Exponential random graph models for social networks :: theory, methods, and applications /
This book provides an account of the theoretical and methodological underpinnings of exponential random graph models (ERGMs).
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2013.
|
Schriftenreihe: | Structural analysis in the social sciences ;
35. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book provides an account of the theoretical and methodological underpinnings of exponential random graph models (ERGMs). |
Beschreibung: | 9.3.2 Network-Dependent Assumptions. |
Beschreibung: | 1 online resource (xxii, 336 pages) |
Bibliographie: | Includes bibliographical references (pages 303-325) and indexes. |
ISBN: | 9781139841962 1139841963 9781139839587 1139839586 9780511894701 0511894708 0521193567 9780521193566 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn818882894 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 121120t20132013enk ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e rda |e pn |c EBLCP |d OCLCO |d N$T |d DEBSZ |d GZM |d OCLCQ |d AUD |d AU@ |d YDXCP |d OCLCQ |d OCLCA |d OCLCQ |d CUS |d OCLCF |d CUY |d MERUC |d ZCU |d ICG |d VT2 |d OCLCQ |d WYU |d DKC |d OCLCQ |d G3B |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d SXB |d OCLCQ |d OCLCO | ||
019 | |a 846693207 |a 880903730 | ||
020 | |a 9781139841962 |q (electronic bk.) | ||
020 | |a 1139841963 |q (electronic bk.) | ||
020 | |a 9781139839587 |q (electronic bk.) | ||
020 | |a 1139839586 |q (electronic bk.) | ||
020 | |a 9780511894701 |q (electronic bk.) | ||
020 | |a 0511894708 |q (electronic bk.) | ||
020 | |a 0521193567 |q (hardback) | ||
020 | |a 9780521193566 |q (hardback) | ||
020 | |z 9780521141383 | ||
020 | |z 9780521193566 | ||
020 | |z 9781139841962 | ||
020 | |z 1139841963 | ||
035 | |a (OCoLC)818882894 |z (OCoLC)846693207 |z (OCoLC)880903730 | ||
050 | 4 | |a HM741 .E96 2012 | |
072 | 7 | |a BUS |x 047000 |2 bisacsh | |
072 | 7 | |a FAM |x 027000 |2 bisacsh | |
082 | 7 | |a 302.3 |2 22 | |
084 | |a SOC024000 |2 bisacsh | ||
049 | |a MAIN | ||
245 | 0 | 0 | |a Exponential random graph models for social networks : |b theory, methods, and applications / |c editors, Dean Lusher, Johan Koskinen, Garry Robbins. |
264 | 1 | |a Cambridge : |b Cambridge University Press, |c 2013. | |
264 | 4 | |c ©2013 | |
300 | |a 1 online resource (xxii, 336 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Structural analysis in the social sciences ; |v 35 | |
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Exponential Random Graph Models for Social Networks; Structural Analysis in the Social Sciences; Title; Copyright; Dedication; Contents; List of Figures; List of Tables; 1 Introduction; 1.1 Intent of This Book; 1.2 Software and Data; 1.3 Structure of the Book; 1.3.1 Section I: Rationale; 1.3.2 Section II: Methods; 1.3.3 Section III: Applications; 1.3.4 Section IV: Future; 1.4 How To Read This Book; 1.5 Assumed Knowledge of Social Network Analysis; Section I: Rationale; 2 What Are Exponential Random Graph Models?; 2.1 Exponential Random Graph Models: A Short Definition; 2.2 ERGM Theory. | |
505 | 8 | |a 2.3 Brief History of ERGMs2.4 Network Data Amenable to ERGMs; 3 Formation of Social Network Structure; 3.1 Tie Formation: Emergence of Structure; 3.1.1 Formation of Social Ties; 3.1.2 Network Configurations: Consequential Network Patterns and Related Processes; 3.1.3 Local Network Processes; 3.1.4 Dependency (and Theories of Network Dependence); 3.1.5 Complex Combination of Multiple and Nested Social Processes; 3.2 Framework for Explanations of Tie Formation; 3.2.1 Network Self-Organization; 3.2.2 Individual Attributes; 3.2.3 Exogenous Contextual Factors: Dyadic Covariates. | |
505 | 8 | |a 4 Simplified Account of an Exponential Random Graph Model as a Statistical Model4.1 Random Graphs; 4.2 Distributions of Graphs; 4.3 Some Basic Ideas about Statistical Modeling; 4.4 Homogeneity; 5 Example Exponential Random Graph Model Analysis; 5.1 Applied ERGM Example: Communication in "The Corporation"; 5.2 ERGM Model and Interpretation; 5.2.1 Multiple Explanations for Network Structure; Section II: Methods; 6 Exponential Random Graph Model Fundamentals; 6.1 Chapter Outline; 6.2 Network Tie-Variables; 6.3 Notion of Independence; 6.4 ERGMs from Generalized Linear Model Perspective. | |
