Advanced device modeling and simulation /:
Microelectronics is one of the most rapidly changing scientific fields today. The tendency to shrink devices as far as possible results in extremely small devices which can no longer be described using simple analytical models. This book covers various aspects of advanced device modeling and simulat...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London :
World Scientific,
©2003.
|
Schriftenreihe: | Selected topics in electronics and systems ;
v. 31. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Microelectronics is one of the most rapidly changing scientific fields today. The tendency to shrink devices as far as possible results in extremely small devices which can no longer be described using simple analytical models. This book covers various aspects of advanced device modeling and simulation. As such it presents extensive reviews and original research by outstanding scientists. The bulk of the book is concerned with the theory of classical and quantum-mechanical transport modeling, based on macroscopic, spherical harmonics and Monte Carlo methods. |
Beschreibung: | 1 online resource (1 volume). |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9789812705280 9812705287 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn835082858 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130403s2003 njua ob 000 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCO |d E7B |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d VTS |d AU@ |d OCLCQ |d JBG |d STF |d M8D |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL |d OCLCQ | ||
016 | 7 | |a 000040025393 |2 AU | |
019 | |a 1058065714 | ||
020 | |a 9789812705280 |q (electronic bk.) | ||
020 | |a 9812705287 |q (electronic bk.) | ||
020 | |z 9812386076 | ||
020 | |z 9789812386076 | ||
035 | |a (OCoLC)835082858 |z (OCoLC)1058065714 | ||
050 | 4 | |a TK7874 | |
072 | 7 | |a TEC |x 008010 |2 bisacsh | |
072 | 7 | |a TEC |x 008020 |2 bisacsh | |
082 | 7 | |a 621.3815 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Advanced device modeling and simulation / |c editor T. Grasser. |
260 | |a New Jersey ; |a London : |b World Scientific, |c ©2003. | ||
300 | |a 1 online resource (1 volume). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Selected topics in electronics and systems ; |v v. 31 | |
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a INTRODUCTION; CONTENTS; MODELING ELECTRON TRANSPORT IN MOSFET DEVICES:EVOLUTION AND STATE OF THE ART; 1. Introduction; 2. A Brief History of Conventional Device Modeling; 3. Quantum Mechanical Modeling; 3.1. Models Based on Quantum Corrections: Macroscopic Models; 3.2. One-Dimensional and Quasi-Two-Dimensional Quantum Modeling; 3.3. Full Quantum Modeling: Microscopic Models; 4. Conclusions; Acknowledgments; References; PARTICLE MODELS FOR DEVICE SIMULATION; 1. Introduction; 2. The Numerical Monte Carlo Method; 2.1. General Scheme; 2.2. Monte Carlo Integration; 2.3. Integral Equations. | |
505 | 8 | |a 3. The Transient Boltzmann Equation3.1. Transient MC Algorithms; 3.2. Integral Form of the Boltzmann Equation; 3.3. The Ensemble MC Method; 3.4. The Weighted EMC Method; 3.5. The Backward MC Method; 4. The Stationary Boltzmann Equation; 4.1. Stationary MC Algorithms; 4.2. Integral Form of the Stationary Boltzmann Equation; 4.3. The Single-Particle MC Method; 4.3.1. The Synchronous Ensemble Method; 4.3.2. The Time Averaging Method; 4.3.3. MC Evaluation of the Iteration Series; 4.3.4. Normalization of the Distribution Function; 4.4. The Weighted Single-Particle MC Method. | |
505 | 8 | |a 4.4.1. Modified Probabilities4.4.2. Evolution of the Weights; 4.4.3. Results and Discussions; 4.5. The Single-Particle Backward MC Algorithm; 5. Small-Signal MC Algorithms; 6. The Stationary Wigner-Boltzmann Equation; 6.1. The Particle Model; 6.2. Stationary MC Method; 7. Conclusions; Acknowledgment; References; EFFECTIVE POTENTIALS AND QUANTUM FLUID MODELS:A THERMODYNAMIC APPROACH; 1. Introduction; Effective Potential Approaches; Quantum Fluid Models; 2. Quantum Kinetic Equations; 3. Moment Closures and Effective Potentials; 3.1. Bohm Potentials; 3.2. Thermodynamic Approximations. | |
