Potential theory in the complex plane /:
Potential theory is the broad area of mathematical analysis encompassing such topics as harmonic and subharmonic functions, the Dirichlet problem, harmonic measure, Green's functions, potentials and capacity. This is an introduction to the subject suitable for beginning graduate students, conce...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [England] ; New York :
Press Syndicate of the University of Cambridge,
1995.
|
Schriftenreihe: | London Mathematical Society student texts ;
28. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Potential theory is the broad area of mathematical analysis encompassing such topics as harmonic and subharmonic functions, the Dirichlet problem, harmonic measure, Green's functions, potentials and capacity. This is an introduction to the subject suitable for beginning graduate students, concentrating on the important case of two dimensions. This permits a simpler treatment than other books, yet is still sufficient for a wide range of applications to complex analysis; these include Picard's theorem, the Phragmén-Lindelöf principle, the Koebe one-quarter mapping theorem and a sharp quantitative form of Runge's theorem. In addition there is a chapter on connections with functional analysis and dynamical systems, which shows how the theory can be applied to other parts of mathematics, and gives a flavour of some recent research. Exercises are provided throughout, enabling the book to be used with advanced courses on complex analysis or potential theory. |
Beschreibung: | 1 online resource (x, 232 pages) |
Bibliographie: | Includes bibliographical references (pages 219-223) and index. |
ISBN: | 9781107362055 1107362059 9781107366961 1107366968 9780511623776 0511623771 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn831670331 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130325s1995 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d CAMBR |d IDEBK |d OL$ |d FHM |d OCLCQ |d DEBSZ |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d HEBIS |d OCLCO |d UAB |d OCLCQ |d VTS |d STF |d M8D |d OCLCQ |d REC |d INARC |d OCLCQ |d OCLCO |d OCL |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 708565377 |a 852393944 | ||
020 | |a 9781107362055 |q (electronic bk.) | ||
020 | |a 1107362059 |q (electronic bk.) | ||
020 | |a 9781107366961 |q (electronic bk.) | ||
020 | |a 1107366968 |q (electronic bk.) | ||
020 | |a 9780511623776 |q (electronic bk.) | ||
020 | |a 0511623771 |q (electronic bk.) | ||
020 | |z 0521461200 | ||
020 | |z 9780521461207 | ||
020 | |z 0521466547 | ||
020 | |z 9780521466547 | ||
035 | |a (OCoLC)831670331 |z (OCoLC)708565377 |z (OCoLC)852393944 | ||
050 | 4 | |a QA404.7 |b .R36 1995eb | |
072 | 7 | |a MAT |x 040000 |2 bisacsh | |
082 | 7 | |a 515.9 |2 22 | |
084 | |a 31.42 |2 bcl | ||
049 | |a MAIN | ||
100 | 1 | |a Ransford, Thomas. | |
245 | 1 | 0 | |a Potential theory in the complex plane / |c Thomas Ransford. |
260 | |a Cambridge [England] ; |a New York : |b Press Syndicate of the University of Cambridge, |c 1995. | ||
300 | |a 1 online resource (x, 232 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society student texts ; |v 28 | |
504 | |a Includes bibliographical references (pages 219-223) and index. | ||
505 | 0 | |a Harmonic functions -- Subharmonic functions -- Potential theory -- The Dirichlet problem -- Capacity -- Applications. | |
588 | 0 | |a Print version record. | |
520 | |a Potential theory is the broad area of mathematical analysis encompassing such topics as harmonic and subharmonic functions, the Dirichlet problem, harmonic measure, Green's functions, potentials and capacity. This is an introduction to the subject suitable for beginning graduate students, concentrating on the important case of two dimensions. This permits a simpler treatment than other books, yet is still sufficient for a wide range of applications to complex analysis; these include Picard's theorem, the Phragmén-Lindelöf principle, the Koebe one-quarter mapping theorem and a sharp quantitative form of Runge's theorem. In addition there is a chapter on connections with functional analysis and dynamical systems, which shows how the theory can be applied to other parts of mathematics, and gives a flavour of some recent research. Exercises are provided throughout, enabling the book to be used with advanced courses on complex analysis or potential theory. | ||
650 | 0 | |a Potential theory (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85105671 | |
650 | 0 | |a Functions of complex variables. |0 http://id.loc.gov/authorities/subjects/sh85052356 | |
650 | 0 | |a Potential theory (Physics) |0 http://id.loc.gov/authorities/subjects/sh89005116 | |
650 | 6 | |a Théorie du potentiel. | |
650 | 6 | |a Fonctions d'une variable complexe. | |
650 | 7 | |a MATHEMATICS |x Complex Analysis. |2 bisacsh | |
650 | 7 | |a Potential theory (Physics) |2 fast | |
650 | 7 | |a Functions of complex variables |2 fast | |
650 | 7 | |a Potential theory (Mathematics) |2 fast | |
650 | 7 | |a Potenzialtheorie |2 gnd |0 http://d-nb.info/gnd/4046939-6 | |
650 | 1 | 7 | |a Potentiaaltheorie. |2 gtt |
650 | 7 | |a TEORIA DO POTENCIAL. |2 larpcal | |
650 | 7 | |a Potentiel, Théorie du. |2 ram | |
650 | 7 | |a Fonctions de plusieurs variables complexes. |2 ram | |
776 | 0 | 8 | |i Print version: |a Ransford, Thomas. |t Potential theory in the complex plane. |d Cambridge [England] ; New York : Press Syndicate of the University of Cambridge, 1995 |z 0521461200 |w (DLC) 94038846 |w (OCoLC)31291287 |
830 | 0 | |a London Mathematical Society student texts ; |v 28. |0 http://id.loc.gov/authorities/names/n84727069 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551354 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10444013 | ||
938 | |a EBSCOhost |b EBSC |n 551354 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25154930 | ||
938 | |a Internet Archive |b INAR |n potentialtheoryi0000rans | ||
938 | |a YBP Library Services |b YANK |n 10370216 | ||