505 | 8 | |a 6.5 Possible Forms of Dependence6.5.1 Bernoulli Assumption; 6.5.2 Dyad-Independent Assumption; 6.5.3 Markov Dependence Assumption; 6.5.4 Realization-Dependent Models; 6.6 Different Classes of Model Specifications; 6.6.1 Bernoulli Model; 6.6.2 Dyadic Independence Models; 6.6.3 Markov Model; 6.6.4 Social Circuit Models; 6.7 Other Model Specifications; 6.8 Conclusion; 7 Dependence Graphs and Sufficient Statistics; 7.1 Chapter Outline; 7.2 Dependence Graph; 7.2.1 Hammersley-Clifford Theorem and Sufficient Statistics; 7.2.2 Sufficient Subgraphs for Nondirected Graphs. | |
505 | 8 | |a 7.3 Dependence Graphs Involving Attributes7.4 Conclusion; 8 Social Selection, Dyadic Covariates, and Geospatial Effects; 8.1 Individual, Dyadic, and Other Attributes; 8.2 ERGM Social Selection Models; 8.2.1 Models for Undirected Networks; 8.2.2 Models for Directed Networks; 8.2.3 Conditional Odds Ratios; 8.3 Dyadic Covariates; 8.4 Geospatial Effects; 8.5 Conclusion; 9 Autologistic Actor Attribute Models; 9.1 Social Influence Models; 9.2 Extending ERGMs to Distribution of Actor Attributes; 9.3 Possible Forms of Dependence; 9.3.1 Independent Attribute Assumption. | |
500 | |a 9.3.2 Network-Dependent Assumptions. | ||
504 | |a Includes bibliographical references (pages 303-325) and indexes. | ||
520 | |a This book provides an account of the theoretical and methodological underpinnings of exponential random graph models (ERGMs). | ||
650 | 0 | |a Social networks |x Mathematical models. | |
650 | 0 | |a Social networks |x Research |x Graphic methods. | |
650 | 6 | |a Réseaux sociaux |x Modèles mathématiques. | |
650 | 6 | |a Réseaux sociaux |x Recherche |x Méthodes graphiques. | |
650 | 7 | |a BUSINESS & ECONOMICS |x Negotiating. |2 bisacsh | |
650 | 7 | |a FAMILY & RELATIONSHIPS |x Interpersonal Relations. |2 bisacsh | |
650 | 7 | |a Social networks |x Mathematical models |2 fast | |
700 | 1 | |a Lusher, Dean, |e editor. | |
700 | 1 | |a Koskinen, Johan, |e editor. |1 https://id.oclc.org/worldcat/entity/E39PCjCY3tvdxWYH66W9vFJ99P |0 http://id.loc.gov/authorities/names/n2012034583 | |
700 | 1 | |a Robins, Garry, |e editor. |1 https://id.oclc.org/worldcat/entity/E39PBJfGRPJvGcv3Ftc3gcqG73 |0 http://id.loc.gov/authorities/names/no2015047222 | |
758 | |i has work: |a Exponential random graph models for social networks (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFVxkmRXJWygB8YCmgT7Md |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Exponential random graph models for social networks. |d Cambridge : Cambridge University Press, 2013 |z 9780521193566 |w (DLC) 2012021034 |w (OCoLC)794838422 |
830 | 0 | |a Structural analysis in the social sciences ; |v 35. | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=498293 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL1057451 | ||
938 | |a EBSCOhost |b EBSC |n 498293 | ||
938 | |a YBP Library Services |b YANK |n 9929960 | ||
938 | |a YBP Library Services |b YANK |n 10440770 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn818882894 |
---|---|
_version_ | 1816882215450050563 |
adam_text | |
any_adam_object | |
author2 | Lusher, Dean Koskinen, Johan Robins, Garry |
author2_role | edt edt edt |
author2_variant | d l dl j k jk g r gr |
author_GND | http://id.loc.gov/authorities/names/n2012034583 http://id.loc.gov/authorities/names/no2015047222 |
author_facet | Lusher, Dean Koskinen, Johan Robins, Garry |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | H - Social Science |
callnumber-label | HM741 |
callnumber-raw | HM741 .E96 2012 |
callnumber-search | HM741 .E96 2012 |
callnumber-sort | HM 3741 E96 42012 |
callnumber-subject | HM - Sociology |
collection | ZDB-4-EBA |