505 | 8 | |a Effective Potentials:Quantum Hydrodynamics:; 4. Thermodynamic Equilibrium; 5. Approximations to Thermal Equilibrium; 5.1. Semiclassical Approximations; 5.2. Born Approximation; 6. Effective Potentials and Particle Discretizations; 7. Quantum Hydrodynamics; 7.1. The Semiclassical Closure; 7.2. Smoothed Potential QHD Based on the Born Approximation; 8. Applications; 8.1. Effective Potentials in Short Channel MOSFETS; 8.2. Smooth QHD Simulation of the Resonant Tunneling Diode; 9. Conclusions; References. | |
505 | 8 | |a SELF-CONSISTENT MODELING OF MOSFET QUANTUM EFFECTS BY SOLVING THE SCHRODINGER AND BOLTZMANN SYSTEM OF EQUATIONS BOLTZMANN SYSTEM OF EQUATIONS1. Introduction; 2. Methodology; 2.1. Mathematical Model; 2.2. General Approach; 2.3. Schrödinger Equation; 2.4. Poisson, Semiclassical Boltzmann and Hole Continuity Equations; 2.5. Quantum Boltzmann Equation and Effective Quantum Potential; 3. Simulation Results; 4. Conclusions; Acknowledgment; References; HYDRODYNAMIC MODELING OF RF NOISE FOR SILICON-BASED DEVICES; 1. Introduction; 2. Fluctuations in the Steady-State; 3. Hydrodynamic Noise Modeling. | |
520 | |a Microelectronics is one of the most rapidly changing scientific fields today. The tendency to shrink devices as far as possible results in extremely small devices which can no longer be described using simple analytical models. This book covers various aspects of advanced device modeling and simulation. As such it presents extensive reviews and original research by outstanding scientists. The bulk of the book is concerned with the theory of classical and quantum-mechanical transport modeling, based on macroscopic, spherical harmonics and Monte Carlo methods. | ||
546 | |a English. | ||
650 | 0 | |a Microelectronics. |0 http://id.loc.gov/authorities/subjects/sh85084822 | |
650 | 0 | |a Semiconductors. |0 http://id.loc.gov/authorities/subjects/sh85119903 | |
650 | 1 | |a Microelectronics |x Simulation methods. | |
650 | 2 | |a Miniaturization |0 https://id.nlm.nih.gov/mesh/D008904 | |
650 | 2 | |a Semiconductors |0 https://id.nlm.nih.gov/mesh/D012666 | |
650 | 6 | |a Microélectronique. | |
650 | 6 | |a Semi-conducteurs. | |
650 | 7 | |a microelectronics. |2 aat | |
650 | 7 | |a semiconductor. |2 aat | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Electronics |x Circuits |x General. |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Electronics |x Circuits |x Integrated. |2 bisacsh | |
650 | 7 | |a Microelectronics |2 fast | |
650 | 7 | |a Semiconductors |2 fast | |
700 | 1 | |a Grasser, Tibor. |0 http://id.loc.gov/authorities/names/n2003078844 | |
776 | 0 | 8 | |i Print version: |t Advanced device modeling and simulation. |d New Jersey ; London : World Scientific, ©2003 |z 9812386076 |w (OCoLC)59276446 |
830 | 0 | |a Selected topics in electronics and systems ; |v v. 31. |0 http://id.loc.gov/authorities/names/no95054495 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=514727 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10713418 | ||
938 | |a EBSCOhost |b EBSC |n 514727 | ||
938 | |a YBP Library Services |b YANK |n 9966045 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn835082858 |
---|---|
_version_ | 1816882227641843712 |
adam_text | |
any_adam_object | |
author2 | Grasser, Tibor |
author2_role | |
author2_variant | t g tg |
author_GND | http://id.loc.gov/authorities/names/n2003078844 |
author_facet | Grasser, Tibor |
author_sort | Grasser, Tibor |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TK7874 |
callnumber-raw | TK7874 |
callnumber-search | TK7874 |
callnumber-sort | TK 47874 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
collection | ZDB-4-EBA |
