theory -- 9. Stability theorems -- 10. The D(2)-problem -- 11. Poincare -- 3 complexes. | |
588 | 0 | |a Print version record. | |
520 | |a This 2003 book is concerned with two fundamental problems in low-dimensional topology. Firstly, the D(2)-problem, which asks whether cohomology detects dimension, and secondly the realization problem, which asks whether every algebraic 2-complex is geometrically realizable. The author shows that for a large class of fundamental groups these problems are equivalent. Moreover, in the case of finite groups, Professor Johnson develops general methods and gives complete solutions in a number of cases. In particular, he presents a complete treatment of Yoneda extension theory from the viewpoint of derived objects and proves that for groups of period four, two-dimensional homotopy types are parametrized by isomorphism classes of projective modules. This book is carefully written with an eye on the wider context and as such is suitable for graduate students wanting to learn low-dimensional homotopy theory as well as established researchers in the field. | ||
650 | 0 | |a Low-dimensional topology. |0 http://id.loc.gov/authorities/subjects/sh85078631 | |
650 | 0 | |a Homotopy theory. |0 http://id.loc.gov/authorities/subjects/sh85061803 | |
650 | 0 | |a Group algebras. |0 http://id.loc.gov/authorities/subjects/sh85057472 | |
650 | 6 | |a Topologie de basse dimension. | |
650 | 6 | |a Homotopie. | |
650 | 6 | |a Algèbres de groupes. | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a Group algebras |2 fast | |
650 | 7 | |a Homotopy theory |2 fast | |
650 | 7 | |a Low-dimensional topology |2 fast | |
650 | 7 | |a Gruppenring |2 gnd |0 http://d-nb.info/gnd/4158469-7 | |
650 | 7 | |a Homotopietheorie |2 gnd |0 http://d-nb.info/gnd/4128142-1 | |
650 | 7 | |a Niederdimensionale Topologie |2 gnd |0 http://d-nb.info/gnd/4280826-1 | |
650 | 7 | |a Grupos finitos. |2 larpcal | |
650 | 7 | |a Álgebra. |2 larpcal | |
758 | |i has work: |a Stable modules and the D(2)-problem (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFFJTyCV9Gcx9RvXGjYbgq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Johnson, F.E.A. (Francis Edward Anthony), 1946- |t Stable modules and the D(2)-problem. |d Cambridge, UK ; New York : Cambridge University Press, 2003 |z 0521537495 |w (DLC) 2003046133 |w (OCoLC)51886466 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 301. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552341 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552341 |3 Volltext | |
938 | |a Internet Archive |b INAR |n stablemodulesd2p0000john | ||
938 | |a EBSCOhost |b EBSC |n 552341 | ||
938 | |a YBP Library Services |b YANK |n 10405650 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn836869102 |
---|---|
_version_ | 1813903606464643072 |
adam_text | |
any_adam_object | |
author | Johnson, F. E. A. (Francis Edward Anthony), 1946- |
author_GND | http://id.loc.gov/authorities/names/n2003007164 |
author_facet | Johnson, F. E. A. (Francis Edward Anthony), 1946- |
author_role | |
author_sort | Johnson, F. E. A. 1946- |
author_variant | f e a j fea feaj |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA612 |
callnumber-raw | QA612.14 .J64 2003eb |
callnumber-search | QA612.14 .J64 2003eb |
callnumber-sort | QA 3612.14 J64 42003EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 260 SK 280 |
classification_tum | MAT 553f MAT 572f |
collection | ZDB-4-EBA |
contents | 1. Orders in semisimple algebras -- 2. Representation of finite groups -- 3. Stable modules and cancellation theorems -- 4. Relative homological algebra -- 5. The derived category of a finite group -- 6. k-invariants -- 7. Groups of periodic cohomology -- 8. Algebraic homotopy theory -- 9. Stability theorems -- 10. The D(2)-problem -- 11. Poincare -- 3 complexes. |
ctrlnum | (OCoLC)836869102 |
dewey-full | 514/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.2 |
dewey-search | 514/.2 |
dewey-sort | 3514 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04524cam a2200697 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn836869102</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130408s2003 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107362284</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107362288</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521537495</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521537490</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)836869102</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA612.14</subfield><subfield code="b">.J64 2003eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">514/.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.61</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 280</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 553f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 572f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Johnson, F. E. A.</subfield><subfield code="q">(Francis Edward Anthony),</subfield><subfield code="d">1946-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjC73QhvK7KT44k49DMxwy</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2003007164</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stable modules and the D(2)-problem /</subfield><subfield code="c">F.E.A. Johnson.