938 | |a YBP Library Services |b YANK |n 10374344 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn831670331 |
---|---|
_version_ | 1816882226334269440 |
adam_text | |
any_adam_object | |
author | Ransford, Thomas |
author_facet | Ransford, Thomas |
author_role | |
author_sort | Ransford, Thomas |
author_variant | t r tr |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA404 |
callnumber-raw | QA404.7 .R36 1995eb |
callnumber-search | QA404.7 .R36 1995eb |
callnumber-sort | QA 3404.7 R36 41995EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Harmonic functions -- Subharmonic functions -- Potential theory -- The Dirichlet problem -- Capacity -- Applications. |
ctrlnum | (OCoLC)831670331 |
dewey-full | 515.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9 |
dewey-search | 515.9 |
dewey-sort | 3515.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04421cam a2200745 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn831670331</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130325s1995 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">CAMBR</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OL$</subfield><subfield code="d">FHM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">REC</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">708565377</subfield><subfield code="a">852393944</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107362055</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107362059</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107366961</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107366968</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511623776</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511623771</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521461200</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521461207</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521466547</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521466547</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)831670331</subfield><subfield code="z">(OCoLC)708565377</subfield><subfield code="z">(OCoLC)852393944</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA404.7</subfield><subfield code="b">.R36 1995eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.9</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.42</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ransford, Thomas.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Potential theory in the complex plane /</subfield><subfield code="c">Thomas Ransford.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [England] ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Press Syndicate of the University of Cambridge,</subfield><subfield code="c">1995.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 232 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society student texts ;</subfield><subfield code="v">28</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 219-223) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Harmonic functions -- Subharmonic functions -- Potential theory -- The Dirichlet problem -- Capacity -- Applications.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Potential theory is the broad area of mathematical analysis encompassing such topics as harmonic and subharmonic functions, the Dirichlet problem, harmonic measure, Green's functions, potentials and capacity. This is an introduction to the subject suitable for beginning graduate students, concentrating on the important case of two dimensions. This permits a simpler treatment than other books, yet is still sufficient for a wide range of applications to complex analysis; these include Picard's theorem, the Phragmén-Lindelöf principle, the Koebe one-quarter mapping theorem and a sharp quantitative form of Runge's theorem. In addition there is a chapter on connections with functional analysis and dynamical systems, which shows how the theory can be applied to other parts of mathematics, and gives a flavour of some recent research. Exercises are provided throughout, enabling the book to be used with advanced courses on complex analysis or potential theory.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Potential theory (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85105671</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Functions of complex variables.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052356</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Potential theory (Physics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh89005116</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie du potentiel.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fonctions d'une variable complexe.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Complex Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Potential theory (Physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functions of complex variables</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Potential theory (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Potenzialtheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4046939-6</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Potentiaaltheorie.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TEORIA DO POTENCIAL.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Potentiel, Théorie du.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fonctions de plusieurs variables complexes.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Ransford, Thomas.</subfield><subfield code="t">Potential theory in the complex plane.</subfield><subfield code="d">Cambridge [England] ; New York : Press Syndicate of the University of Cambridge, 1995</subfield><subfield code="z">0521461200</subfield><subfield code="w">(DLC) 94038846</subfield><subfield code="w">(OCoLC)31291287</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society student texts ;</subfield><subfield code="v">28.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84727069</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551354</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10444013</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">551354</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25154930</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">potentialtheoryi0000rans</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10370216</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10374344</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn831670331 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:15Z |
