A primer of algebraic D-modules /:
The theory of D-modules is a rich area of study combining ideas from algebra and differential equations, and it has significant applications to diverse areas such as singularity theory and representation theory. This book introduces D-modules and their applications avoiding all unnecessary over-soph...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [England] ; New York, NY, USA :
Cambridge University Press,
1995.
|
Schriftenreihe: | London Mathematical Society student texts ;
33. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The theory of D-modules is a rich area of study combining ideas from algebra and differential equations, and it has significant applications to diverse areas such as singularity theory and representation theory. This book introduces D-modules and their applications avoiding all unnecessary over-sophistication. It is aimed at beginning graduate students and the approach taken is algebraic, concentrating on the role of the Weyl algebra. Very few prerequisites are assumed, and the book is virtually self-contained. Exercises are included at the end of each chapter and the reader is given ample references to the more advanced literature. This is an excellent introduction to D-modules for all who are new to this area. |
Beschreibung: | 1 online resource (xii, 207 pages) |
Bibliographie: | Includes bibliographical references (pages 197-202) and index. |
ISBN: | 9781107362352 1107362350 9780511623653 0511623658 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn831664169 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130325s1995 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d CAMBR |d IDEBK |d OL$ |d OCLCQ |d DEBSZ |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d OCLCO |d UAB |d VTS |d REC |d OCLCO |d STF |d M8D |d OCLCO |d OCLCQ |d AJS |d SFB |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 708565302 |a 852197485 | ||
020 | |a 9781107362352 |q (electronic bk.) | ||
020 | |a 1107362350 |q (electronic bk.) | ||
020 | |a 9780511623653 |q (electronic bk.) | ||
020 | |a 0511623658 |q (electronic bk.) | ||
020 | |z 0521551196 | ||
020 | |z 9780521551199 | ||
020 | |z 0521559081 | ||
020 | |z 9780521559089 | ||
035 | |a (OCoLC)831664169 |z (OCoLC)708565302 |z (OCoLC)852197485 | ||
050 | 4 | |a QA614.3 |b .C68 1995eb | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512/.4 |2 22 | |
084 | |a 31.29 |2 bcl | ||
084 | |a SK 240 |2 rvk | ||
084 | |a MAT 162f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Coutinho, S. C. | |
245 | 1 | 2 | |a A primer of algebraic D-modules / |c S.C. Coutinho. |
260 | |a Cambridge [England] ; |a New York, NY, USA : |b Cambridge University Press, |c 1995. | ||
300 | |a 1 online resource (xii, 207 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society student texts ; |v 33 | |
504 | |a Includes bibliographical references (pages 197-202) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a The theory of D-modules is a rich area of study combining ideas from algebra and differential equations, and it has significant applications to diverse areas such as singularity theory and representation theory. This book introduces D-modules and their applications avoiding all unnecessary over-sophistication. It is aimed at beginning graduate students and the approach taken is algebraic, concentrating on the role of the Weyl algebra. Very few prerequisites are assumed, and the book is virtually self-contained. Exercises are included at the end of each chapter and the reader is given ample references to the more advanced literature. This is an excellent introduction to D-modules for all who are new to this area. | ||
505 | 0 | |a Cover; Title; Copyright; Dedication; Contents; Preface; Introduction; 1. The Weyl algebra; 2. Algebraic D-modules; 3. The book: an overview; 4. Pre-requisites; Chapter 1. The Weyl algebra; 1. Definition; 2. Canonical form; 3. Generators and relations; 4. Exercises; Chapter 2. Ideal structure of the Weyl algebra.; 1. The degree of an operator; 2. Ideal structure; 3. Positive characteristic; 4. Exercises; Chapter 3. Rings of differential operators.; 1. Definitions; 2. The Weyl algebra; 3. Exercises; Chapter 4. Jacobian Conjecture.; 1. Polynomial maps; 2. Jacobian conjecture; 3. Derivations | |
505 | 8 | |a 4. Automorphisms5. Exercises; Chapter 5. Modules over the Weyl algebra.; 1. The polynomial ring; 2. Twisting; 3. Holomorphic functions; 4. Exercises; Chapter 6. Differential equations.; 1. The D-module of an equation; 2. Direct limit of modules; 3. Microfunctions; 4. Exercises; Chapter 7. Graded and filtered modules.; 1. Graded rings; 2. Filtered rings; 3. Associated graded algebra; 4. Filtered modules; 5. Induced filtration; 6. Exercises; Chapter 8. Noetherian rings and modules.; 1. Noetherian modules; 2. Noetherian rings; 3. Good filtration; 4. Exercises | |
