A brief guide to algebraic number theory /:
Publisher's description: This is an account of Algebraic Number Theory, a field which has grown to touch many other areas of pure mathematics. It is written primarily for beginning graduate students in pure mathematics, and encompasses everything that most such students are likely to need; othe...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
2001.
|
Schriftenreihe: | London Mathematical Society student texts ;
50. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Publisher's description: This is an account of Algebraic Number Theory, a field which has grown to touch many other areas of pure mathematics. It is written primarily for beginning graduate students in pure mathematics, and encompasses everything that most such students are likely to need; others who need the material will also find it accessible. It assumes no prior knowledge of the subject, but a firm basis in the theory of field extensions at an undergraduate level is required, and an appendix covers other prerequisites. The book covers the two basic methods of approaching Algebraic Number Theory, using ideals and valuations, and includes material on the most usual kinds of algebraic number field, the functional equation of the zeta function and a substantial digression on the classical approach to Fermat's Last Theorem, as well as a comprehensive account of class field theory. Many exercises and an annotated reading list are also included. |
Beschreibung: | 1 online resource (ix, 146 pages) |
Bibliographie: | Includes bibliographical references (pages 143-144) and index. |
ISBN: | 9781139173360 1139173367 9781107089549 1107089549 9781107095854 1107095859 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn817930348 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 121114s2001 enk ob 001 0 eng d | ||
040 | |a CAMBR |b eng |e pn |c CAMBR |d N$T |d IDEBK |d OCLCF |d YDXCP |d EBLCP |d DEBSZ |d OCLCQ |d AGLDB |d OCLCQ |d OCLCO |d UAB |d OCLCQ |d VTS |d REC |d OCLCO |d STF |d AU@ |d OCLCO |d UKAHL |d OCLCQ |d AJS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 846494739 |a 850149068 | ||
020 | |a 9781139173360 |q (electronic bk.) | ||
020 | |a 1139173367 |q (electronic bk.) | ||
020 | |a 9781107089549 |q (electronic bk.) | ||
020 | |a 1107089549 |q (electronic bk.) | ||
020 | |a 9781107095854 | ||
020 | |a 1107095859 | ||
020 | |z 0521004233 | ||
020 | |z 9780521004237 | ||
020 | |z 052180292X | ||
020 | |z 9780521802925 | ||
035 | |a (OCoLC)817930348 |z (OCoLC)846494739 |z (OCoLC)850149068 | ||
050 | 4 | |a QA241 |b .S85 2001eb | |
072 | 7 | |a MAT |x 022000 |2 bisacsh | |
082 | 7 | |a 512/.74 |2 22 | |
084 | |a 31.14 |2 bcl | ||
084 | |a SK 180 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Swinnerton-Dyer, H. P. F. | |
245 | 1 | 2 | |a A brief guide to algebraic number theory / |c H.P.F. Swinnerton-Dyer. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 2001. | ||
300 | |a 1 online resource (ix, 146 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society student texts ; |v 50 | |
504 | |a Includes bibliographical references (pages 143-144) and index. | ||
505 | 0 | |a Numbers and ideals -- Valuations -- Special fields -- Analytic methods -- Class field theory. | |
520 | |a Publisher's description: This is an account of Algebraic Number Theory, a field which has grown to touch many other areas of pure mathematics. It is written primarily for beginning graduate students in pure mathematics, and encompasses everything that most such students are likely to need; others who need the material will also find it accessible. It assumes no prior knowledge of the subject, but a firm basis in the theory of field extensions at an undergraduate level is required, and an appendix covers other prerequisites. The book covers the two basic methods of approaching Algebraic Number Theory, using ideals and valuations, and includes material on the most usual kinds of algebraic number field, the functional equation of the zeta function and a substantial digression on the classical approach to Fermat's Last Theorem, as well as a comprehensive account of class field theory. Many exercises and an annotated reading list are also included. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Algebraic number theory. |0 http://id.loc.gov/authorities/subjects/sh85003436 | |
650 | 6 | |a Théorie algébrique des nombres. | |
650 | 7 | |a MATHEMATICS |x Number Theory. |2 bisacsh | |
650 | 7 | |a Algebraic number theory |2 fast | |
650 | 7 | |a Algebraische Zahlentheorie |2 gnd |0 http://d-nb.info/gnd/4001170-7 | |
650 | 1 | 7 | |a Getaltheorie. |2 gtt |
650 | 7 | |a TEORIA DOS NÚMEROS. |2 larpcal | |
650 | 7 | |a NÚMEROS ALGÉBRICOS. |2 larpcal | |
758 | |i has work: |a A brief guide to algebraic number theory (Text) |1 https://id.oclc.org/worldcat/entity/E39PCYDGVm3CPKbgkGJvXGK3HC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Swinnerton-Dyer, H.P.F. |t Brief guide to algebraic number theory. |d Cambridge ; New York : Cambridge University Press, 2001 |z 0521004233 |w (DLC) 2001270847 |w (OCoLC)46448263 |
830 | 0 | |a London Mathematical Society student texts ; |v 50. |0 http://id.loc.gov/authorities/names/n84727069 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570391 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH22950168 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26478739 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1179160 | ||