institution | BVB |
isbn | 9781107362055 1107362059 9781107366961 1107366968 9780511623776 0511623771 |
language | English |
oclc_num | 831670331 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 232 pages) |
psigel | ZDB-4-EBA |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Press Syndicate of the University of Cambridge, |
record_format | marc |
series | London Mathematical Society student texts ; |
series2 | London Mathematical Society student texts ; |
spelling | Ransford, Thomas. Potential theory in the complex plane / Thomas Ransford. Cambridge [England] ; New York : Press Syndicate of the University of Cambridge, 1995. 1 online resource (x, 232 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society student texts ; 28 Includes bibliographical references (pages 219-223) and index. Harmonic functions -- Subharmonic functions -- Potential theory -- The Dirichlet problem -- Capacity -- Applications. Print version record. Potential theory is the broad area of mathematical analysis encompassing such topics as harmonic and subharmonic functions, the Dirichlet problem, harmonic measure, Green's functions, potentials and capacity. This is an introduction to the subject suitable for beginning graduate students, concentrating on the important case of two dimensions. This permits a simpler treatment than other books, yet is still sufficient for a wide range of applications to complex analysis; these include Picard's theorem, the Phragmén-Lindelöf principle, the Koebe one-quarter mapping theorem and a sharp quantitative form of Runge's theorem. In addition there is a chapter on connections with functional analysis and dynamical systems, which shows how the theory can be applied to other parts of mathematics, and gives a flavour of some recent research. Exercises are provided throughout, enabling the book to be used with advanced courses on complex analysis or potential theory. Potential theory (Mathematics) http://id.loc.gov/authorities/subjects/sh85105671 Functions of complex variables. http://id.loc.gov/authorities/subjects/sh85052356 Potential theory (Physics) http://id.loc.gov/authorities/subjects/sh89005116 Théorie du potentiel. Fonctions d'une variable complexe. MATHEMATICS Complex Analysis. bisacsh Potential theory (Physics) fast Functions of complex variables fast Potential theory (Mathematics) fast Potenzialtheorie gnd http://d-nb.info/gnd/4046939-6 Potentiaaltheorie. gtt TEORIA DO POTENCIAL. larpcal Potentiel, Théorie du. ram Fonctions de plusieurs variables complexes. ram Print version: Ransford, Thomas. Potential theory in the complex plane. Cambridge [England] ; New York : Press Syndicate of the University of Cambridge, 1995 0521461200 (DLC) 94038846 (OCoLC)31291287 London Mathematical Society student texts ; 28. http://id.loc.gov/authorities/names/n84727069 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551354 Volltext |
spellingShingle | Ransford, Thomas Potential theory in the complex plane / London Mathematical Society student texts ; Harmonic functions -- Subharmonic functions -- Potential theory -- The Dirichlet problem -- Capacity -- Applications. Potential theory (Mathematics) http://id.loc.gov/authorities/subjects/sh85105671 Functions of complex variables. http://id.loc.gov/authorities/subjects/sh85052356 Potential theory (Physics) http://id.loc.gov/authorities/subjects/sh89005116 Théorie du potentiel. Fonctions d'une variable complexe. MATHEMATICS Complex Analysis. bisacsh Potential theory (Physics) fast Functions of complex variables fast Potential theory (Mathematics) fast Potenzialtheorie gnd http://d-nb.info/gnd/4046939-6 Potentiaaltheorie. gtt TEORIA DO POTENCIAL. larpcal Potentiel, Théorie du. ram Fonctions de plusieurs variables complexes. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85105671 http://id.loc.gov/authorities/subjects/sh85052356 http://id.loc.gov/authorities/subjects/sh89005116 http://d-nb.info/gnd/4046939-6 |
title | Potential theory in the complex plane / |
title_auth | Potential theory in the complex plane / |
title_exact_search | Potential theory in the complex plane / |
title_full | Potential theory in the complex plane / Thomas Ransford. |
title_fullStr | Potential theory in the complex plane / Thomas Ransford. |
title_full_unstemmed | Potential theory in the complex plane / Thomas Ransford. |
title_short | Potential theory in the complex plane / |
title_sort | potential theory in the complex plane |
topic | Potential theory (Mathematics) http://id.loc.gov/authorities/subjects/sh85105671 Functions of complex variables. http://id.loc.gov/authorities/subjects/sh85052356 Potential theory (Physics) http://id.loc.gov/authorities/subjects/sh89005116 Théorie du potentiel. Fonctions d'une variable complexe. MATHEMATICS Complex Analysis. bisacsh Potential theory (Physics) fast Functions of complex variables fast Potential theory (Mathematics) fast Potenzialtheorie gnd http://d-nb.info/gnd/4046939-6 Potentiaaltheorie. gtt TEORIA DO POTENCIAL. larpcal Potentiel, Théorie du. ram Fonctions de plusieurs variables complexes. ram |
topic_facet | Potential theory (Mathematics) Functions of complex variables. Potential theory (Physics) Théorie du potentiel. Fonctions d'une variable complexe. MATHEMATICS Complex Analysis. Functions of complex variables Potenzialtheorie Potentiaaltheorie. TEORIA DO POTENCIAL. Potentiel, Théorie du. Fonctions de plusieurs variables complexes. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551354 |
work_keys_str_mv | AT ransfordthomas potentialtheoryinthecomplexplane |