505 | 8 | |a Chapter 9. Dimension and multiplicity. 1. The Hilbert polynomial; 2. Dimension and multiplicity; 3. Basic properties; 4. Bernstein's inequality; 5. Exercises; Chapter 10. Holonomic modules.; 1. Definition and examples; 2. Basic properties; 3. Further examples; 4. Exercises; Chapter 11. Characteristic varieties.; 1. The characteristic variety; 2. Symplectic geometry; 3. Non-holonomic irreducible modules; 4. Exercises; Chapter 12. Tensor products.; 1. Bimodules; 2. Tensor products; 3. The universal property; 4. Basic properties; 5. Localization; 6. Exercises; Chapter 13. External products. | |
505 | 8 | |a 1. External products of algebras2. External products of modules; 3. Graduations and filtrations; 4. Dimensions and multiplicities; 5. Exercises; Chapter 14. Inverse Image.; 1. Change of rings; 2. Inverse images; 3. Projections; 4. Exercises; Chapter 15. Embeddings.; 1. The standard embedding; 2. Composition; 3. Embeddings revisited; 4. Exercises; Chapter 16. Direct images; 1. Right modules; 2. Transposition; 3. Left modules; 4. Exercises; Chapter 17. Kashiwara's theorem; 1. Embeddings; 2. Kashiwara's theorem; 3. Exercises; Chapter 18. Preservation of holonomy.; 1. Inverse images | |
505 | 8 | |a 2. Direct images3. Categories and functors; 4. Exercises; Chapter 19. Stability of differential equations.; 1. Asymptotic stability; 2. Global upper bound; 3. Global stability on the plane; 4. Exercises; Chapter 20. Automatic proof of identities.; 1. Holonomic functions; 2. Hyperexponential functions; 3. The method; 4. Exercises; Coda; Appendix 1. Defining the action of a module using generators; Appendix 2. Local inversion theorem; References; Index | |
650 | 0 | |a D-modules. |0 http://id.loc.gov/authorities/subjects/sh92006437 | |
650 | 6 | |a D-modules. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a D-modules |2 fast | |
650 | 7 | |a D-Modul |2 gnd |0 http://d-nb.info/gnd/4305548-5 | |
650 | 7 | |a Weyl-Algebra |2 gnd |0 http://d-nb.info/gnd/4373964-7 | |
650 | 7 | |a Anneaux (algèbre) |2 ram | |
650 | 7 | |a D-modules, Théorie des. |2 ram | |
758 | |i has work: |a A primer of algebraic D-modules (Text) |1 https://id.oclc.org/worldcat/entity/E39PCXvh6PyWJRDjfq6JkGwRVd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Coutinho, S.C. |t Primer of algebraic D-modules. |d Cambridge [England] ; New York, NY, USA : Cambridge University Press, 1995 |z 0521551196 |w (DLC) 95006628 |w (OCoLC)32168267 |
830 | 0 | |a London Mathematical Society student texts ; |v 33. |0 http://id.loc.gov/authorities/names/n84727069 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551346 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10443981 | ||
938 | |a EBSCOhost |b EBSC |n 551346 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25158929 | ||
938 | |a YBP Library Services |b YANK |n 10374349 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn831664169 |
---|---|
_version_ | 1816882226204246016 |
adam_text | |
any_adam_object | |
author | Coutinho, S. C. |
author_facet | Coutinho, S. C. |
author_role | |
author_sort | Coutinho, S. C. |
author_variant | s c c sc scc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA614 |
callnumber-raw | QA614.3 .C68 1995eb |
callnumber-search | QA614.3 .C68 1995eb |
callnumber-sort | QA 3614.3 C68 41995EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 240 |
classification_tum | MAT 162f |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Dedication; Contents; Preface; Introduction; 1. The Weyl algebra; 2. Algebraic D-modules; 3. The book: an overview; 4. Pre-requisites; Chapter 1. The Weyl algebra; 1. Definition; 2. Canonical form; 3. Generators and relations; 4. Exercises; Chapter 2. Ideal structure of the Weyl algebra.; 1. The degree of an operator; 2. Ideal structure; 3. Positive characteristic; 4. Exercises; Chapter 3. Rings of differential operators.; 1. Definitions; 2. The Weyl algebra; 3. Exercises; Chapter 4. Jacobian Conjecture.; 1. Polynomial maps; 2. Jacobian conjecture; 3. Derivations 4. Automorphisms5. Exercises; Chapter 5. Modules over the Weyl algebra.; 1. The polynomial ring; 2. Twisting; 3. Holomorphic functions; 4. Exercises; Chapter 6. Differential equations.; 1. The D-module of an equation; 2. Direct limit of modules; 3. Microfunctions; 4. Exercises; Chapter 7. Graded and filtered modules.; 1. Graded rings; 2. Filtered rings; 3. Associated graded algebra; 4. Filtered modules; 5. Induced filtration; 6. Exercises; Chapter 8. Noetherian rings and modules.; 1. Noetherian modules; 2. Noetherian rings; 3. Good filtration; 4. Exercises Chapter 9. Dimension and multiplicity. 