contents | Cover; Exponential Random Graph Models for Social Networks; Structural Analysis in the Social Sciences; Title; Copyright; Dedication; Contents; List of Figures; List of Tables; 1 Introduction; 1.1 Intent of This Book; 1.2 Software and Data; 1.3 Structure of the Book; 1.3.1 Section I: Rationale; 1.3.2 Section II: Methods; 1.3.3 Section III: Applications; 1.3.4 Section IV: Future; 1.4 How To Read This Book; 1.5 Assumed Knowledge of Social Network Analysis; Section I: Rationale; 2 What Are Exponential Random Graph Models?; 2.1 Exponential Random Graph Models: A Short Definition; 2.2 ERGM Theory. 2.3 Brief History of ERGMs2.4 Network Data Amenable to ERGMs; 3 Formation of Social Network Structure; 3.1 Tie Formation: Emergence of Structure; 3.1.1 Formation of Social Ties; 3.1.2 Network Configurations: Consequential Network Patterns and Related Processes; 3.1.3 Local Network Processes; 3.1.4 Dependency (and Theories of Network Dependence); 3.1.5 Complex Combination of Multiple and Nested Social Processes; 3.2 Framework for Explanations of Tie Formation; 3.2.1 Network Self-Organization; 3.2.2 Individual Attributes; 3.2.3 Exogenous Contextual Factors: Dyadic Covariates. 4 Simplified Account of an Exponential Random Graph Model as a Statistical Model4.1 Random Graphs; 4.2 Distributions of Graphs; 4.3 Some Basic Ideas about Statistical Modeling; 4.4 Homogeneity; 5 Example Exponential Random Graph Model Analysis; 5.1 Applied ERGM Example: Communication in "The Corporation"; 5.2 ERGM Model and Interpretation; 5.2.1 Multiple Explanations for Network Structure; Section II: Methods; 6 Exponential Random Graph Model Fundamentals; 6.1 Chapter Outline; 6.2 Network Tie-Variables; 6.3 Notion of Independence; 6.4 ERGMs from Generalized Linear Model Perspective. 6.5 Possible Forms of Dependence6.5.1 Bernoulli Assumption; 6.5.2 Dyad-Independent Assumption; 6.5.3 Markov Dependence Assumption; 6.5.4 Realization-Dependent Models; 6.6 Different Classes of Model Specifications; 6.6.1 Bernoulli Model; 6.6.2 Dyadic Independence Models; 6.6.3 Markov Model; 6.6.4 Social Circuit Models; 6.7 Other Model Specifications; 6.8 Conclusion; 7 Dependence Graphs and Sufficient Statistics; 7.1 Chapter Outline; 7.2 Dependence Graph; 7.2.1 Hammersley-Clifford Theorem and Sufficient Statistics; 7.2.2 Sufficient Subgraphs for Nondirected Graphs. 7.3 Dependence Graphs Involving Attributes7.4 Conclusion; 8 Social Selection, Dyadic Covariates, and Geospatial Effects; 8.1 Individual, Dyadic, and Other Attributes; 8.2 ERGM Social Selection Models; 8.2.1 Models for Undirected Networks; 8.2.2 Models for Directed Networks; 8.2.3 Conditional Odds Ratios; 8.3 Dyadic Covariates; 8.4 Geospatial Effects; 8.5 Conclusion; 9 Autologistic Actor Attribute Models; 9.1 Social Influence Models; 9.2 Extending ERGMs to Distribution of Actor Attributes; 9.3 Possible Forms of Dependence; 9.3.1 Independent Attribute Assumption. |
ctrlnum | (OCoLC)818882894 |
dewey-full | 302.3 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 302 - Social interaction |
dewey-raw | 302.3 |
dewey-search | 302.3 |
dewey-sort | 3302.3 |
dewey-tens | 300 - Social sciences |
discipline | Soziologie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06573cam a2200781 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn818882894</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">121120t20132013enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">GZM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AUD</subfield><subfield code="d">AU@</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CUS</subfield><subfield code="d">OCLCF</subfield><subfield code="d">CUY</subfield><subfield code="d">MERUC</subfield><subfield code="d">ZCU</subfield><subfield code="d">ICG</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">G3B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">846693207</subfield><subfield code="a">880903730</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139841962</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139841963</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139839587</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139839586</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511894701</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511894708</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521193567</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521193566</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521141383</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521193566</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781139841962</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1139841963</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)818882894</subfield><subfield code="z">(OCoLC)846693207</subfield><subfield code="z">(OCoLC)880903730</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">HM741 .E96 2012</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">BUS</subfield><subfield code="x">047000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">FAM</subfield><subfield code="x">027000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">302.