Chemical sensors :: simulation and modeling. Volume 3, Solid-state devices /
This is the third of a new five-volume comprehensive reference work that provides computer simulation and modeling techniques in various fields of chemical sensing and the important applications for chemical sensing such as bulk and surface diffusion, adsorption, surface reactions, sintering, conduc...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[New York, N.Y.] (222 East 46th Street, New York, NY 10017) :
Momentum Press,
2012.
|
Schriftenreihe: | Sensor technology series.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This is the third of a new five-volume comprehensive reference work that provides computer simulation and modeling techniques in various fields of chemical sensing and the important applications for chemical sensing such as bulk and surface diffusion, adsorption, surface reactions, sintering, conductivity, mass transport, and interphase interactions. |
Beschreibung: | Title from PDF title page (viewed on October 28, 2012). |
Beschreibung: | 1 online resource (1 online resource (xxi, 517 pages)) : illustrations, digital file. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781606503171 1606503170 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn815248314 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||m|||a | ||
008 | 121029s2012 nyua foab 001 0 eng d | ||
040 | |a CaBNvSL |b eng |e pn |c J2I |d J2I |d N$T |d E7B |d YDXCP |d OCLCF |d EBLCP |d LGG |d OCLCQ |d Z5A |d UPM |d STF |d VTS |d M8D |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL | ||
019 | |a 818858320 | ||
020 | |a 9781606503171 |q (electronic bk.) | ||
020 | |a 1606503170 |q (electronic bk.) | ||
020 | |z 9781606503157 |q (print) | ||
020 | |z 1606503154 |q (print) | ||
024 | 7 | |a 10.5643/9781606503171 |2 doi | |
035 | |a (OCoLC)815248314 |z (OCoLC)818858320 | ||
050 | 4 | |a TP159.C46 |b C447 2012 | |
072 | 7 | |a TEC |x 064000 |2 bisacsh | |
082 | 7 | |a 681.2 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Chemical sensors : |b simulation and modeling. |n Volume 3, |p Solid-state devices / |c edited by Ghenadii Korotcenkov. |
246 | 3 | 0 | |a Simulation and modeling |
246 | 3 | 0 | |a Solid-state devices |
260 | |a [New York, N.Y.] (222 East 46th Street, New York, NY 10017) : |b Momentum Press, |c 2012. | ||
300 | |a 1 online resource (1 online resource (xxi, 517 pages)) : |b illustrations, digital file. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Sensors technology series | |
500 | |a Title from PDF title page (viewed on October 28, 2012). | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Preface -- About the editor -- Contributors. | |
505 | 8 | |a 1. Molecular modeling: application to hydrogen interaction with carbon-supported transition metal systems / Samir H. Mushrif, Gilles H. Peslherbe, Alejandro D. Rey -- 1. Introduction -- 2. Molecular modeling methods -- 2.1 Molecular mechanics -- 2.2 Electronic structure theory -- 2.3 Density functional theory -- 2.4 Plane-wave pseudo-potential methods -- 2.5 Optimization techniques -- 3. Modeling hydrogen interaction with doped transition metal carbon materials using Car-Parrinello molecular dynamics and metadynamics -- 3.1 Dissociative chemisorption -- 3.2 Spillover and migration of hydrogen -- 4. Summary -- References. | |
505 | 8 | |a 2. Surface modification of diamond for chemical sensor applications: simulation and modeling / Karin Larsson -- 1. Introduction -- 2. Factors influencing surface reactivity -- 3. Diamond as a sensor material -- 3.1 Background -- 3.2 Electrochemical properties of diamond surfaces -- 4. Theory and methodology -- 4.1 Density functional theory -- 4.2 Force-field methods -- 5. Diamond surface chemistry -- 5.1 Electron transfer from an H-terminated diamond (100) surface to an atmospheric water adlayer; a quantum mechanical study -- 5.2 Effect of partial termination with oxygen-containing species on the electron-transfer processes -- 5.3 The energetic possibility to completely oxygen-terminate a diamond surface -- 5.4 Effect on electron-transfer processes of complete termination with oxygen-containing species -- 5.5 Biosensing -- 5.6 Simulation of the pluronic F108 adsorption layer on F-, H-, O-, and OH-terminated NCD surfaces -- References. | |
505 | 8 | |a 3. General approach to design and modeling of nanostructure-modified semiconductor and nanowire interfaces for sensor and microreactor applications / J.L. Gole, W. Laminack -- 1. Introduction: the IHSAB model for porous silicon sensors and microreactors -- 2. The interface on extrinsic semiconductors -- 3. The IHSAB concept as the basis for nanostructure-directed physisorption (electron transduction) at sensor interfaces -- 4. The extrinsic semiconductor framework -- 5. Physisorption (electron transduction) and the response of a nanostructure-modified sensor platform -- 6. The underlying IHSAB principle -- 7. Application to nanowire configurations -- 8. Application to additional semiconductors -- 9. Time-varying operation and false-positives; sensing in an unsaturated mode -- 10. Sensor rejuvenation -- 11. Summary of sensor attributes -- 12. Extension to phytocatalysis-enhanced system -- 13. Mixed gas format -- 14. Comparison to alternative technologies -- 15. Chemisorption and the analog of the HSAB principle -- 16. Physisorption (electron transduction) versus chemisorption -- 17. Outlook -- Acknowledgments -- References. | |
505 | 8 | |a 4. Detection mechanisms and physico-chemical models of solid-state humidity sensors / V.K. Khanna -- 1. Introduction -- 2. Humidity-sensitive materials -- 3. Resistive and capacitive humidity-sensing configurations, and other structures -- 4. Equivalent circuit modeling of humidity sensors -- 5. General approaches to the formulation of humidity sensor models -- 6. Theories of adsorption of water on the surfaces of solids -- 6.1 Hydroxylation of the surface by chemisorption of water -- 6.2 Mono- and multilayer physisorption and Brunauer-Emmett-Teller (BET) theory -- 6.3 Capillary condensation of water vapor -- 7. Modeling the kinetics of diffusion of water in solids -- 8. Surface conduction mechanisms on solids and humidity- induced surface conductivity modulation -- 9. Dielectric properties of solids containing adsorbed water -- 9.1 The modified Clausius-Mosotti equation in the presence of moisture -- 9.2 Maxwell-Wagner effect in heterogeneous binary systems -- 9.3 Sillars's theory for spheroidal particles sparsely distributed in an insulator -- 10. Fleming's approach: surface electrostatic field model -- 11. Theory of the porous alumina humidity sensor, and simulation of its capacitance and resistance characteristics -- 11.1 Microstructure of porous anodic alumina -- 11.2 Water vapor adsorption on porous alumina -- 11.3 Adsorption isotherm on porous alumina -- 11.4 Surface conduction mechanisms on porous alumina and their correlation with surface conductivity variation with humidity -- 11.5 Statistical distribution of humidity-dependent surface conductivity of alumina among pores -- 11.6 Response of dielectric properties of alumina to humidity changes -- 11.7 Influence of pore shape parameter [lambda] on capacitance and resistance variation -- 12. Dynamic behavior and transient response modeling of humidity sensors -- 12.1 The Tetelin-Pellet model -- 12.2 Designing a short-response-time humidity sensor structure -- 13. Modeling the diffusion kinetics of cylindrical film and cylindrical body structures for enhanced-speed humidity sensing -- 14. Effect of ionic doping on humidity sensor performance -- 14.1 Anionic doping in Al2O3 humidity sensors -- 14.2 Alternative doping techniques -- 15. Modeling the drift and ageing of humidity sensors -- 16. Artificial neural network (ANN)-based behavioral modeling of humidity sensors -- 17. Modeling other types of humidity sensors -- 17.1 Microgravimetric humidity sensors: the Sauerbrey equation -- 17.2 Surface acoustic wave (SAW) delay-line humidity sensors using velocity and attenuation changes -- 17.3 Microcantilever stress-based humidity sensors: Stoney's formula -- 17.4 Field-effect humidity sensors -- 18. Discussion of humidity sensor models -- 19. Conclusions and outlook -- Dedication -- Acknowledgments -- References. | |