1. The Hilbert polynomial; 2. Dimension and multiplicity; 3. Basic properties; 4. Bernstein's inequality; 5. Exercises; Chapter 10. Holonomic modules.; 1. Definition and examples; 2. Basic properties; 3. Further examples; 4. Exercises; Chapter 11. Characteristic varieties.; 1. The characteristic variety; 2. Symplectic geometry; 3. Non-holonomic irreducible modules; 4. Exercises; Chapter 12. Tensor products.; 1. Bimodules; 2. Tensor products; 3. The universal property; 4. Basic properties; 5. Localization; 6. Exercises; Chapter 13. External products. 1. External products of algebras2. External products of modules; 3. Graduations and filtrations; 4. Dimensions and multiplicities; 5. Exercises; Chapter 14. Inverse Image.; 1. Change of rings; 2. Inverse images; 3. Projections; 4. Exercises; Chapter 15. Embeddings.; 1. The standard embedding; 2. Composition; 3. Embeddings revisited; 4. Exercises; Chapter 16. Direct images; 1. Right modules; 2. Transposition; 3. Left modules; 4. Exercises; Chapter 17. Kashiwara's theorem; 1. Embeddings; 2. Kashiwara's theorem; 3. Exercises; Chapter 18. Preservation of holonomy.; 1. Inverse images 2. Direct images3. Categories and functors; 4. Exercises; Chapter 19. Stability of differential equations.; 1. Asymptotic stability; 2. Global upper bound; 3. Global stability on the plane; 4. Exercises; Chapter 20. Automatic proof of identities.; 1. Holonomic functions; 2. Hyperexponential functions; 3. The method; 4. Exercises; Coda; Appendix 1. Defining the action of a module using generators; Appendix 2. Local inversion theorem; References; Index |
ctrlnum | (OCoLC)831664169 |
dewey-full | 512/.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.4 |
dewey-search | 512/.4 |
dewey-sort | 3512 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06439cam a2200709 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn831664169</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130325s1995 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">CAMBR</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OL$</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">708565302</subfield><subfield code="a">852197485</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107362352</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107362350</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511623653</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511623658</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521551196</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521551199</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521559081</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521559089</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)831664169</subfield><subfield code="z">(OCoLC)708565302</subfield><subfield code="z">(OCoLC)852197485</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA614.3</subfield><subfield code="b">.C68 1995eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.4</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.29</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 162f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Coutinho, S. C.</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A primer of algebraic D-modules /</subfield><subfield code="c">S.C. Coutinho.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [England] ;</subfield><subfield code="a">New York, NY, USA :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1995.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 207 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society student texts ;</subfield><subfield code="v">33</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 197-202) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of D-modules is a rich area of study combining ideas from algebra and differential equations, and it has significant applications to diverse areas such as singularity theory and representation theory. This book introduces D-modules and their applications avoiding all unnecessary over-sophistication. It is aimed at beginning graduate students and the approach taken is algebraic, concentrating on the role of the Weyl algebra. Very few prerequisites are assumed, and the book is virtually self-contained. Exercises are included at the end of each chapter and the reader is given ample references to the more advanced literature. This is an excellent introduction to D-modules for all who are new to this area.