938 | |a EBSCOhost |b EBSC |n 570391 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25773507 | ||
938 | |a YBP Library Services |b YANK |n 10734792 | ||
938 | |a YBP Library Services |b YANK |n 10762264 | ||
938 | |a YBP Library Services |b YANK |n 9249116 | ||
938 | |a YBP Library Services |b YANK |n 10794862 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn817930348 |
---|---|
_version_ | 1816882214038667264 |
adam_text | |
any_adam_object | |
author | Swinnerton-Dyer, H. P. F. |
author_facet | Swinnerton-Dyer, H. P. F. |
author_role | |
author_sort | Swinnerton-Dyer, H. P. F. |
author_variant | h p f s d hpfs hpfsd |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA241 |
callnumber-raw | QA241 .S85 2001eb |
callnumber-search | QA241 .S85 2001eb |
callnumber-sort | QA 3241 S85 42001EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 180 |
collection | ZDB-4-EBA |
contents | Numbers and ideals -- Valuations -- Special fields -- Analytic methods -- Class field theory. |
ctrlnum | (OCoLC)817930348 |
dewey-full | 512/.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.74 |
dewey-search | 512/.74 |
dewey-sort | 3512 274 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04309cam a2200733 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn817930348</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">121114s2001 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CAMBR</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CAMBR</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">846494739</subfield><subfield code="a">850149068</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139173360</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139173367</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107089549</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107089549</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107095854</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107095859</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521004233</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521004237</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">052180292X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521802925</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)817930348</subfield><subfield code="z">(OCoLC)846494739</subfield><subfield code="z">(OCoLC)850149068</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA241</subfield><subfield code="b">.S85 2001eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">022000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.74</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.14</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Swinnerton-Dyer, H. P. F.</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A brief guide to algebraic number theory /</subfield><subfield code="c">H.P.F. Swinnerton-Dyer.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2001.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 146 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society student texts ;</subfield><subfield code="v">50</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 143-144) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Numbers and ideals -- Valuations -- Special fields -- Analytic methods -- Class field theory.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Publisher's description: This is an account of Algebraic Number Theory, a field which has grown to touch many other areas of pure mathematics. It is written primarily for beginning graduate students in pure mathematics, and encompasses everything that most such students are likely to need; others who need the material will also find it accessible. It assumes no prior knowledge of the subject, but a firm basis in the theory of field extensions at an undergraduate level is required, and an appendix covers other prerequisites. The book covers the two basic methods of approaching Algebraic Number Theory, using ideals and valuations, and includes material on the most usual kinds of algebraic number field, the functional equation of the zeta function and a substantial digression on the classical approach to Fermat's Last Theorem, as well as a comprehensive account of class field theory. Many exercises and an annotated reading list are also included.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algebraic number theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003436</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie algébrique des nombres.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Number Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraic number theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4001170-7</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Getaltheorie.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TEORIA DOS NÚMEROS.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NÚMEROS ALGÉBRICOS.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">A brief guide to algebraic number theory (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCYDGVm3CPKbgkGJvXGK3HC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Swinnerton-Dyer, H.P.F.</subfield><subfield code="t">Brief guide to algebraic number theory.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 2001</subfield><subfield code="z">0521004233</subfield><subfield code="w">(DLC) 2001270847</subfield><subfield code="w">(OCoLC)46448263</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society student texts ;</subfield><subfield code="v">50.