505 | 8 | |a 5. The sensing mechanism and response simulation of the MIS hydrogen sensor / Linfeng Zhang -- 1. Introduction -- 2. Sensors and their sensing mechanisms -- 2.1 Metal-semiconductor sensors -- 2.2 Metal-semiconductor-metal sensors -- 2.3 Metal-insulator-semiconductor sensors -- 3. Gas diffusion -- 4. Kinetics of surface and interface adsorption -- 5. Simulations -- 5.1 MS sensors -- 5.2 MIS sensors -- Conclusions -- Appendix -- References. | |
505 | 8 | |a 6. Modeling and signal processing strategies for microacoustic chemical sensors / G. Fischerauer, F. Thalmayr -- 1. Sensing principles of microacoustic chemical sensors -- 1.1 Introduction -- 1.2 Microacoustic chemical sensors -- 2. Simulation and modeling of acoustic wave propagation, excitation, and detection -- 2.1 Analytical solution to the undisturbed wave propagation problem -- 2.2 Analytical solution to the wave excitation and detection problem -- 2.3 Finite-element method -- 2.4 Equivalent-circuit models -- 3. Sensor steady-state response -- 3.1 Perturbation approaches -- 3.2 Temperature effects -- 4. Sensor dynamics -- 4.1 Linear model -- 4.2 State-space description -- 5. Sensor signal processing -- 5.1 Suppression of temperature effects -- 5.2 Signal processing based on linear analytical model -- 5.3 Wiener deconvolution -- 5.4 Kalman filter -- 5.5 Discussion of state-space-based signal processing -- 6. Summary -- 7. Nomenclature -- References. | |
505 | 8 | |a 7. Hierarchical simulation of carbon nanotube array-based chemical sensors with acoustic pickup / V. Barkaline, A. Chashynski -- 1. Introduction -- 2. Simulation levels of nanodesign -- 3. Prototype of hierarchical simulation system for nanodesign -- 4. Continual simulation of SAW propagation in a layered medium -- 5. Structure of carbon nanotubes and adsoption properties of CNT arrays -- 5.1 Atomic structure of single- and multiwalled nanotubes -- 5.2 Quantum mechanical study of the adsorption of simple gases on carbon nanotubes -- 5.3 Molecular mechanics of physical adsorption of the individual molecules on the CNT -- 6. Simulation of a carbon nanotube array-based chemical sensor with an acoustic pickup -- 6.1 Molecular dynamics calculation of the elastic moduli of individual carbon nanotubes -- 6.2 Molecular dynamics study of distribution of adsorbed molecules in CNT array pores and calculation of acoustic parameters of CNT arrays -- 6.3 SAW phase velocity change due to molecular adsorption on CNT arrays in SAW-based chemical sensors -- 6.4 Simulation of adsorption on the "swelling" CNT array -- 7. Conclusion -- References. | |
505 | 8 | |a 8. Microcantilever-based chemical sensors / S. Martin, G. Louarn -- 1. Introduction -- 2. Natural frequencies and normal modes of vibration -- 3. Experimental procedure -- 4. Natural frequencies of free rectangular cantilevers -- 4.1 Analytical calculations -- 4.2 Simulation with finite-element method -- 4.3 Experimental and modelling results on a rectangular beam -- 5. Natural frequencies of V-shaped microcantilevers -- 6. Natural frequencies of V-shaped coated cantilevers -- 7. Conclusion and prospects -- 8. Acknowledgments -- References. | |
505 | 8 | |a 9. Modeling of micromachined thermoelectric gas sensors / S. Udina, M. Carmona, C. Calaza -- 1. Principles of MTGS modeling -- 1.1 Introduction to the theory of heat transfer -- 1.2 Key thermal contributions and parameters involved in sensor operation and modeling -- 1.3 Influence of the packaging -- 2. Modeling and simulation methods -- 2.1 Complexity model levels -- 2.2 Analytical models -- 2.3 Finite-element method -- 2.4 Thermal conductivity of gases -- 3. Application to thermoelectric gas sensors -- 3.1 Case study -- 3.2 Analytical model -- 3.3 Static FEM -- 3.4 Dynamic FEM -- 3.5 Device optimization -- Acknowledgments -- Nomenclature -- References. | |
505 | 8 | |a 10. Modeling, simulation, and information processing for development of a polymeric electronic nose system / R.D.S. Yadava -- 1. Introduction -- 2. Sensor array approach -- 2.1 System characteristics -- 2.2 Sensing platform and system design -- 3. Sensor transient approach -- 4. Design and modeling of SAW sensing platform -- 4.1 Generic sensor model -- 4.2 Designing a SAW platform for mass sensitivity -- 4.3 Designing a SAW platform for multifrequency sensing -- 5. Vapor solvation, diffusion, and polymer loading -- 5.1 Solvation model and data processing -- 5.2 Sorption kinetics and transient signal model -- 6. Data mining and simulation for polymer selection -- 6.1 Case study of explosive vapor detection -- 6.2 Case study of body-odor detection -- 7. Optimizing data processing methods -- 7.1 Transient signal analysis -- 7.2 Steady-state sensor array response analysis -- 7.3 Enhancing sensor intelligence by information fusion -- 7.4 Simultaneous recognition and quantitation -- 8. Conclusion -- Acknowledgments -- References -- Index. | |
520 | 3 | |a This is the third of a new five-volume comprehensive reference work that provides computer simulation and modeling techniques in various fields of chemical sensing and the important applications for chemical sensing such as bulk and surface diffusion, adsorption, surface reactions, sintering, conductivity, mass transport, and interphase interactions. | |
650 | 0 | |a Chemical detectors. |0 http://id.loc.gov/authorities/subjects/sh85022895 | |
650 | 0 | |a Solid state electronics. |0 http://id.loc.gov/authorities/subjects/sh85124637 | |
650 | 0 | |a Nanostructured materials. |0 http://id.loc.gov/authorities/subjects/sh93000864 | |
650 | 2 | |a Nanostructures |0 https://id.nlm.nih.gov/mesh/D049329 | |
650 | 6 | |a Détecteurs de produits chimiques. | |
650 | 6 | |a Électronique de l'état solide. | |
650 | 6 | |a Nanomatériaux. | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Sensors. |2 bisacsh | |
650 | 7 | |a Chemical detectors |2 fast | |
650 | 7 | |a Nanostructured materials |2 fast | |
650 | 7 | |a Solid state electronics |2 fast | |
653 | |a chemical sensors | ||
653 | |a molecular modeling | ||
653 | |a solid-state devices | ||
653 | |a electrochemistry of surfaces | ||
653 | |a nanostructures | ||
653 | |a semiconductors | ||
653 | |a humidity sensor | ||
653 | |a MIS hydrogen sensor | ||
653 | |a microacoustic chemical sensor | ||
653 | |a carbon nanotube array | ||
653 | |a microcantilever-based sensor | ||
653 | |a thermoelectric gas sensor | ||
653 | |a polymeric electronic nose | ||
700 | 1 | |a Korotchenkov, G. S. |q (Gennadiĭ Sergeevich) |0 http://id.loc.gov/authorities/names/n85154129 | |