contents | INTRODUCTION; CONTENTS; MODELING ELECTRON TRANSPORT IN MOSFET DEVICES:EVOLUTION AND STATE OF THE ART; 1. Introduction; 2. A Brief History of Conventional Device Modeling; 3. Quantum Mechanical Modeling; 3.1. Models Based on Quantum Corrections: Macroscopic Models; 3.2. One-Dimensional and Quasi-Two-Dimensional Quantum Modeling; 3.3. Full Quantum Modeling: Microscopic Models; 4. Conclusions; Acknowledgments; References; PARTICLE MODELS FOR DEVICE SIMULATION; 1. Introduction; 2. The Numerical Monte Carlo Method; 2.1. General Scheme; 2.2. Monte Carlo Integration; 2.3. Integral Equations. 3. The Transient Boltzmann Equation3.1. Transient MC Algorithms; 3.2. Integral Form of the Boltzmann Equation; 3.3. The Ensemble MC Method; 3.4. The Weighted EMC Method; 3.5. The Backward MC Method; 4. The Stationary Boltzmann Equation; 4.1. Stationary MC Algorithms; 4.2. Integral Form of the Stationary Boltzmann Equation; 4.3. The Single-Particle MC Method; 4.3.1. The Synchronous Ensemble Method; 4.3.2. The Time Averaging Method; 4.3.3. MC Evaluation of the Iteration Series; 4.3.4. Normalization of the Distribution Function; 4.4. The Weighted Single-Particle MC Method. 4.4.1. Modified Probabilities4.4.2. Evolution of the Weights; 4.4.3. Results and Discussions; 4.5. The Single-Particle Backward MC Algorithm; 5. Small-Signal MC Algorithms; 6. The Stationary Wigner-Boltzmann Equation; 6.1. The Particle Model; 6.2. Stationary MC Method; 7. Conclusions; Acknowledgment; References; EFFECTIVE POTENTIALS AND QUANTUM FLUID MODELS:A THERMODYNAMIC APPROACH; 1. Introduction; Effective Potential Approaches; Quantum Fluid Models; 2. Quantum Kinetic Equations; 3. Moment Closures and Effective Potentials; 3.1. Bohm Potentials; 3.2. Thermodynamic Approximations. Effective Potentials:Quantum Hydrodynamics:; 4. Thermodynamic Equilibrium; 5. Approximations to Thermal Equilibrium; 5.1. Semiclassical Approximations; 5.2. Born Approximation; 6. Effective Potentials and Particle Discretizations; 7. Quantum Hydrodynamics; 7.1. The Semiclassical Closure; 7.2. Smoothed Potential QHD Based on the Born Approximation; 8. Applications; 8.1. Effective Potentials in Short Channel MOSFETS; 8.2. Smooth QHD Simulation of the Resonant Tunneling Diode; 9. Conclusions; References. SELF-CONSISTENT MODELING OF MOSFET QUANTUM EFFECTS BY SOLVING THE SCHRODINGER AND BOLTZMANN SYSTEM OF EQUATIONS BOLTZMANN SYSTEM OF EQUATIONS1. Introduction; 2. Methodology; 2.1. Mathematical Model; 2.2. General Approach; 2.3. Schrödinger Equation; 2.4. Poisson, Semiclassical Boltzmann and Hole Continuity Equations; 2.5. Quantum Boltzmann Equation and Effective Quantum Potential; 3. Simulation Results; 4. Conclusions; Acknowledgment; References; HYDRODYNAMIC MODELING OF RF NOISE FOR SILICON-BASED DEVICES; 1. Introduction; 2. Fluctuations in the Steady-State; 3. Hydrodynamic Noise Modeling. |
ctrlnum | (OCoLC)835082858 |
dewey-full | 621.3815 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3815 |
dewey-search | 621.3815 |
dewey-sort | 3621.3815 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06153cam a2200697 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn835082858</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130403s2003 njua ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCO</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">000040025393</subfield><subfield code="2">AU</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1058065714</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812705280</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812705287</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812386076</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812386076</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)835082858</subfield><subfield code="z">(OCoLC)1058065714</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TK7874</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">008010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">008020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">621.3815</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Advanced device modeling and simulation /</subfield><subfield code="c">editor T. Grasser.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New Jersey ;</subfield><subfield code="a">London :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2003.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 volume).