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SOC024000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Exponential random graph models for social networks :</subfield><subfield code="b">theory, methods, and applications /</subfield><subfield code="c">editors, Dean Lusher, Johan Koskinen, Garry Robbins.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxii, 336 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Structural analysis in the social sciences ;</subfield><subfield code="v">35</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Exponential Random Graph Models for Social Networks; Structural Analysis in the Social Sciences; Title; Copyright; Dedication; Contents; List of Figures; List of Tables; 1 Introduction; 1.1 Intent of This Book; 1.2 Software and Data; 1.3 Structure of the Book; 1.3.1 Section I: Rationale; 1.3.2 Section II: Methods; 1.3.3 Section III: Applications; 1.3.4 Section IV: Future; 1.4 How To Read This Book; 1.5 Assumed Knowledge of Social Network Analysis; Section I: Rationale; 2 What Are Exponential Random Graph Models?; 2.1 Exponential Random Graph Models: A Short Definition; 2.2 ERGM Theory.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3 Brief History of ERGMs2.4 Network Data Amenable to ERGMs; 3 Formation of Social Network Structure; 3.1 Tie Formation: Emergence of Structure; 3.1.1 Formation of Social Ties; 3.1.2 Network Configurations: Consequential Network Patterns and Related Processes; 3.1.3 Local Network Processes; 3.1.4 Dependency (and Theories of Network Dependence); 3.1.5 Complex Combination of Multiple and Nested Social Processes; 3.2 Framework for Explanations of Tie Formation; 3.2.1 Network Self-Organization; 3.2.2 Individual Attributes; 3.2.3 Exogenous Contextual Factors: Dyadic Covariates.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4 Simplified Account of an Exponential Random Graph Model as a Statistical Model4.1 Random Graphs; 4.2 Distributions of Graphs; 4.3 Some Basic Ideas about Statistical Modeling; 4.4 Homogeneity; 5 Example Exponential Random Graph Model Analysis; 5.1 Applied ERGM Example: Communication in "The Corporation"; 5.2 ERGM Model and Interpretation; 5.2.1 Multiple Explanations for Network Structure; Section II: Methods; 6 Exponential Random Graph Model Fundamentals; 6.1 Chapter Outline; 6.2 Network Tie-Variables; 6.3 Notion of Independence; 6.4 ERGMs from Generalized Linear Model Perspective.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.5 Possible Forms of Dependence6.5.1 Bernoulli Assumption; 6.5.2 Dyad-Independent Assumption; 6.5.3 Markov Dependence Assumption; 6.5.4 Realization-Dependent Models; 6.6 Different Classes of Model Specifications; 6.6.1 Bernoulli Model; 6.6.2 Dyadic Independence Models; 6.6.3 Markov Model; 6.6.4 Social Circuit Models; 6.7 Other Model Specifications; 6.8 Conclusion; 7 Dependence Graphs and Sufficient Statistics; 7.1 Chapter Outline; 7.2 Dependence Graph; 7.2.1 Hammersley-Clifford Theorem and Sufficient Statistics; 7.2.2 Sufficient Subgraphs for Nondirected Graphs.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.3 Dependence Graphs Involving Attributes7.4 Conclusion; 8 Social Selection, Dyadic Covariates, and Geospatial Effects; 8.1 Individual, Dyadic, and Other Attributes; 8.2 ERGM Social Selection Models; 8.2.1 Models for Undirected Networks; 8.2.2 Models for Directed Networks; 8.2.3 Conditional Odds Ratios; 8.3 Dyadic Covariates; 8.4 Geospatial Effects; 8.5 Conclusion; 9 Autologistic Actor Attribute Models; 9.1 Social Influence Models; 9.2 Extending ERGMs to Distribution of Actor Attributes; 9.3 Possible Forms of Dependence; 9.3.1 Independent Attribute Assumption.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">9.3.2 Network-Dependent Assumptions.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 303-325) and indexes.