758 | |i has work: |a Chemical sensors Solid-statedevices Volume 3 (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGvRYWCFVhv8myGQFCPKgq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 1606503154 |z 9781606503157 |
830 | 0 | |a Sensor technology series. |0 http://id.loc.gov/authorities/names/no2010138455 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=511572 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL954642 | ||
938 | |a ebrary |b EBRY |n ebr10629652 | ||
938 | |a EBSCOhost |b EBSC |n 511572 | ||
938 | |a YBP Library Services |b YANK |n 9913398 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn815248314 |
---|---|
_version_ | 1816882211772694528 |
adam_text | |
any_adam_object | |
author2 | Korotchenkov, G. S. (Gennadiĭ Sergeevich) |
author2_role | |
author2_variant | g s k gs gsk |
author_GND | http://id.loc.gov/authorities/names/n85154129 |
author_facet | Korotchenkov, G. S. (Gennadiĭ Sergeevich) |
author_sort | Korotchenkov, G. S. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TP159 |
callnumber-raw | TP159.C46 C447 2012 |
callnumber-search | TP159.C46 C447 2012 |
callnumber-sort | TP 3159 C46 C447 42012 |
callnumber-subject | TP - Chemical Technology |
collection | ZDB-4-EBA |
contents | Preface -- About the editor -- Contributors. 1. Molecular modeling: application to hydrogen interaction with carbon-supported transition metal systems / Samir H. Mushrif, Gilles H. Peslherbe, Alejandro D. Rey -- 1. Introduction -- 2. Molecular modeling methods -- 2.1 Molecular mechanics -- 2.2 Electronic structure theory -- 2.3 Density functional theory -- 2.4 Plane-wave pseudo-potential methods -- 2.5 Optimization techniques -- 3. Modeling hydrogen interaction with doped transition metal carbon materials using Car-Parrinello molecular dynamics and metadynamics -- 3.1 Dissociative chemisorption -- 3.2 Spillover and migration of hydrogen -- 4. Summary -- References. 2. Surface modification of diamond for chemical sensor applications: simulation and modeling / Karin Larsson -- 1. Introduction -- 2. Factors influencing surface reactivity -- 3. Diamond as a sensor material -- 3.1 Background -- 3.2 Electrochemical properties of diamond surfaces -- 4. Theory and methodology -- 4.1 Density functional theory -- 4.2 Force-field methods -- 5. Diamond surface chemistry -- 5.1 Electron transfer from an H-terminated diamond (100) surface to an atmospheric water adlayer; a quantum mechanical study -- 5.2 Effect of partial termination with oxygen-containing species on the electron-transfer processes -- 5.3 The energetic possibility to completely oxygen-terminate a diamond surface -- 5.4 Effect on electron-transfer processes of complete termination with oxygen-containing species -- 5.5 Biosensing -- 5.6 Simulation of the pluronic F108 adsorption layer on F-, H-, O-, and OH-terminated NCD surfaces -- References. 3. General approach to design and modeling of nanostructure-modified semiconductor and nanowire interfaces for sensor and microreactor applications / J.L. Gole, W. Laminack -- 1. Introduction: the IHSAB model for porous silicon sensors and microreactors -- 2. The interface on extrinsic semiconductors -- 3. The IHSAB concept as the basis for nanostructure-directed physisorption (electron transduction) at sensor interfaces -- 4. The extrinsic semiconductor framework -- 5. Physisorption (electron transduction) and the response of a nanostructure-modified sensor platform -- 6. The underlying IHSAB principle -- 7. Application to nanowire configurations -- 8. Application to additional semiconductors -- 9. Time-varying operation and false-positives; sensing in an unsaturated mode -- 10. Sensor rejuvenation -- 11. Summary of sensor attributes -- 12. Extension to phytocatalysis-enhanced system -- 13. Mixed gas format -- 14. Comparison to alternative technologies -- 15. Chemisorption and the analog of the HSAB principle -- 16. Physisorption (electron transduction) versus chemisorption -- 17. Outlook -- Acknowledgments -- References. 4. Detection mechanisms and physico-chemical models of solid-state humidity sensors / V.K. Khanna -- 1. Introduction -- 2. Humidity-sensitive materials -- 3. Resistive and capacitive humidity-sensing configurations, and other structures -- 4. Equivalent circuit modeling of humidity sensors -- 5. General approaches to the formulation of humidity sensor models -- 6. Theories of adsorption of water on the surfaces of solids -- 6.1 Hydroxylation of the surface by chemisorption of water -- 6.2 Mono- and multilayer physisorption and Brunauer-Emmett-Teller (BET) theory -- 6.3 Capillary condensation of water vapor -- 7. Modeling the kinetics of diffusion of water in solids -- 8. Surface conduction mechanisms on solids and humidity- induced surface conductivity modulation -- 9. Dielectric properties of solids containing adsorbed water -- 9.1 The modified Clausius-Mosotti equation in the presence of moisture -- 9.2 Maxwell-Wagner effect in heterogeneous binary systems -- 9.3 Sillars's theory for spheroidal particles sparsely distributed in an insulator -- 10. Fleming's approach: surface electrostatic field model -- 11. Theory of the porous alumina humidity sensor, and simulation of its capacitance and resistance characteristics -- 11.1 Microstructure of porous anodic alumina -- 11.2 Water vapor adsorption on porous alumina -- 11.3 Adsorption isotherm on porous alumina -- 11.4 Surface conduction mechanisms on porous alumina and their correlation with surface conductivity variation with humidity -- 11.5 Statistical distribution of humidity-dependent surface conductivity of alumina among pores -- 11.6 Response of dielectric properties of alumina to humidity changes -- 11.7 Influence of pore shape parameter [lambda] on capacitance and resistance variation -- 12. Dynamic behavior and transient response modeling of humidity sensors -- 12.1 The Tetelin-Pellet model -- 12.2 Designing a short-response-time humidity sensor structure -- 13. Modeling the diffusion kinetics of cylindrical film and cylindrical body structures for enhanced-speed humidity sensing -- 14. Effect of ionic doping on humidity sensor performance -- 14.1 Anionic doping in Al2O3 humidity sensors -- 14.2 Alternative doping techniques -- 15. Modeling the drift and ageing of humidity sensors -- 16. Artificial neural network (ANN)-based behavioral modeling of humidity sensors -- 17. Modeling other types of humidity sensors -- 17.1 Microgravimetric humidity sensors: the Sauerbrey equation -- 17.2 Surface acoustic wave (SAW) delay-line humidity sensors using velocity and attenuation changes -- 17.3 Microcantilever stress-based humidity sensors: Stoney's formula -- 17.4 Field-effect humidity sensors -- 18. Discussion of humidity sensor models -- 19. Conclusions and outlook -- Dedication -- Acknowledgments -- References. 5. The sensing mechanism and response simulation of the MIS hydrogen sensor / Linfeng Zhang -- 1. Introduction -- 2. Sensors and their sensing mechanisms -- 2.1 Metal-semiconductor sensors -- 2.2 Metal-semiconductor-metal sensors -- 2.3 Metal-insulator-semiconductor sensors -- 3. Gas diffusion -- 4. Kinetics of surface and interface adsorption -- 5. Simulations -- 5.1 MS sensors -- 5.2 MIS sensors -- Conclusions -- Appendix -- References. 