</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Selected topics in electronics and systems ;</subfield><subfield code="v">v. 31</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">INTRODUCTION; CONTENTS; MODELING ELECTRON TRANSPORT IN MOSFET DEVICES:EVOLUTION AND STATE OF THE ART; 1. Introduction; 2. A Brief History of Conventional Device Modeling; 3. Quantum Mechanical Modeling; 3.1. Models Based on Quantum Corrections: Macroscopic Models; 3.2. One-Dimensional and Quasi-Two-Dimensional Quantum Modeling; 3.3. Full Quantum Modeling: Microscopic Models; 4. Conclusions; Acknowledgments; References; PARTICLE MODELS FOR DEVICE SIMULATION; 1. Introduction; 2. The Numerical Monte Carlo Method; 2.1. General Scheme; 2.2. Monte Carlo Integration; 2.3. Integral Equations.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3. The Transient Boltzmann Equation3.1. Transient MC Algorithms; 3.2. Integral Form of the Boltzmann Equation; 3.3. The Ensemble MC Method; 3.4. The Weighted EMC Method; 3.5. The Backward MC Method; 4. The Stationary Boltzmann Equation; 4.1. Stationary MC Algorithms; 4.2. Integral Form of the Stationary Boltzmann Equation; 4.3. The Single-Particle MC Method; 4.3.1. The Synchronous Ensemble Method; 4.3.2. The Time Averaging Method; 4.3.3. MC Evaluation of the Iteration Series; 4.3.4. Normalization of the Distribution Function; 4.4. The Weighted Single-Particle MC Method.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.4.1. Modified Probabilities4.4.2. Evolution of the Weights; 4.4.3. Results and Discussions; 4.5. The Single-Particle Backward MC Algorithm; 5. Small-Signal MC Algorithms; 6. The Stationary Wigner-Boltzmann Equation; 6.1. The Particle Model; 6.2. Stationary MC Method; 7. Conclusions; Acknowledgment; References; EFFECTIVE POTENTIALS AND QUANTUM FLUID MODELS:A THERMODYNAMIC APPROACH; 1. Introduction; Effective Potential Approaches; Quantum Fluid Models; 2. Quantum Kinetic Equations; 3. Moment Closures and Effective Potentials; 3.1. Bohm Potentials; 3.2. Thermodynamic Approximations.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Effective Potentials:Quantum Hydrodynamics:; 4. Thermodynamic Equilibrium; 5. Approximations to Thermal Equilibrium; 5.1. Semiclassical Approximations; 5.2. Born Approximation; 6. Effective Potentials and Particle Discretizations; 7. Quantum Hydrodynamics; 7.1. The Semiclassical Closure; 7.2. Smoothed Potential QHD Based on the Born Approximation; 8. Applications; 8.1. Effective Potentials in Short Channel MOSFETS; 8.2. Smooth QHD Simulation of the Resonant Tunneling Diode; 9. Conclusions; References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">SELF-CONSISTENT MODELING OF MOSFET QUANTUM EFFECTS BY SOLVING THE SCHRODINGER AND BOLTZMANN SYSTEM OF EQUATIONS BOLTZMANN SYSTEM OF EQUATIONS1. Introduction; 2. Methodology; 2.1. Mathematical Model; 2.2. General Approach; 2.3. Schrödinger Equation; 2.4. Poisson, Semiclassical Boltzmann and Hole Continuity Equations; 2.5. Quantum Boltzmann Equation and Effective Quantum Potential; 3. Simulation Results; 4. Conclusions; Acknowledgment; References; HYDRODYNAMIC MODELING OF RF NOISE FOR SILICON-BASED DEVICES; 1. Introduction; 2. Fluctuations in the Steady-State; 3. Hydrodynamic Noise Modeling.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Microelectronics is one of the most rapidly changing scientific fields today. The tendency to shrink devices as far as possible results in extremely small devices which can no longer be described using simple analytical models. This book covers various aspects of advanced device modeling and simulation. As such it presents extensive reviews and original research by outstanding scientists. The bulk of the book is concerned with the theory of classical and quantum-mechanical transport modeling, based on macroscopic, spherical harmonics and Monte Carlo methods.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Microelectronics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85084822</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Semiconductors.