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides an account of the theoretical and methodological underpinnings of exponential random graph models (ERGMs).</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Social networks</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Social networks</subfield><subfield code="x">Research</subfield><subfield code="x">Graphic methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Réseaux sociaux</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Réseaux sociaux</subfield><subfield code="x">Recherche</subfield><subfield code="x">Méthodes graphiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">BUSINESS & ECONOMICS</subfield><subfield code="x">Negotiating.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">FAMILY & RELATIONSHIPS</subfield><subfield code="x">Interpersonal Relations.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Social networks</subfield><subfield code="x">Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lusher, Dean,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koskinen, Johan,</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjCY3tvdxWYH66W9vFJ99P</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2012034583</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robins, Garry,</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJfGRPJvGcv3Ftc3gcqG73</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2015047222</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Exponential random graph models for social networks (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFVxkmRXJWygB8YCmgT7Md</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Exponential random graph models for social networks.</subfield><subfield code="d">Cambridge : Cambridge University Press, 2013</subfield><subfield code="z">9780521193566</subfield><subfield code="w">(DLC) 2012021034</subfield><subfield code="w">(OCoLC)794838422</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Structural analysis in the social sciences ;</subfield><subfield code="v">35.</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=498293</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1057451</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">498293</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9929960</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10440770</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn818882894 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:04Z |
institution | BVB |
isbn | 9781139841962 1139841963 9781139839587 1139839586 9780511894701 0511894708 0521193567 9780521193566 |
language | English |
oclc_num | 818882894 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxii, 336 pages) |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Cambridge University Press, |
record_format | marc |
series | Structural analysis in the social sciences ; |
series2 | Structural analysis in the social sciences ; |
spelling | Exponential random graph models for social networks : theory, methods, and applications / editors, Dean Lusher, Johan Koskinen, Garry Robbins. Cambridge : Cambridge University Press, 2013. ©2013 1 online resource (xxii, 336 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Structural analysis in the social sciences ; 35 Print version record. Cover; Exponential Random Graph Models for Social Networks; Structural Analysis in the Social Sciences; Title; Copyright; Dedication; Contents; List of Figures; List of Tables; 1 Introduction; 1.1 Intent of This Book; 1.2 Software and Data; 1.3 Structure of the Book; 1.3.1 Section I: Rationale; 1.3.2 Section II: Methods; 1.3.3 Section III: Applications; 1.3.4 Section IV: Future; 1.4 How To Read This Book; 1.5 Assumed Knowledge of Social Network Analysis; Section I: Rationale; 2 What Are Exponential Random Graph Models?; 2.1 Exponential Random Graph Models: A Short Definition; 2.2 ERGM Theory. 2.3 Brief History of ERGMs2.4 Network Data Amenable to ERGMs; 3 Formation of Social Network Structure; 3.1 Tie Formation: Emergence of Structure; 3.1.1 Formation of Social Ties; 3.1.2 Network Configurations: Consequential Network Patterns and Related Processes; 3.1.3 Local Network Processes; 3.1.4 Dependency (and Theories of Network Dependence); 3.1.5 Complex Combination of Multiple and Nested Social Processes; 3.2 Framework for Explanations of Tie Formation; 3.2.1 Network Self-Organization; 3.2.2 Individual Attributes; 3.2.3 Exogenous Contextual Factors: Dyadic Covariates. 