6. Modeling and signal processing strategies for microacoustic chemical sensors / G. Fischerauer, F. Thalmayr -- 1. Sensing principles of microacoustic chemical sensors -- 1.1 Introduction -- 1.2 Microacoustic chemical sensors -- 2. Simulation and modeling of acoustic wave propagation, excitation, and detection -- 2.1 Analytical solution to the undisturbed wave propagation problem -- 2.2 Analytical solution to the wave excitation and detection problem -- 2.3 Finite-element method -- 2.4 Equivalent-circuit models -- 3. Sensor steady-state response -- 3.1 Perturbation approaches -- 3.2 Temperature effects -- 4. Sensor dynamics -- 4.1 Linear model -- 4.2 State-space description -- 5. Sensor signal processing -- 5.1 Suppression of temperature effects -- 5.2 Signal processing based on linear analytical model -- 5.3 Wiener deconvolution -- 5.4 Kalman filter -- 5.5 Discussion of state-space-based signal processing -- 6. Summary -- 7. Nomenclature -- References. 7. Hierarchical simulation of carbon nanotube array-based chemical sensors with acoustic pickup / V. Barkaline, A. Chashynski -- 1. Introduction -- 2. Simulation levels of nanodesign -- 3. Prototype of hierarchical simulation system for nanodesign -- 4. Continual simulation of SAW propagation in a layered medium -- 5. Structure of carbon nanotubes and adsoption properties of CNT arrays -- 5.1 Atomic structure of single- and multiwalled nanotubes -- 5.2 Quantum mechanical study of the adsorption of simple gases on carbon nanotubes -- 5.3 Molecular mechanics of physical adsorption of the individual molecules on the CNT -- 6. Simulation of a carbon nanotube array-based chemical sensor with an acoustic pickup -- 6.1 Molecular dynamics calculation of the elastic moduli of individual carbon nanotubes -- 6.2 Molecular dynamics study of distribution of adsorbed molecules in CNT array pores and calculation of acoustic parameters of CNT arrays -- 6.3 SAW phase velocity change due to molecular adsorption on CNT arrays in SAW-based chemical sensors -- 6.4 Simulation of adsorption on the "swelling" CNT array -- 7. Conclusion -- References. 8. Microcantilever-based chemical sensors / S. Martin, G. Louarn -- 1. Introduction -- 2. Natural frequencies and normal modes of vibration -- 3. Experimental procedure -- 4. Natural frequencies of free rectangular cantilevers -- 4.1 Analytical calculations -- 4.2 Simulation with finite-element method -- 4.3 Experimental and modelling results on a rectangular beam -- 5. Natural frequencies of V-shaped microcantilevers -- 6. Natural frequencies of V-shaped coated cantilevers -- 7. Conclusion and prospects -- 8. Acknowledgments -- References. 9. Modeling of micromachined thermoelectric gas sensors / S. Udina, M. Carmona, C. Calaza -- 1. Principles of MTGS modeling -- 1.1 Introduction to the theory of heat transfer -- 1.2 Key thermal contributions and parameters involved in sensor operation and modeling -- 1.3 Influence of the packaging -- 2. Modeling and simulation methods -- 2.1 Complexity model levels -- 2.2 Analytical models -- 2.3 Finite-element method -- 2.4 Thermal conductivity of gases -- 3. Application to thermoelectric gas sensors -- 3.1 Case study -- 3.2 Analytical model -- 3.3 Static FEM -- 3.4 Dynamic FEM -- 3.5 Device optimization -- Acknowledgments -- Nomenclature -- References. 10. Modeling, simulation, and information processing for development of a polymeric electronic nose system / R.D.S. Yadava -- 1. Introduction -- 2. Sensor array approach -- 2.1 System characteristics -- 2.2 Sensing platform and system design -- 3. Sensor transient approach -- 4. Design and modeling of SAW sensing platform -- 4.1 Generic sensor model -- 4.2 Designing a SAW platform for mass sensitivity -- 4.3 Designing a SAW platform for multifrequency sensing -- 5. Vapor solvation, diffusion, and polymer loading -- 5.1 Solvation model and data processing -- 5.2 Sorption kinetics and transient signal model -- 6. Data mining and simulation for polymer selection -- 6.1 Case study of explosive vapor detection -- 6.2 Case study of body-odor detection -- 7. Optimizing data processing methods -- 7.1 Transient signal analysis -- 7.2 Steady-state sensor array response analysis -- 7.3 Enhancing sensor intelligence by information fusion -- 7.4 Simultaneous recognition and quantitation -- 8. Conclusion -- Acknowledgments -- References -- Index. |
ctrlnum | (OCoLC)815248314 |
dewey-full | 681.2 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 681 - Precision instruments and other devices |
dewey-raw | 681.2 |
dewey-search | 681.2 |
dewey-sort | 3681.2 |
dewey-tens | 680 - Manufacture of products for specific uses |
discipline | Handwerk und Gewerbe / Verschiedene Technologien |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>14344cam a2200925 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn815248314</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn||||m|||a</controlfield><controlfield tag="008">121029s2012 nyua foab 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CaBNvSL</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">J2I</subfield><subfield code="d">J2I</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">LGG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">Z5A</subfield><subfield code="d">UPM</subfield><subfield code="d">STF</subfield><subfield code="d">VTS</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">818858320</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781606503171</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1606503170</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781606503157</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1606503154</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5643/9781606503171</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)815248314</subfield><subfield code="z">(OCoLC)818858320</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TP159.C46</subfield><subfield code="b">C447 2012</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">064000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">681.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Chemical sensors :</subfield><subfield code="b">simulation and modeling.</subfield><subfield code="n">Volume 3,</subfield><subfield code="p">Solid-state devices /</subfield><subfield code="c">edited by Ghenadii Korotcenkov.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Simulation and modeling</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Solid-state devices</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">[New York, N.Y.] (222 East 46th Street, New York, NY 10017) :</subfield><subfield code="b">Momentum Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 online resource (xxi, 517 pages)) :</subfield><subfield code="b">illustrations, digital file.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Sensors technology series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF title page (viewed on October 28, 2012).</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface -- About the editor -- Contributors.