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85119903</subfield></datafield><datafield tag="650" ind1=" " ind2="1"><subfield code="a">Microelectronics</subfield><subfield code="x">Simulation methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Miniaturization</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D008904</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Semiconductors</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D012666</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Microélectronique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Semi-conducteurs.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">microelectronics.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">semiconductor.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Electronics</subfield><subfield code="x">Circuits</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Electronics</subfield><subfield code="x">Circuits</subfield><subfield code="x">Integrated.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Microelectronics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Semiconductors</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grasser, Tibor.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2003078844</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Advanced device modeling and simulation.</subfield><subfield code="d">New Jersey ; London : World Scientific, ©2003</subfield><subfield code="z">9812386076</subfield><subfield code="w">(OCoLC)59276446</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Selected topics in electronics and systems ;</subfield><subfield code="v">v. 31.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no95054495</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=514727</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10713418</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">514727</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9966045</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn835082858 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:16Z |
institution | BVB |
isbn | 9789812705280 9812705287 |
language | English |
oclc_num | 835082858 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (1 volume). |
psigel | ZDB-4-EBA |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | World Scientific, |
record_format | marc |
series | Selected topics in electronics and systems ; |
series2 | Selected topics in electronics and systems ; |
spelling | Advanced device modeling and simulation / editor T. Grasser. New Jersey ; London : World Scientific, ©2003. 1 online resource (1 volume). text txt rdacontent computer c rdamedia online resource cr rdacarrier Selected topics in electronics and systems ; v. 31 Includes bibliographical references. Print version record. INTRODUCTION; CONTENTS; MODELING ELECTRON TRANSPORT IN MOSFET DEVICES:EVOLUTION AND STATE OF THE ART; 1. Introduction; 2. A Brief History of Conventional Device Modeling; 3. Quantum Mechanical Modeling; 3.1. Models Based on Quantum Corrections: Macroscopic Models; 3.2. One-Dimensional and Quasi-Two-Dimensional Quantum Modeling; 3.3. Full Quantum Modeling: Microscopic Models; 4. Conclusions; Acknowledgments; References; PARTICLE MODELS FOR DEVICE SIMULATION; 1. Introduction; 2. The Numerical Monte Carlo Method; 2.1. General Scheme; 2.2. Monte Carlo Integration; 2.3. Integral Equations. 3. The Transient Boltzmann Equation3.1. Transient MC Algorithms; 3.2. Integral Form of the Boltzmann Equation; 3.3. The Ensemble MC Method; 3.4. The Weighted EMC Method; 3.5. The Backward MC Method; 4. The Stationary Boltzmann Equation; 4.1. Stationary MC Algorithms; 4.2. Integral Form of the Stationary Boltzmann Equation; 4.3. The Single-Particle MC Method; 4.3.1. The Synchronous Ensemble Method; 4.3.2. The Time Averaging Method; 4.3.3. MC Evaluation of the Iteration Series; 4.3.4. Normalization of the Distribution Function; 4.4. The Weighted Single-Particle MC Method. 