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, UK ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2003.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 267 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">301</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 262-265) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Orders in semisimple algebras -- 2. Representation of finite groups -- 3. Stable modules and cancellation theorems -- 4. Relative homological algebra -- 5. The derived category of a finite group -- 6. k-invariants -- 7. Groups of periodic cohomology -- 8. Algebraic homotopy theory -- 9. Stability theorems -- 10. The D(2)-problem -- 11. Poincare -- 3 complexes.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This 2003 book is concerned with two fundamental problems in low-dimensional topology. Firstly, the D(2)-problem, which asks whether cohomology detects dimension, and secondly the realization problem, which asks whether every algebraic 2-complex is geometrically realizable. The author shows that for a large class of fundamental groups these problems are equivalent. Moreover, in the case of finite groups, Professor Johnson develops general methods and gives complete solutions in a number of cases. In particular, he presents a complete treatment of Yoneda extension theory from the viewpoint of derived objects and proves that for groups of period four, two-dimensional homotopy types are parametrized by isomorphism classes of projective modules. This book is carefully written with an eye on the wider context and as such is suitable for graduate students wanting to learn low-dimensional homotopy theory as well as established researchers in the field.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Low-dimensional topology.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85078631</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Homotopy theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85061803</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Group algebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85057472</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Topologie de basse dimension.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Homotopie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbres de groupes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Group algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homotopy theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Low-dimensional topology</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gruppenring</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4158469-7</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homotopietheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4128142-1</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Niederdimensionale Topologie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4280826-1</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Grupos finitos.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Álgebra.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Stable modules and the D(2)-problem (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFFJTyCV9Gcx9RvXGjYbgq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Johnson, F.E.A. (Francis Edward Anthony), 1946-</subfield><subfield code="t">Stable modules and the D(2)-problem.</subfield><subfield code="d">Cambridge, UK ; New York : Cambridge University Press, 2003</subfield><subfield code="z">0521537495</subfield><subfield code="w">(DLC) 2003046133</subfield><subfield code="w">(OCoLC)51886466</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">301.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552341</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552341</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">stablemodulesd2p0000john</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552341</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10405650</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn836869102 |
illustrated | Not Illustrated |
indexdate | 2024-10-25T16:21:21Z |
institution | BVB |
isbn | 9781107362284 1107362288 |
language | English |
oclc_num | 836869102 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (ix, 267 pages) |