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Molecular modeling: application to hydrogen interaction with carbon-supported transition metal systems / Samir H. Mushrif, Gilles H. Peslherbe, Alejandro D. Rey -- 1. Introduction -- 2. Molecular modeling methods -- 2.1 Molecular mechanics -- 2.2 Electronic structure theory -- 2.3 Density functional theory -- 2.4 Plane-wave pseudo-potential methods -- 2.5 Optimization techniques -- 3. Modeling hydrogen interaction with doped transition metal carbon materials using Car-Parrinello molecular dynamics and metadynamics -- 3.1 Dissociative chemisorption -- 3.2 Spillover and migration of hydrogen -- 4. Summary -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Surface modification of diamond for chemical sensor applications: simulation and modeling / Karin Larsson -- 1. Introduction -- 2. Factors influencing surface reactivity -- 3. Diamond as a sensor material -- 3.1 Background -- 3.2 Electrochemical properties of diamond surfaces -- 4. Theory and methodology -- 4.1 Density functional theory -- 4.2 Force-field methods -- 5. Diamond surface chemistry -- 5.1 Electron transfer from an H-terminated diamond (100) surface to an atmospheric water adlayer; a quantum mechanical study -- 5.2 Effect of partial termination with oxygen-containing species on the electron-transfer processes -- 5.3 The energetic possibility to completely oxygen-terminate a diamond surface -- 5.4 Effect on electron-transfer processes of complete termination with oxygen-containing species -- 5.5 Biosensing -- 5.6 Simulation of the pluronic F108 adsorption layer on F-, H-, O-, and OH-terminated NCD surfaces -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3. General approach to design and modeling of nanostructure-modified semiconductor and nanowire interfaces for sensor and microreactor applications / J.L. Gole, W. Laminack -- 1. Introduction: the IHSAB model for porous silicon sensors and microreactors -- 2. The interface on extrinsic semiconductors -- 3. The IHSAB concept as the basis for nanostructure-directed physisorption (electron transduction) at sensor interfaces -- 4. The extrinsic semiconductor framework -- 5. Physisorption (electron transduction) and the response of a nanostructure-modified sensor platform -- 6. The underlying IHSAB principle -- 7. Application to nanowire configurations -- 8. Application to additional semiconductors -- 9. Time-varying operation and false-positives; sensing in an unsaturated mode -- 10. Sensor rejuvenation -- 11. Summary of sensor attributes -- 12. Extension to phytocatalysis-enhanced system -- 13. Mixed gas format -- 14. Comparison to alternative technologies -- 15. Chemisorption and the analog of the HSAB principle -- 16. Physisorption (electron transduction) versus chemisorption -- 17. Outlook -- Acknowledgments -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. Detection mechanisms and physico-chemical models of solid-state humidity sensors / V.K. Khanna -- 1. Introduction -- 2. Humidity-sensitive materials -- 3. Resistive and capacitive humidity-sensing configurations, and other structures -- 4. Equivalent circuit modeling of humidity sensors -- 5. General approaches to the formulation of humidity sensor models -- 6. Theories of adsorption of water on the surfaces of solids -- 6.1 Hydroxylation of the surface by chemisorption of water -- 6.2 Mono- and multilayer physisorption and Brunauer-Emmett-Teller (BET) theory -- 6.3 Capillary condensation of water vapor -- 7. Modeling the kinetics of diffusion of water in solids -- 8. Surface conduction mechanisms on solids and humidity- induced surface conductivity modulation -- 9. Dielectric properties of solids containing adsorbed water -- 9.1 The modified Clausius-Mosotti equation in the presence of moisture -- 9.2 Maxwell-Wagner effect in heterogeneous binary systems -- 9.3 Sillars's theory for spheroidal particles sparsely distributed in an insulator -- 10. Fleming's approach: surface electrostatic field model -- 11. Theory of the porous alumina humidity sensor, and simulation of its capacitance and resistance characteristics -- 11.1 Microstructure of porous anodic alumina -- 11.2 Water vapor adsorption on porous alumina -- 11.3 Adsorption isotherm on porous alumina -- 11.4 Surface conduction mechanisms on porous alumina and their correlation with surface conductivity variation with humidity -- 11.5 Statistical distribution of humidity-dependent surface conductivity of alumina among pores -- 11.6 Response of dielectric properties of alumina to humidity changes -- 11.7 Influence of pore shape parameter [lambda] on capacitance and resistance variation -- 12. Dynamic behavior and transient response modeling of humidity sensors -- 12.1 The Tetelin-Pellet model -- 12.2 Designing a short-response-time humidity sensor structure -- 13. Modeling the diffusion kinetics of cylindrical film and cylindrical body structures for enhanced-speed humidity sensing -- 14. Effect of ionic doping on humidity sensor performance -- 14.1 Anionic doping in Al2O3 humidity sensors -- 14.2 Alternative doping techniques -- 15. Modeling the drift and ageing of humidity sensors -- 16. Artificial neural network (ANN)-based behavioral modeling of humidity sensors -- 17. Modeling other types of humidity sensors -- 17.1 Microgravimetric humidity sensors: the Sauerbrey equation -- 17.2 Surface acoustic wave (SAW) delay-line humidity sensors using velocity and attenuation changes -- 17.3 Microcantilever stress-based humidity sensors: Stoney's formula -- 17.4 Field-effect humidity sensors -- 18. Discussion of humidity sensor models -- 19. Conclusions and outlook -- Dedication -- Acknowledgments -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5. The sensing mechanism and response simulation of the MIS hydrogen sensor / Linfeng Zhang -- 1. Introduction -- 2. Sensors and their sensing mechanisms -- 2.1 Metal-semiconductor sensors -- 2.2 Metal-semiconductor-metal sensors -- 2.3 Metal-insulator-semiconductor sensors -- 3. Gas diffusion -- 4. Kinetics of surface and interface adsorption -- 5. Simulations -- 5.1 MS sensors -- 5.2 MIS sensors -- Conclusions -- Appendix -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6. Modeling and signal processing strategies for microacoustic chemical sensors / G. Fischerauer, F. Thalmayr -- 1. Sensing principles of microacoustic chemical sensors -- 1.1 Introduction -- 1.2 Microacoustic chemical sensors -- 2. Simulation and modeling of acoustic wave propagation, excitation, and detection -- 2.1 Analytical solution to the undisturbed wave propagation problem -- 2.2 Analytical solution to the wave excitation and detection problem -- 2.3 Finite-element method -- 2.4 Equivalent-circuit models -- 3. Sensor steady-state response -- 3.1 Perturbation approaches -- 3.2 Temperature effects -- 4. Sensor dynamics -- 4.1 Linear model -- 4.2 State-space description -- 5. Sensor signal processing -- 5.1 Suppression of temperature effects -- 5.2 Signal processing based on linear analytical model -- 5.3 Wiener deconvolution -- 5.4 Kalman filter -- 5.5 Discussion of state-space-based signal processing -- 6. Summary -- 7. Nomenclature -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7. Hierarchical simulation of carbon nanotube array-based chemical sensors with acoustic pickup / V. Barkaline, A. Chashynski -- 1. Introduction -- 2. Simulation levels of nanodesign -- 3. Prototype of hierarchical simulation system for nanodesign -- 4. Continual simulation of SAW propagation in a layered medium -- 5. Structure of carbon nanotubes and adsoption properties of CNT arrays -- 5.1 Atomic structure of single- and multiwalled nanotubes -- 5.2 Quantum mechanical study of the adsorption of simple gases on carbon nanotubes -- 5.3 Molecular mechanics of physical adsorption of the individual molecules on the CNT -- 6. Simulation of a carbon nanotube array-based chemical sensor with an acoustic pickup -- 6.1 Molecular dynamics calculation of the elastic moduli of individual carbon nanotubes -- 6.2 Molecular