4 Simplified Account of an Exponential Random Graph Model as a Statistical Model4.1 Random Graphs; 4.2 Distributions of Graphs; 4.3 Some Basic Ideas about Statistical Modeling; 4.4 Homogeneity; 5 Example Exponential Random Graph Model Analysis; 5.1 Applied ERGM Example: Communication in "The Corporation"; 5.2 ERGM Model and Interpretation; 5.2.1 Multiple Explanations for Network Structure; Section II: Methods; 6 Exponential Random Graph Model Fundamentals; 6.1 Chapter Outline; 6.2 Network Tie-Variables; 6.3 Notion of Independence; 6.4 ERGMs from Generalized Linear Model Perspective. 6.5 Possible Forms of Dependence6.5.1 Bernoulli Assumption; 6.5.2 Dyad-Independent Assumption; 6.5.3 Markov Dependence Assumption; 6.5.4 Realization-Dependent Models; 6.6 Different Classes of Model Specifications; 6.6.1 Bernoulli Model; 6.6.2 Dyadic Independence Models; 6.6.3 Markov Model; 6.6.4 Social Circuit Models; 6.7 Other Model Specifications; 6.8 Conclusion; 7 Dependence Graphs and Sufficient Statistics; 7.1 Chapter Outline; 7.2 Dependence Graph; 7.2.1 Hammersley-Clifford Theorem and Sufficient Statistics; 7.2.2 Sufficient Subgraphs for Nondirected Graphs. 7.3 Dependence Graphs Involving Attributes7.4 Conclusion; 8 Social Selection, Dyadic Covariates, and Geospatial Effects; 8.1 Individual, Dyadic, and Other Attributes; 8.2 ERGM Social Selection Models; 8.2.1 Models for Undirected Networks; 8.2.2 Models for Directed Networks; 8.2.3 Conditional Odds Ratios; 8.3 Dyadic Covariates; 8.4 Geospatial Effects; 8.5 Conclusion; 9 Autologistic Actor Attribute Models; 9.1 Social Influence Models; 9.2 Extending ERGMs to Distribution of Actor Attributes; 9.3 Possible Forms of Dependence; 9.3.1 Independent Attribute Assumption. 9.3.2 Network-Dependent Assumptions. Includes bibliographical references (pages 303-325) and indexes. This book provides an account of the theoretical and methodological underpinnings of exponential random graph models (ERGMs). Social networks Mathematical models. Social networks Research Graphic methods. Réseaux sociaux Modèles mathématiques. Réseaux sociaux Recherche Méthodes graphiques. BUSINESS & ECONOMICS Negotiating. bisacsh FAMILY & RELATIONSHIPS Interpersonal Relations. bisacsh Social networks Mathematical models fast Lusher, Dean, editor. Koskinen, Johan, editor. https://id.oclc.org/worldcat/entity/E39PCjCY3tvdxWYH66W9vFJ99P http://id.loc.gov/authorities/names/n2012034583 Robins, Garry, editor. https://id.oclc.org/worldcat/entity/E39PBJfGRPJvGcv3Ftc3gcqG73 http://id.loc.gov/authorities/names/no2015047222 has work: Exponential random graph models for social networks (Text) https://id.oclc.org/worldcat/entity/E39PCFVxkmRXJWygB8YCmgT7Md https://id.oclc.org/worldcat/ontology/hasWork Print version: Exponential random graph models for social networks. Cambridge : Cambridge University Press, 2013 9780521193566 (DLC) 2012021034 (OCoLC)794838422 Structural analysis in the social sciences ; 35. FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=498293 Volltext |
spellingShingle | Exponential random graph models for social networks : theory, methods, and applications / Structural analysis in the social sciences ; Cover; Exponential Random Graph Models for Social Networks; Structural Analysis in the Social Sciences; Title; Copyright; Dedication; Contents; List of Figures; List of Tables; 1 Introduction; 1.1 Intent of This Book; 1.2 Software and Data; 1.3 Structure of the Book; 1.3.1 Section I: Rationale; 1.3.2 Section II: Methods; 1.3.3 Section III: Applications; 1.3.4 Section IV: Future; 1.4 How To Read This Book; 1.5 Assumed Knowledge of Social Network Analysis; Section I: Rationale; 2 What Are Exponential Random Graph Models?; 2.1 Exponential Random Graph Models: A Short Definition; 2.2 ERGM Theory. 2.3 Brief History of ERGMs2.4 Network Data Amenable to ERGMs; 3 Formation of Social Network Structure; 3.1 Tie Formation: Emergence of Structure; 3.1.1 Formation of Social Ties; 3.1.2 Network Configurations: Consequential Network Patterns and Related Processes; 3.1.3 Local Network Processes; 3.1.4 Dependency (and Theories of Network Dependence); 3.1.5 Complex Combination of Multiple and Nested Social Processes; 3.2 Framework for Explanations of Tie Formation; 3.2.1 Network Self-Organization; 3.2.2 Individual Attributes; 3.2.3 Exogenous Contextual Factors: Dyadic Covariates. 