4.4.1. Modified Probabilities4.4.2. Evolution of the Weights; 4.4.3. Results and Discussions; 4.5. The Single-Particle Backward MC Algorithm; 5. Small-Signal MC Algorithms; 6. The Stationary Wigner-Boltzmann Equation; 6.1. The Particle Model; 6.2. Stationary MC Method; 7. Conclusions; Acknowledgment; References; EFFECTIVE POTENTIALS AND QUANTUM FLUID MODELS:A THERMODYNAMIC APPROACH; 1. Introduction; Effective Potential Approaches; Quantum Fluid Models; 2. Quantum Kinetic Equations; 3. Moment Closures and Effective Potentials; 3.1. Bohm Potentials; 3.2. Thermodynamic Approximations. Effective Potentials:Quantum Hydrodynamics:; 4. Thermodynamic Equilibrium; 5. Approximations to Thermal Equilibrium; 5.1. Semiclassical Approximations; 5.2. Born Approximation; 6. Effective Potentials and Particle Discretizations; 7. Quantum Hydrodynamics; 7.1. The Semiclassical Closure; 7.2. Smoothed Potential QHD Based on the Born Approximation; 8. Applications; 8.1. Effective Potentials in Short Channel MOSFETS; 8.2. Smooth QHD Simulation of the Resonant Tunneling Diode; 9. Conclusions; References. SELF-CONSISTENT MODELING OF MOSFET QUANTUM EFFECTS BY SOLVING THE SCHRODINGER AND BOLTZMANN SYSTEM OF EQUATIONS BOLTZMANN SYSTEM OF EQUATIONS1. Introduction; 2. Methodology; 2.1. Mathematical Model; 2.2. General Approach; 2.3. Schrödinger Equation; 2.4. Poisson, Semiclassical Boltzmann and Hole Continuity Equations; 2.5. Quantum Boltzmann Equation and Effective Quantum Potential; 3. Simulation Results; 4. Conclusions; Acknowledgment; References; HYDRODYNAMIC MODELING OF RF NOISE FOR SILICON-BASED DEVICES; 1. Introduction; 2. Fluctuations in the Steady-State; 3. Hydrodynamic Noise Modeling. Microelectronics is one of the most rapidly changing scientific fields today. The tendency to shrink devices as far as possible results in extremely small devices which can no longer be described using simple analytical models. This book covers various aspects of advanced device modeling and simulation. As such it presents extensive reviews and original research by outstanding scientists. The bulk of the book is concerned with the theory of classical and quantum-mechanical transport modeling, based on macroscopic, spherical harmonics and Monte Carlo methods. English. Microelectronics. http://id.loc.gov/authorities/subjects/sh85084822 Semiconductors. http://id.loc.gov/authorities/subjects/sh85119903 Microelectronics Simulation methods. Miniaturization https://id.nlm.nih.gov/mesh/D008904 Semiconductors https://id.nlm.nih.gov/mesh/D012666 Microélectronique. Semi-conducteurs. microelectronics. aat semiconductor. aat TECHNOLOGY & ENGINEERING Electronics Circuits General. bisacsh TECHNOLOGY & ENGINEERING Electronics Circuits Integrated. bisacsh Microelectronics fast Semiconductors fast Grasser, Tibor. http://id.loc.gov/authorities/names/n2003078844 Print version: Advanced device modeling and simulation. New Jersey ; London : World Scientific, ©2003 9812386076 (OCoLC)59276446 Selected topics in electronics and systems ; v. 31. http://id.loc.gov/authorities/names/no95054495 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=514727 Volltext |
spellingShingle | Advanced device modeling and simulation / Selected topics in electronics and systems ; INTRODUCTION; CONTENTS; MODELING ELECTRON TRANSPORT IN MOSFET DEVICES:EVOLUTION AND STATE OF THE ART; 1. Introduction; 2. A Brief History of Conventional Device Modeling; 3. Quantum Mechanical Modeling; 3.1. Models Based on Quantum Corrections: Macroscopic Models; 3.2. One-Dimensional and Quasi-Two-Dimensional Quantum Modeling; 3.3. Full Quantum Modeling: Microscopic Models; 4. Conclusions; Acknowledgments; References; PARTICLE MODELS FOR DEVICE SIMULATION; 1. Introduction; 2. The Numerical Monte Carlo Method; 2.1. General Scheme; 2.2. Monte Carlo Integration; 2.3. Integral Equations. 3. The Transient Boltzmann Equation3.1. Transient MC Algorithms; 3.2. Integral Form of the Boltzmann Equation; 3.3. The Ensemble MC Method; 3.4. The Weighted EMC Method; 3.5. The Backward MC Method; 4. The Stationary Boltzmann Equation; 4.1. Stationary MC Algorithms; 4.2. Integral Form of the Stationary Boltzmann Equation; 4.3. The Single-Particle MC Method; 4.3.1. The Synchronous Ensemble Method; 4.3.2. The Time Averaging Method; 4.3.3. MC Evaluation of the Iteration Series; 4.3.4. Normalization of the Distribution Function; 4.4. The Weighted Single-Particle MC Method. 