dynamics study of distribution of adsorbed molecules in CNT array pores and calculation of acoustic parameters of CNT arrays -- 6.3 SAW phase velocity change due to molecular adsorption on CNT arrays in SAW-based chemical sensors -- 6.4 Simulation of adsorption on the "swelling" CNT array -- 7. Conclusion -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8. Microcantilever-based chemical sensors / S. Martin, G. Louarn -- 1. Introduction -- 2. Natural frequencies and normal modes of vibration -- 3. Experimental procedure -- 4. Natural frequencies of free rectangular cantilevers -- 4.1 Analytical calculations -- 4.2 Simulation with finite-element method -- 4.3 Experimental and modelling results on a rectangular beam -- 5. Natural frequencies of V-shaped microcantilevers -- 6. Natural frequencies of V-shaped coated cantilevers -- 7. Conclusion and prospects -- 8. Acknowledgments -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9. Modeling of micromachined thermoelectric gas sensors / S. Udina, M. Carmona, C. Calaza -- 1. Principles of MTGS modeling -- 1.1 Introduction to the theory of heat transfer -- 1.2 Key thermal contributions and parameters involved in sensor operation and modeling -- 1.3 Influence of the packaging -- 2. Modeling and simulation methods -- 2.1 Complexity model levels -- 2.2 Analytical models -- 2.3 Finite-element method -- 2.4 Thermal conductivity of gases -- 3. Application to thermoelectric gas sensors -- 3.1 Case study -- 3.2 Analytical model -- 3.3 Static FEM -- 3.4 Dynamic FEM -- 3.5 Device optimization -- Acknowledgments -- Nomenclature -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10. Modeling, simulation, and information processing for development of a polymeric electronic nose system / R.D.S. Yadava -- 1. Introduction -- 2. Sensor array approach -- 2.1 System characteristics -- 2.2 Sensing platform and system design -- 3. Sensor transient approach -- 4. Design and modeling of SAW sensing platform -- 4.1 Generic sensor model -- 4.2 Designing a SAW platform for mass sensitivity -- 4.3 Designing a SAW platform for multifrequency sensing -- 5. Vapor solvation, diffusion, and polymer loading -- 5.1 Solvation model and data processing -- 5.2 Sorption kinetics and transient signal model -- 6. Data mining and simulation for polymer selection -- 6.1 Case study of explosive vapor detection -- 6.2 Case study of body-odor detection -- 7. Optimizing data processing methods -- 7.1 Transient signal analysis -- 7.2 Steady-state sensor array response analysis -- 7.3 Enhancing sensor intelligence by information fusion -- 7.4 Simultaneous recognition and quantitation -- 8. Conclusion -- Acknowledgments -- References -- Index.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This is the third of a new five-volume comprehensive reference work that provides computer simulation and modeling techniques in various fields of chemical sensing and the important applications for chemical sensing such as bulk and surface diffusion, adsorption, surface reactions, sintering, conductivity, mass transport, and interphase interactions.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Chemical detectors.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85022895</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Solid state electronics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85124637</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nanostructured materials.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh93000864</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Nanostructures</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D049329</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Détecteurs de produits chimiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Électronique de l'état solide.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Nanomatériaux.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Sensors.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chemical detectors</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanostructured materials</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Solid state electronics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">chemical sensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">molecular modeling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">solid-state devices</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">electrochemistry of surfaces</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">nanostructures</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">semiconductors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">humidity sensor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MIS hydrogen sensor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">microacoustic chemical sensor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">carbon nanotube array</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">microcantilever-based sensor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">thermoelectric gas sensor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">polymeric electronic nose</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Korotchenkov, G. S.</subfield><subfield code="q">(Gennadiĭ Sergeevich)</subfield><subfield code="0">http://id.loc.gov/authorities/names/n85154129</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Chemical sensors Solid-statedevices Volume 3 (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGvRYWCFVhv8myGQFCPKgq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">1606503154</subfield><subfield code="z">9781606503157</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Sensor technology series.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2010138455</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=511572</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL954642</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10629652</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">511572</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9913398</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn815248314 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:00Z |
institution | BVB |
isbn | 9781606503171 1606503170 |
language | English |
oclc_num | 815248314 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (1 online resource (xxi, 517 pages)) : illustrations, digital file. |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Momentum Press, |
record_format | marc |
series | Sensor technology series. |
series2 | Sensors technology series |