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Dedication; Contents; Preface; Introduction; 1. The Weyl algebra; 2. Algebraic D-modules; 3. The book: an overview; 4. Pre-requisites; Chapter 1. The Weyl algebra; 1. Definition; 2. Canonical form; 3. Generators and relations; 4. Exercises; Chapter 2. Ideal structure of the Weyl algebra.; 1. The degree of an operator; 2. Ideal structure; 3. Positive characteristic; 4. Exercises; Chapter 3. Rings of differential operators.; 1. Definitions; 2. The Weyl algebra; 3. Exercises; Chapter 4. Jacobian Conjecture.; 1. Polynomial maps; 2. Jacobian conjecture; 3. Derivations</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. Automorphisms5. Exercises; Chapter 5. Modules over the Weyl algebra.; 1. The polynomial ring; 2. Twisting; 3. Holomorphic functions; 4. Exercises; Chapter 6. Differential equations.; 1. The D-module of an equation; 2. Direct limit of modules; 3. Microfunctions; 4. Exercises; Chapter 7. Graded and filtered modules.; 1. Graded rings; 2. Filtered rings; 3. Associated graded algebra; 4. Filtered modules; 5. Induced filtration; 6. Exercises; Chapter 8. Noetherian rings and modules.; 1. Noetherian modules; 2. Noetherian rings; 3. Good filtration; 4. Exercises</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 9. Dimension and multiplicity. 1. The Hilbert polynomial; 2. Dimension and multiplicity; 3. Basic properties; 4. Bernstein's inequality; 5. Exercises; Chapter 10. Holonomic modules.; 1. Definition and examples; 2. Basic properties; 3. Further examples; 4. Exercises; Chapter 11. Characteristic varieties.; 1. The characteristic variety; 2. Symplectic geometry; 3. Non-holonomic irreducible modules; 4. Exercises; Chapter 12. Tensor products.; 1. Bimodules; 2. Tensor products; 3. The universal property; 4. Basic properties; 5. Localization; 6. Exercises; Chapter 13. External products.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. External products of algebras2. External products of modules; 3. Graduations and filtrations; 4. Dimensions and multiplicities; 5. Exercises; Chapter 14. Inverse Image.; 1. Change of rings; 2. Inverse images; 3. Projections; 4. Exercises; Chapter 15. Embeddings.; 1. The standard embedding; 2. Composition; 3. Embeddings revisited; 4. Exercises; Chapter 16. Direct images; 1. Right modules; 2. Transposition; 3. Left modules; 4. Exercises; Chapter 17. Kashiwara's theorem; 1. Embeddings; 2. Kashiwara's theorem; 3. Exercises; Chapter 18. Preservation of holonomy.; 1. Inverse images</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Direct images3. Categories and functors; 4. Exercises; Chapter 19. Stability of differential equations.; 1. Asymptotic stability; 2. Global upper bound; 3. Global stability on the plane; 4. Exercises; Chapter 20. Automatic proof of identities.; 1. Holonomic functions; 2. Hyperexponential functions; 3. The method; 4. Exercises; Coda; Appendix 1. Defining the action of a module using generators; Appendix 2. Local inversion theorem; References; Index</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">D-modules.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh92006437</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">D-modules.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">D-modules</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">D-Modul</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4305548-5</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Weyl-Algebra</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4373964-7</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Anneaux (algèbre)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">D-modules, Théorie des.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">A primer of algebraic D-modules (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCXvh6PyWJRDjfq6JkGwRVd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Coutinho, S.C.</subfield><subfield code="t">Primer of algebraic D-modules.</subfield><subfield code="d">Cambridge [England] ; New York, NY, USA : Cambridge University Press, 1995</subfield><subfield code="z">0521551196</subfield><subfield code="w">(DLC) 95006628</subfield><subfield code="w">(OCoLC)32168267</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society student texts ;</subfield><subfield code="v">33.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84727069</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551346</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10443981</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">551346</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25158929</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10374349</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn831664169 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:14Z |