psigel | ZDB-4-EBA |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Johnson, F. E. A. (Francis Edward Anthony), 1946- https://id.oclc.org/worldcat/entity/E39PCjC73QhvK7KT44k49DMxwy http://id.loc.gov/authorities/names/n2003007164 Stable modules and the D(2)-problem / F.E.A. Johnson. Cambridge, UK ; New York : Cambridge University Press, 2003. 1 online resource (ix, 267 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 301 Includes bibliographical references (pages 262-265) and index. 1. Orders in semisimple algebras -- 2. Representation of finite groups -- 3. Stable modules and cancellation theorems -- 4. Relative homological algebra -- 5. The derived category of a finite group -- 6. k-invariants -- 7. Groups of periodic cohomology -- 8. Algebraic homotopy theory -- 9. Stability theorems -- 10. The D(2)-problem -- 11. Poincare -- 3 complexes. Print version record. This 2003 book is concerned with two fundamental problems in low-dimensional topology. Firstly, the D(2)-problem, which asks whether cohomology detects dimension, and secondly the realization problem, which asks whether every algebraic 2-complex is geometrically realizable. The author shows that for a large class of fundamental groups these problems are equivalent. Moreover, in the case of finite groups, Professor Johnson develops general methods and gives complete solutions in a number of cases. In particular, he presents a complete treatment of Yoneda extension theory from the viewpoint of derived objects and proves that for groups of period four, two-dimensional homotopy types are parametrized by isomorphism classes of projective modules. This book is carefully written with an eye on the wider context and as such is suitable for graduate students wanting to learn low-dimensional homotopy theory as well as established researchers in the field. Low-dimensional topology. http://id.loc.gov/authorities/subjects/sh85078631 Homotopy theory. http://id.loc.gov/authorities/subjects/sh85061803 Group algebras. http://id.loc.gov/authorities/subjects/sh85057472 Topologie de basse dimension. Homotopie. Algèbres de groupes. MATHEMATICS Topology. bisacsh Group algebras fast Homotopy theory fast Low-dimensional topology fast Gruppenring gnd http://d-nb.info/gnd/4158469-7 Homotopietheorie gnd http://d-nb.info/gnd/4128142-1 Niederdimensionale Topologie gnd http://d-nb.info/gnd/4280826-1 Grupos finitos. larpcal Álgebra. larpcal has work: Stable modules and the D(2)-problem (Text) https://id.oclc.org/worldcat/entity/E39PCFFJTyCV9Gcx9RvXGjYbgq https://id.oclc.org/worldcat/ontology/hasWork Print version: Johnson, F.E.A. (Francis Edward Anthony), 1946- Stable modules and the D(2)-problem. Cambridge, UK ; New York : Cambridge University Press, 2003 0521537495 (DLC) 2003046133 (OCoLC)51886466 London Mathematical Society lecture note series ; 301. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552341 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552341 Volltext |
spellingShingle | Johnson, F. E. A. (Francis Edward Anthony), 1946- Stable modules and the D(2)-problem / London Mathematical Society lecture note series ; 1. Orders in semisimple algebras -- 2. Representation of finite groups -- 3. Stable modules and cancellation theorems -- 4. Relative homological algebra -- 5. The derived category of a finite group -- 6. k-invariants -- 7. Groups of periodic cohomology -- 8. Algebraic homotopy theory -- 9. Stability theorems -- 10. The D(2)-problem -- 11. Poincare -- 3 complexes. Low-dimensional topology. http://id.loc.gov/authorities/subjects/sh85078631 Homotopy theory. http://id.loc.gov/authorities/subjects/sh85061803 Group algebras. http://id.loc.gov/authorities/subjects/sh85057472 Topologie de basse dimension. Homotopie. Algèbres de groupes. MATHEMATICS Topology. bisacsh Group algebras fast Homotopy theory fast Low-dimensional topology fast Gruppenring gnd http://d-nb.info/gnd/4158469-7 Homotopietheorie gnd http://d-nb.info/gnd/4128142-1 Niederdimensionale Topologie gnd http://d-nb.info/gnd/4280826-1 Grupos finitos. larpcal Álgebra. larpcal |
subject_GND | http://id.loc.gov/authorities/subjects/sh85078631 http://id.loc.gov/authorities/subjects/sh85061803 http://id.loc.gov/authorities/subjects/sh85057472 http://d-nb.info/gnd/4158469-7 http://d-nb.info/gnd/4128142-1 http://d-nb.info/gnd/4280826-1 |
title | Stable modules and the D(2)-problem / |
title_auth | Stable modules and the D(2)-problem / |
title_exact_search | Stable modules and the D(2)-problem / |
title_full | Stable modules and the D(2)-problem / F.E.A. Johnson. |
title_fullStr | Stable modules and the D(2)-problem / F.E.A. Johnson. |
title_full_unstemmed | Stable modules and the D(2)-problem / F.E.A. Johnson. |
title_short | Stable modules and the D(2)-problem / |
title_sort | stable modules and the d 2 problem |
topic | Low-dimensional topology. http://id.loc.gov/authorities/subjects/sh85078631 Homotopy theory. http://id.loc.gov/authorities/subjects/sh85061803 Group algebras. http://id.loc.gov/authorities/subjects/sh85057472 Topologie de basse dimension. Homotopie. Algèbres de groupes. MATHEMATICS Topology. bisacsh Group algebras fast Homotopy theory fast Low-dimensional topology fast Gruppenring gnd http://d-nb.info/gnd/4158469-7 Homotopietheorie gnd http://d-nb.info/gnd/4128142-1 Niederdimensionale Topologie gnd http://d-nb.info/gnd/4280826-1 Grupos finitos. larpcal Álgebra. larpcal |
topic_facet | Low-dimensional topology. Homotopy theory. Group algebras. Topologie de basse dimension. Homotopie. Algèbres de groupes. MATHEMATICS Topology. Group algebras Homotopy theory Low-dimensional topology Gruppenring Homotopietheorie Niederdimensionale Topologie Grupos finitos. Álgebra. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552341 |
work_keys_str_mv | AT johnsonfea stablemodulesandthed2problem |