spelling | Chemical sensors : simulation and modeling. Volume 3, Solid-state devices / edited by Ghenadii Korotcenkov. Simulation and modeling Solid-state devices [New York, N.Y.] (222 East 46th Street, New York, NY 10017) : Momentum Press, 2012. 1 online resource (1 online resource (xxi, 517 pages)) : illustrations, digital file. text txt rdacontent computer c rdamedia online resource cr rdacarrier Sensors technology series Title from PDF title page (viewed on October 28, 2012). Includes bibliographical references and index. Preface -- About the editor -- Contributors. 1. Molecular modeling: application to hydrogen interaction with carbon-supported transition metal systems / Samir H. Mushrif, Gilles H. Peslherbe, Alejandro D. Rey -- 1. Introduction -- 2. Molecular modeling methods -- 2.1 Molecular mechanics -- 2.2 Electronic structure theory -- 2.3 Density functional theory -- 2.4 Plane-wave pseudo-potential methods -- 2.5 Optimization techniques -- 3. Modeling hydrogen interaction with doped transition metal carbon materials using Car-Parrinello molecular dynamics and metadynamics -- 3.1 Dissociative chemisorption -- 3.2 Spillover and migration of hydrogen -- 4. Summary -- References. 2. Surface modification of diamond for chemical sensor applications: simulation and modeling / Karin Larsson -- 1. Introduction -- 2. Factors influencing surface reactivity -- 3. Diamond as a sensor material -- 3.1 Background -- 3.2 Electrochemical properties of diamond surfaces -- 4. Theory and methodology -- 4.1 Density functional theory -- 4.2 Force-field methods -- 5. Diamond surface chemistry -- 5.1 Electron transfer from an H-terminated diamond (100) surface to an atmospheric water adlayer; a quantum mechanical study -- 5.2 Effect of partial termination with oxygen-containing species on the electron-transfer processes -- 5.3 The energetic possibility to completely oxygen-terminate a diamond surface -- 5.4 Effect on electron-transfer processes of complete termination with oxygen-containing species -- 5.5 Biosensing -- 5.6 Simulation of the pluronic F108 adsorption layer on F-, H-, O-, and OH-terminated NCD surfaces -- References. 3. General approach to design and modeling of nanostructure-modified semiconductor and nanowire interfaces for sensor and microreactor applications / J.L. Gole, W. Laminack -- 1. Introduction: the IHSAB model for porous silicon sensors and microreactors -- 2. The interface on extrinsic semiconductors -- 3. The IHSAB concept as the basis for nanostructure-directed physisorption (electron transduction) at sensor interfaces -- 4. The extrinsic semiconductor framework -- 5. Physisorption (electron transduction) and the response of a nanostructure-modified sensor platform -- 6. The underlying IHSAB principle -- 7. Application to nanowire configurations -- 8. Application to additional semiconductors -- 9. Time-varying operation and false-positives; sensing in an unsaturated mode -- 10. Sensor rejuvenation -- 11. Summary of sensor attributes -- 12. Extension to phytocatalysis-enhanced system -- 13. Mixed gas format -- 14. Comparison to alternative technologies -- 15. Chemisorption and the analog of the HSAB principle -- 16. Physisorption (electron transduction) versus chemisorption -- 17. Outlook -- Acknowledgments -- References. 4. Detection mechanisms and physico-chemical models of solid-state humidity sensors / V.K. Khanna -- 1. Introduction -- 2. Humidity-sensitive materials -- 3. Resistive and capacitive humidity-sensing configurations, and other structures -- 4. Equivalent circuit modeling of humidity sensors -- 5. General approaches to the formulation of humidity sensor models -- 6. Theories of adsorption of water on the surfaces of solids -- 6.1 Hydroxylation of the surface by chemisorption of water -- 6.2 Mono- and multilayer physisorption and Brunauer-Emmett-Teller (BET) theory -- 6.3 Capillary condensation of water vapor -- 7. Modeling the kinetics of diffusion of water in solids -- 8. Surface conduction mechanisms on solids and humidity- induced surface conductivity modulation -- 9. Dielectric properties of solids containing adsorbed water -- 9.1 The modified Clausius-Mosotti equation in the presence of moisture -- 9.2 Maxwell-Wagner effect in heterogeneous binary systems -- 9.3 Sillars's theory for spheroidal particles sparsely distributed in an insulator -- 10. Fleming's approach: surface electrostatic field model -- 11. Theory of the porous alumina humidity sensor, and simulation of its capacitance and resistance characteristics -- 11.1 Microstructure of porous anodic alumina -- 11.2 Water vapor adsorption on porous alumina -- 11.3 Adsorption isotherm on porous alumina -- 11.4 Surface conduction mechanisms on porous alumina and their correlation with surface conductivity variation with humidity -- 11.5 Statistical distribution of humidity-dependent surface conductivity of alumina among pores -- 11.6 Response of dielectric properties of alumina to humidity changes -- 11.7 Influence of pore shape parameter [lambda] on capacitance and resistance variation -- 12. Dynamic behavior and transient response modeling of humidity sensors -- 12.1 The Tetelin-Pellet model -- 12.2 Designing a short-response-time humidity sensor structure -- 13. Modeling the diffusion kinetics of cylindrical film and cylindrical body structures for enhanced-speed humidity sensing -- 14. Effect of ionic doping on humidity sensor performance -- 14.1 Anionic doping in Al2O3 humidity sensors -- 14.2 Alternative doping techniques -- 15. Modeling the drift and ageing of humidity sensors -- 16. Artificial neural network (ANN)-based behavioral modeling of humidity sensors -- 17. Modeling other types of humidity sensors -- 17.1 Microgravimetric humidity sensors: the Sauerbrey equation -- 17.2 Surface acoustic wave (SAW) delay-line humidity sensors using velocity and attenuation changes -- 17.3 Microcantilever stress-based humidity sensors: Stoney's formula -- 17.4 Field-effect humidity sensors -- 18. Discussion of humidity sensor models -- 19. Conclusions and outlook -- Dedication -- Acknowledgments -- References. 5. The sensing mechanism and response simulation of the MIS hydrogen sensor / Linfeng Zhang -- 1. Introduction -- 2. Sensors and their sensing mechanisms -- 2.1 Metal-semiconductor sensors -- 2.2 Metal-semiconductor-metal sensors -- 2.3 Metal-insulator-semiconductor sensors -- 3. Gas diffusion -- 4. Kinetics of surface and interface adsorption -- 5. Simulations -- 5.1 MS sensors -- 5.2 MIS sensors -- Conclusions -- Appendix -- References. 6. Modeling and signal processing strategies for microacoustic chemical sensors / G. Fischerauer, F. Thalmayr -- 1. Sensing principles of microacoustic chemical sensors -- 1.1 Introduction -- 1.2 Microacoustic chemical sensors -- 2. Simulation and modeling of acoustic wave propagation, excitation, and detection -- 2.1 Analytical solution to the undisturbed wave propagation problem -- 2.2 Analytical solution to the wave excitation and detection problem -- 2.3 Finite-element method -- 2.4 Equivalent-circuit models -- 3. Sensor steady-state response -- 3.1 Perturbation approaches -- 3.2 Temperature effects -- 4. Sensor dynamics -- 4.1 Linear model -- 4.2 State-space description -- 5. Sensor signal processing -- 5.1 Suppression of temperature effects -- 5.2 Signal processing based on linear analytical model -- 5.3 Wiener deconvolution -- 5.4 Kalman filter -- 5.5 Discussion of state-space-based signal processing -- 6. Summary -- 7. Nomenclature -- References. 7. Hierarchical simulation of carbon nanotube array-based chemical sensors with acoustic pickup / V. Barkaline, A. Chashynski -- 1. Introduction -- 2. Simulation levels of nanodesign -- 3. Prototype of hierarchical simulation system for nanodesign -- 4. Continual simulation of SAW propagation in a layered medium -- 5. Structure of carbon nanotubes and adsoption properties of CNT arrays -- 5.1 Atomic structure of single- and multiwalled nanotubes -- 5.2 Quantum mechanical study of the adsorption of simple gases on carbon nanotubes -- 5.3 Molecular mechanics of physical adsorption of the individual molecules on the CNT -- 6. Simulation of a carbon nanotube array-based chemical sensor with an acoustic pickup -- 6.1 Molecular dynamics calculation of the elastic moduli of individual carbon nanotubes -- 6.2 Molecular dynamics study of distribution of adsorbed molecules in CNT array pores and calculation of acoustic parameters of CNT arrays -- 6.3 SAW phase velocity change due to molecular adsorption on CNT arrays in SAW-based chemical sensors -- 6.4 Simulation of adsorption on the "swelling" CNT array -- 7. Conclusion -- References. 