4.4.1. Modified Probabilities4.4.2. Evolution of the Weights; 4.4.3. Results and Discussions; 4.5. The Single-Particle Backward MC Algorithm; 5. Small-Signal MC Algorithms; 6. The Stationary Wigner-Boltzmann Equation; 6.1. The Particle Model; 6.2. Stationary MC Method; 7. Conclusions; Acknowledgment; References; EFFECTIVE POTENTIALS AND QUANTUM FLUID MODELS:A THERMODYNAMIC APPROACH; 1. Introduction; Effective Potential Approaches; Quantum Fluid Models; 2. Quantum Kinetic Equations; 3. Moment Closures and Effective Potentials; 3.1. Bohm Potentials; 3.2. Thermodynamic Approximations. Effective Potentials:Quantum Hydrodynamics:; 4. Thermodynamic Equilibrium; 5. Approximations to Thermal Equilibrium; 5.1. Semiclassical Approximations; 5.2. Born Approximation; 6. Effective Potentials and Particle Discretizations; 7. Quantum Hydrodynamics; 7.1. The Semiclassical Closure; 7.2. Smoothed Potential QHD Based on the Born Approximation; 8. Applications; 8.1. Effective Potentials in Short Channel MOSFETS; 8.2. Smooth QHD Simulation of the Resonant Tunneling Diode; 9. Conclusions; References. SELF-CONSISTENT MODELING OF MOSFET QUANTUM EFFECTS BY SOLVING THE SCHRODINGER AND BOLTZMANN SYSTEM OF EQUATIONS BOLTZMANN SYSTEM OF EQUATIONS1. Introduction; 2. Methodology; 2.1. Mathematical Model; 2.2. General Approach; 2.3. Schrödinger Equation; 2.4. Poisson, Semiclassical Boltzmann and Hole Continuity Equations; 2.5. Quantum Boltzmann Equation and Effective Quantum Potential; 3. Simulation Results; 4. Conclusions; Acknowledgment; References; HYDRODYNAMIC MODELING OF RF NOISE FOR SILICON-BASED DEVICES; 1. Introduction; 2. Fluctuations in the Steady-State; 3. Hydrodynamic Noise Modeling. Microelectronics. http://id.loc.gov/authorities/subjects/sh85084822 Semiconductors. http://id.loc.gov/authorities/subjects/sh85119903 Microelectronics Simulation methods. Miniaturization https://id.nlm.nih.gov/mesh/D008904 Semiconductors https://id.nlm.nih.gov/mesh/D012666 Microélectronique. Semi-conducteurs. microelectronics. aat semiconductor. aat TECHNOLOGY & ENGINEERING Electronics Circuits General. bisacsh TECHNOLOGY & ENGINEERING Electronics Circuits Integrated. bisacsh Microelectronics fast Semiconductors fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85084822 http://id.loc.gov/authorities/subjects/sh85119903 https://id.nlm.nih.gov/mesh/D008904 https://id.nlm.nih.gov/mesh/D012666 |
title | Advanced device modeling and simulation / |
title_auth | Advanced device modeling and simulation / |
title_exact_search | Advanced device modeling and simulation / |
title_full | Advanced device modeling and simulation / editor T. Grasser. |
title_fullStr | Advanced device modeling and simulation / editor T. Grasser. |
title_full_unstemmed | Advanced device modeling and simulation / editor T. Grasser. |
title_short | Advanced device modeling and simulation / |
title_sort | advanced device modeling and simulation |
topic | Microelectronics. http://id.loc.gov/authorities/subjects/sh85084822 Semiconductors. http://id.loc.gov/authorities/subjects/sh85119903 Microelectronics Simulation methods. Miniaturization https://id.nlm.nih.gov/mesh/D008904 Semiconductors https://id.nlm.nih.gov/mesh/D012666 Microélectronique. Semi-conducteurs. microelectronics. aat semiconductor. aat TECHNOLOGY & ENGINEERING Electronics Circuits General. bisacsh TECHNOLOGY & ENGINEERING Electronics Circuits Integrated. bisacsh Microelectronics fast Semiconductors fast |
topic_facet | Microelectronics. Semiconductors. Microelectronics Simulation methods. Miniaturization Semiconductors Microélectronique. Semi-conducteurs. microelectronics. semiconductor. TECHNOLOGY & ENGINEERING Electronics Circuits General. TECHNOLOGY & ENGINEERING Electronics Circuits Integrated. Microelectronics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=514727 |
work_keys_str_mv | AT grassertibor advanceddevicemodelingandsimulation |