4 Simplified Account of an Exponential Random Graph Model as a Statistical Model4.1 Random Graphs; 4.2 Distributions of Graphs; 4.3 Some Basic Ideas about Statistical Modeling; 4.4 Homogeneity; 5 Example Exponential Random Graph Model Analysis; 5.1 Applied ERGM Example: Communication in "The Corporation"; 5.2 ERGM Model and Interpretation; 5.2.1 Multiple Explanations for Network Structure; Section II: Methods; 6 Exponential Random Graph Model Fundamentals; 6.1 Chapter Outline; 6.2 Network Tie-Variables; 6.3 Notion of Independence; 6.4 ERGMs from Generalized Linear Model Perspective. 6.5 Possible Forms of Dependence6.5.1 Bernoulli Assumption; 6.5.2 Dyad-Independent Assumption; 6.5.3 Markov Dependence Assumption; 6.5.4 Realization-Dependent Models; 6.6 Different Classes of Model Specifications; 6.6.1 Bernoulli Model; 6.6.2 Dyadic Independence Models; 6.6.3 Markov Model; 6.6.4 Social Circuit Models; 6.7 Other Model Specifications; 6.8 Conclusion; 7 Dependence Graphs and Sufficient Statistics; 7.1 Chapter Outline; 7.2 Dependence Graph; 7.2.1 Hammersley-Clifford Theorem and Sufficient Statistics; 7.2.2 Sufficient Subgraphs for Nondirected Graphs. 7.3 Dependence Graphs Involving Attributes7.4 Conclusion; 8 Social Selection, Dyadic Covariates, and Geospatial Effects; 8.1 Individual, Dyadic, and Other Attributes; 8.2 ERGM Social Selection Models; 8.2.1 Models for Undirected Networks; 8.2.2 Models for Directed Networks; 8.2.3 Conditional Odds Ratios; 8.3 Dyadic Covariates; 8.4 Geospatial Effects; 8.5 Conclusion; 9 Autologistic Actor Attribute Models; 9.1 Social Influence Models; 9.2 Extending ERGMs to Distribution of Actor Attributes; 9.3 Possible Forms of Dependence; 9.3.1 Independent Attribute Assumption. Social networks Mathematical models. Social networks Research Graphic methods. Réseaux sociaux Modèles mathématiques. Réseaux sociaux Recherche Méthodes graphiques. BUSINESS & ECONOMICS Negotiating. bisacsh FAMILY & RELATIONSHIPS Interpersonal Relations. bisacsh Social networks Mathematical models fast |
title | Exponential random graph models for social networks : theory, methods, and applications / |
title_auth | Exponential random graph models for social networks : theory, methods, and applications / |
title_exact_search | Exponential random graph models for social networks : theory, methods, and applications / |
title_full | Exponential random graph models for social networks : theory, methods, and applications / editors, Dean Lusher, Johan Koskinen, Garry Robbins. |
title_fullStr | Exponential random graph models for social networks : theory, methods, and applications / editors, Dean Lusher, Johan Koskinen, Garry Robbins. |
title_full_unstemmed | Exponential random graph models for social networks : theory, methods, and applications / editors, Dean Lusher, Johan Koskinen, Garry Robbins. |
title_short | Exponential random graph models for social networks : |
title_sort | exponential random graph models for social networks theory methods and applications |
title_sub | theory, methods, and applications / |
topic | Social networks Mathematical models. Social networks Research Graphic methods. Réseaux sociaux Modèles mathématiques. Réseaux sociaux Recherche Méthodes graphiques. BUSINESS & ECONOMICS Negotiating. bisacsh FAMILY & RELATIONSHIPS Interpersonal Relations. bisacsh Social networks Mathematical models fast |
topic_facet | Social networks Mathematical models. Social networks Research Graphic methods. Réseaux sociaux Modèles mathématiques. Réseaux sociaux Recherche Méthodes graphiques. BUSINESS & ECONOMICS Negotiating. FAMILY & RELATIONSHIPS Interpersonal Relations. Social networks Mathematical models |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=498293 |
work_keys_str_mv | AT lusherdean exponentialrandomgraphmodelsforsocialnetworkstheorymethodsandapplications AT koskinenjohan exponentialrandomgraphmodelsforsocialnetworkstheorymethodsandapplications AT robinsgarry exponentialrandomgraphmodelsforsocialnetworkstheorymethodsandapplications |