institution | BVB |
isbn | 9781107362352 1107362350 9780511623653 0511623658 |
language | English |
oclc_num | 831664169 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 207 pages) |
psigel | ZDB-4-EBA |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society student texts ; |
series2 | London Mathematical Society student texts ; |
spelling | Coutinho, S. C. A primer of algebraic D-modules / S.C. Coutinho. Cambridge [England] ; New York, NY, USA : Cambridge University Press, 1995. 1 online resource (xii, 207 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society student texts ; 33 Includes bibliographical references (pages 197-202) and index. Print version record. The theory of D-modules is a rich area of study combining ideas from algebra and differential equations, and it has significant applications to diverse areas such as singularity theory and representation theory. This book introduces D-modules and their applications avoiding all unnecessary over-sophistication. It is aimed at beginning graduate students and the approach taken is algebraic, concentrating on the role of the Weyl algebra. Very few prerequisites are assumed, and the book is virtually self-contained. Exercises are included at the end of each chapter and the reader is given ample references to the more advanced literature. This is an excellent introduction to D-modules for all who are new to this area. Cover; Title; Copyright; Dedication; Contents; Preface; Introduction; 1. The Weyl algebra; 2. Algebraic D-modules; 3. The book: an overview; 4. Pre-requisites; Chapter 1. The Weyl algebra; 1. Definition; 2. Canonical form; 3. Generators and relations; 4. Exercises; Chapter 2. Ideal structure of the Weyl algebra.; 1. The degree of an operator; 2. Ideal structure; 3. Positive characteristic; 4. Exercises; Chapter 3. Rings of differential operators.; 1. Definitions; 2. The Weyl algebra; 3. Exercises; Chapter 4. Jacobian Conjecture.; 1. Polynomial maps; 2. Jacobian conjecture; 3. Derivations 4. Automorphisms5. Exercises; Chapter 5. Modules over the Weyl algebra.; 1. The polynomial ring; 2. Twisting; 3. Holomorphic functions; 4. Exercises; Chapter 6. Differential equations.; 1. The D-module of an equation; 2. Direct limit of modules; 3. Microfunctions; 4. Exercises; Chapter 7. Graded and filtered modules.; 1. Graded rings; 2. Filtered rings; 3. Associated graded algebra; 4. Filtered modules; 5. Induced filtration; 6. Exercises; Chapter 8. Noetherian rings and modules.; 1. Noetherian modules; 2. Noetherian rings; 3. Good filtration; 4. Exercises Chapter 9. Dimension and multiplicity. 1. The Hilbert polynomial; 2. Dimension and multiplicity; 3. Basic properties; 4. Bernstein's inequality; 5. Exercises; Chapter 10. Holonomic modules.; 1. Definition and examples; 2. Basic properties; 3. Further examples; 4. Exercises; Chapter 11. Characteristic varieties.; 1. The characteristic variety; 2. Symplectic geometry; 3. Non-holonomic irreducible modules; 4. Exercises; Chapter 12. Tensor products.; 1. Bimodules; 2. Tensor products; 3. The universal property; 4. Basic properties; 5. Localization; 6. Exercises; Chapter 13. External products. 1. External products of algebras2. External products of modules; 3. Graduations and filtrations; 4. Dimensions and multiplicities; 5. Exercises; Chapter 14. Inverse Image.; 1. Change of rings; 2. Inverse images; 3. Projections; 4. Exercises; Chapter 15. Embeddings.; 1. The standard embedding; 2. Composition; 3. Embeddings revisited; 4. Exercises; Chapter 16. Direct images; 1. Right modules; 2. Transposition; 3. Left modules; 4. Exercises; Chapter 17. Kashiwara's theorem; 1. Embeddings; 2. Kashiwara's theorem; 3. Exercises; Chapter 18. Preservation of holonomy.; 1. Inverse images 2. Direct images3. Categories and functors; 4. Exercises; Chapter 19. Stability of differential equations.; 1. Asymptotic stability; 2. Global upper bound; 3. Global stability on the plane; 4. Exercises; Chapter 20. Automatic proof of identities.; 1. Holonomic functions; 2. Hyperexponential functions; 3. The method; 4. Exercises; Coda; Appendix 1. Defining the action of a module using generators; Appendix 2. Local inversion theorem; References; Index D-modules. http://id.loc.gov/authorities/subjects/sh92006437 D-modules. MATHEMATICS Algebra Intermediate. bisacsh D-modules fast D-Modul gnd http://d-nb.info/gnd/4305548-5 Weyl-Algebra gnd http://d-nb.info/gnd/4373964-7 Anneaux (algèbre) ram D-modules, Théorie des. ram has work: A primer of algebraic D-modules (Text) https://id.oclc.org/worldcat/entity/E39PCXvh6PyWJRDjfq6JkGwRVd https://id.oclc.org/worldcat/ontology/hasWork Print version: Coutinho, S.C. Primer of algebraic D-modules. Cambridge [England] ; New York, NY, USA : Cambridge University Press, 1995 0521551196 (DLC) 95006628 (OCoLC)32168267 London Mathematical Society student texts ; 33. http://id.loc.gov/authorities/names/n84727069 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551346 Volltext |