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84727069</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570391</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH22950168</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26478739</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1179160</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">570391</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25773507</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10734792</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10762264</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9249116</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10794862</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn817930348 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:03Z |
institution | BVB |
isbn | 9781139173360 1139173367 9781107089549 1107089549 9781107095854 1107095859 |
language | English |
oclc_num | 817930348 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (ix, 146 pages) |
psigel | ZDB-4-EBA |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society student texts ; |
series2 | London Mathematical Society student texts ; |
spelling | Swinnerton-Dyer, H. P. F. A brief guide to algebraic number theory / H.P.F. Swinnerton-Dyer. Cambridge ; New York : Cambridge University Press, 2001. 1 online resource (ix, 146 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society student texts ; 50 Includes bibliographical references (pages 143-144) and index. Numbers and ideals -- Valuations -- Special fields -- Analytic methods -- Class field theory. Publisher's description: This is an account of Algebraic Number Theory, a field which has grown to touch many other areas of pure mathematics. It is written primarily for beginning graduate students in pure mathematics, and encompasses everything that most such students are likely to need; others who need the material will also find it accessible. It assumes no prior knowledge of the subject, but a firm basis in the theory of field extensions at an undergraduate level is required, and an appendix covers other prerequisites. The book covers the two basic methods of approaching Algebraic Number Theory, using ideals and valuations, and includes material on the most usual kinds of algebraic number field, the functional equation of the zeta function and a substantial digression on the classical approach to Fermat's Last Theorem, as well as a comprehensive account of class field theory. Many exercises and an annotated reading list are also included. Print version record. Algebraic number theory. http://id.loc.gov/authorities/subjects/sh85003436 Théorie algébrique des nombres. MATHEMATICS Number Theory. bisacsh Algebraic number theory fast Algebraische Zahlentheorie gnd http://d-nb.info/gnd/4001170-7 Getaltheorie. gtt TEORIA DOS NÚMEROS. larpcal NÚMEROS ALGÉBRICOS. larpcal has work: A brief guide to algebraic number theory (Text) https://id.oclc.org/worldcat/entity/E39PCYDGVm3CPKbgkGJvXGK3HC https://id.oclc.org/worldcat/ontology/hasWork Print version: Swinnerton-Dyer, H.P.F. Brief guide to algebraic number theory. Cambridge ; New York : Cambridge University Press, 2001 0521004233 (DLC) 2001270847 (OCoLC)46448263 London Mathematical Society student texts ; 50. http://id.loc.gov/authorities/names/n84727069 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570391 Volltext |
spellingShingle | Swinnerton-Dyer, H. P. F. A brief guide to algebraic number theory / London Mathematical Society student texts ; Numbers and ideals -- Valuations -- Special fields -- Analytic methods -- Class field theory. Algebraic number theory. http://id.loc.gov/authorities/subjects/sh85003436 Théorie algébrique des nombres. MATHEMATICS Number Theory. bisacsh Algebraic number theory fast Algebraische Zahlentheorie gnd http://d-nb.info/gnd/4001170-7 Getaltheorie. gtt TEORIA DOS NÚMEROS. larpcal NÚMEROS ALGÉBRICOS. larpcal |
subject_GND | http://id.loc.gov/authorities/subjects/sh85003436 http://d-nb.info/gnd/4001170-7 |
title | A brief guide to algebraic number theory / |
title_auth | A brief guide to algebraic number theory / |
title_exact_search | A brief guide to algebraic number theory / |
title_full | A brief guide to algebraic number theory / H.P.F. Swinnerton-Dyer. |
title_fullStr | A brief guide to algebraic number theory / H.P.F. Swinnerton-Dyer. |
title_full_unstemmed | A brief guide to algebraic number theory / H.P.F. Swinnerton-Dyer. |
title_short | A brief guide to algebraic number theory / |
title_sort | brief guide to algebraic number theory |
topic | Algebraic number theory. http://id.loc.gov/authorities/subjects/sh85003436 Théorie algébrique des nombres. MATHEMATICS Number Theory. bisacsh Algebraic number theory fast Algebraische Zahlentheorie gnd http://d-nb.info/gnd/4001170-7 Getaltheorie. gtt TEORIA DOS NÚMEROS. larpcal NÚMEROS ALGÉBRICOS. larpcal |
topic_facet | Algebraic number theory. Théorie algébrique des nombres. MATHEMATICS Number Theory. Algebraic number theory Algebraische Zahlentheorie Getaltheorie. TEORIA DOS NÚMEROS. NÚMEROS ALGÉBRICOS. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570391 |
work_keys_str_mv | AT swinnertondyerhpf abriefguidetoalgebraicnumbertheory AT swinnertondyerhpf briefguidetoalgebraicnumbertheory |