spellingShingle | Coutinho, S. C. A primer of algebraic D-modules / London Mathematical Society student texts ; Cover; Title; Copyright; Dedication; Contents; Preface; Introduction; 1. The Weyl algebra; 2. Algebraic D-modules; 3. The book: an overview; 4. Pre-requisites; Chapter 1. The Weyl algebra; 1. Definition; 2. Canonical form; 3. Generators and relations; 4. Exercises; Chapter 2. Ideal structure of the Weyl algebra.; 1. The degree of an operator; 2. Ideal structure; 3. Positive characteristic; 4. Exercises; Chapter 3. Rings of differential operators.; 1. Definitions; 2. The Weyl algebra; 3. Exercises; Chapter 4. Jacobian Conjecture.; 1. Polynomial maps; 2. Jacobian conjecture; 3. Derivations 4. Automorphisms5. Exercises; Chapter 5. Modules over the Weyl algebra.; 1. The polynomial ring; 2. Twisting; 3. Holomorphic functions; 4. Exercises; Chapter 6. Differential equations.; 1. The D-module of an equation; 2. Direct limit of modules; 3. Microfunctions; 4. Exercises; Chapter 7. Graded and filtered modules.; 1. Graded rings; 2. Filtered rings; 3. Associated graded algebra; 4. Filtered modules; 5. Induced filtration; 6. Exercises; Chapter 8. Noetherian rings and modules.; 1. Noetherian modules; 2. Noetherian rings; 3. Good filtration; 4. Exercises Chapter 9. Dimension and multiplicity. 1. The Hilbert polynomial; 2. Dimension and multiplicity; 3. Basic properties; 4. Bernstein's inequality; 5. Exercises; Chapter 10. Holonomic modules.; 1. Definition and examples; 2. Basic properties; 3. Further examples; 4. Exercises; Chapter 11. Characteristic varieties.; 1. The characteristic variety; 2. Symplectic geometry; 3. Non-holonomic irreducible modules; 4. Exercises; Chapter 12. Tensor products.; 1. Bimodules; 2. Tensor products; 3. The universal property; 4. Basic properties; 5. Localization; 6. Exercises; Chapter 13. External products. 1. External products of algebras2. External products of modules; 3. Graduations and filtrations; 4. Dimensions and multiplicities; 5. Exercises; Chapter 14. Inverse Image.; 1. Change of rings; 2. Inverse images; 3. Projections; 4. Exercises; Chapter 15. Embeddings.; 1. The standard embedding; 2. Composition; 3. Embeddings revisited; 4. Exercises; Chapter 16. Direct images; 1. Right modules; 2. Transposition; 3. Left modules; 4. Exercises; Chapter 17. Kashiwara's theorem; 1. Embeddings; 2. Kashiwara's theorem; 3. Exercises; Chapter 18. Preservation of holonomy.; 1. Inverse images 2. Direct images3. Categories and functors; 4. Exercises; Chapter 19. Stability of differential equations.; 1. Asymptotic stability; 2. Global upper bound; 3. Global stability on the plane; 4. Exercises; Chapter 20. Automatic proof of identities.; 1. Holonomic functions; 2. Hyperexponential functions; 3. The method; 4. Exercises; Coda; Appendix 1. Defining the action of a module using generators; Appendix 2. Local inversion theorem; References; Index D-modules. http://id.loc.gov/authorities/subjects/sh92006437 D-modules. MATHEMATICS Algebra Intermediate. bisacsh D-modules fast D-Modul gnd http://d-nb.info/gnd/4305548-5 Weyl-Algebra gnd http://d-nb.info/gnd/4373964-7 Anneaux (algèbre) ram D-modules, Théorie des. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh92006437 http://d-nb.info/gnd/4305548-5 http://d-nb.info/gnd/4373964-7 |
title | A primer of algebraic D-modules / |
title_auth | A primer of algebraic D-modules / |
title_exact_search | A primer of algebraic D-modules / |
title_full | A primer of algebraic D-modules / S.C. Coutinho. |
title_fullStr | A primer of algebraic D-modules / S.C. Coutinho. |
title_full_unstemmed | A primer of algebraic D-modules / S.C. Coutinho. |
title_short | A primer of algebraic D-modules / |
title_sort | primer of algebraic d modules |
topic | D-modules. http://id.loc.gov/authorities/subjects/sh92006437 D-modules. MATHEMATICS Algebra Intermediate. bisacsh D-modules fast D-Modul gnd http://d-nb.info/gnd/4305548-5 Weyl-Algebra gnd http://d-nb.info/gnd/4373964-7 Anneaux (algèbre) ram D-modules, Théorie des. ram |
topic_facet | D-modules. MATHEMATICS Algebra Intermediate. D-modules D-Modul Weyl-Algebra Anneaux (algèbre) D-modules, Théorie des. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551346 |
work_keys_str_mv | AT coutinhosc aprimerofalgebraicdmodules AT coutinhosc primerofalgebraicdmodules |