8. Microcantilever-based chemical sensors / S. Martin, G. Louarn -- 1. Introduction -- 2. Natural frequencies and normal modes of vibration -- 3. Experimental procedure -- 4. Natural frequencies of free rectangular cantilevers -- 4.1 Analytical calculations -- 4.2 Simulation with finite-element method -- 4.3 Experimental and modelling results on a rectangular beam -- 5. Natural frequencies of V-shaped microcantilevers -- 6. Natural frequencies of V-shaped coated cantilevers -- 7. Conclusion and prospects -- 8. Acknowledgments -- References. 9. Modeling of micromachined thermoelectric gas sensors / S. Udina, M. Carmona, C. Calaza -- 1. Principles of MTGS modeling -- 1.1 Introduction to the theory of heat transfer -- 1.2 Key thermal contributions and parameters involved in sensor operation and modeling -- 1.3 Influence of the packaging -- 2. Modeling and simulation methods -- 2.1 Complexity model levels -- 2.2 Analytical models -- 2.3 Finite-element method -- 2.4 Thermal conductivity of gases -- 3. Application to thermoelectric gas sensors -- 3.1 Case study -- 3.2 Analytical model -- 3.3 Static FEM -- 3.4 Dynamic FEM -- 3.5 Device optimization -- Acknowledgments -- Nomenclature -- References. 10. Modeling, simulation, and information processing for development of a polymeric electronic nose system / R.D.S. Yadava -- 1. Introduction -- 2. Sensor array approach -- 2.1 System characteristics -- 2.2 Sensing platform and system design -- 3. Sensor transient approach -- 4. Design and modeling of SAW sensing platform -- 4.1 Generic sensor model -- 4.2 Designing a SAW platform for mass sensitivity -- 4.3 Designing a SAW platform for multifrequency sensing -- 5. Vapor solvation, diffusion, and polymer loading -- 5.1 Solvation model and data processing -- 5.2 Sorption kinetics and transient signal model -- 6. Data mining and simulation for polymer selection -- 6.1 Case study of explosive vapor detection -- 6.2 Case study of body-odor detection -- 7. Optimizing data processing methods -- 7.1 Transient signal analysis -- 7.2 Steady-state sensor array response analysis -- 7.3 Enhancing sensor intelligence by information fusion -- 7.4 Simultaneous recognition and quantitation -- 8. Conclusion -- Acknowledgments -- References -- Index. This is the third of a new five-volume comprehensive reference work that provides computer simulation and modeling techniques in various fields of chemical sensing and the important applications for chemical sensing such as bulk and surface diffusion, adsorption, surface reactions, sintering, conductivity, mass transport, and interphase interactions. Chemical detectors. http://id.loc.gov/authorities/subjects/sh85022895 Solid state electronics. http://id.loc.gov/authorities/subjects/sh85124637 Nanostructured materials. http://id.loc.gov/authorities/subjects/sh93000864 Nanostructures https://id.nlm.nih.gov/mesh/D049329 Détecteurs de produits chimiques. Électronique de l'état solide. Nanomatériaux. TECHNOLOGY & ENGINEERING Sensors. bisacsh Chemical detectors fast Nanostructured materials fast Solid state electronics fast chemical sensors molecular modeling solid-state devices electrochemistry of surfaces nanostructures semiconductors humidity sensor MIS hydrogen sensor microacoustic chemical sensor carbon nanotube array microcantilever-based sensor thermoelectric gas sensor polymeric electronic nose Korotchenkov, G. S. (Gennadiĭ Sergeevich) http://id.loc.gov/authorities/names/n85154129 has work: Chemical sensors Solid-statedevices Volume 3 (Text) https://id.oclc.org/worldcat/entity/E39PCGvRYWCFVhv8myGQFCPKgq https://id.oclc.org/worldcat/ontology/hasWork Print version: 1606503154 9781606503157 Sensor technology series. http://id.loc.gov/authorities/names/no2010138455 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=511572 Volltext |
spellingShingle | Chemical sensors : simulation and modeling. Sensor technology series. Preface -- About the editor -- Contributors. 1. Molecular modeling: application to hydrogen interaction with carbon-supported transition metal systems / Samir H. Mushrif, Gilles H. Peslherbe, Alejandro D. Rey -- 1. Introduction -- 2. Molecular modeling methods -- 2.1 Molecular mechanics -- 2.2 Electronic structure theory -- 2.3 Density functional theory -- 2.4 Plane-wave pseudo-potential methods -- 2.5 Optimization techniques -- 3. Modeling hydrogen interaction with doped transition metal carbon materials using Car-Parrinello molecular dynamics and metadynamics -- 3.1 Dissociative chemisorption -- 3.2 Spillover and migration of hydrogen -- 4. Summary -- References. 2. Surface modification of diamond for chemical sensor applications: simulation and modeling / Karin Larsson -- 1. Introduction -- 2. Factors influencing surface reactivity -- 3. Diamond as a sensor material -- 3.1 Background -- 3.2 Electrochemical properties of diamond surfaces -- 4. Theory and methodology -- 4.1 Density functional theory -- 4.2 Force-field methods -- 5. Diamond surface chemistry -- 5.1 Electron transfer from an H-terminated diamond (100) surface to an atmospheric water adlayer; a quantum mechanical study -- 5.2 Effect of partial termination with oxygen-containing species on the electron-transfer processes -- 5.3 The energetic possibility to completely oxygen-terminate a diamond surface -- 5.4 Effect on electron-transfer processes of complete termination with oxygen-containing species -- 5.5 Biosensing -- 5.6 Simulation of the pluronic F108 adsorption layer on F-, H-, O-, and OH-terminated NCD surfaces -- References. 3. General approach to design and modeling of nanostructure-modified semiconductor and nanowire interfaces for sensor and microreactor applications / J.L. Gole, W. Laminack -- 1. Introduction: the IHSAB model for porous silicon sensors and microreactors -- 2. The interface on extrinsic semiconductors -- 3. The IHSAB concept as the basis for nanostructure-directed physisorption (electron transduction) at sensor interfaces -- 4. The extrinsic semiconductor framework -- 5. Physisorption (electron transduction) and the response of a nanostructure-modified sensor platform -- 6. The underlying IHSAB principle -- 7. Application to nanowire configurations -- 8. Application to additional semiconductors -- 9. Time-varying operation and false-positives; sensing in an unsaturated mode -- 10. Sensor rejuvenation -- 11. Summary of sensor attributes -- 12. Extension to phytocatalysis-enhanced system -- 13. Mixed gas format -- 14. Comparison to alternative technologies -- 15. Chemisorption and the analog of the HSAB principle -- 16. Physisorption (electron transduction) versus chemisorption -- 17. Outlook -- Acknowledgments -- References. 4. Detection mechanisms and physico-chemical models of solid-state humidity sensors / V.K. Khanna -- 1. Introduction -- 2. Humidity-sensitive materials -- 3. Resistive and capacitive humidity-sensing configurations, and other structures -- 4. Equivalent circuit modeling of humidity sensors -- 5. General approaches to the formulation of humidity sensor models -- 6. Theories of adsorption of water on the surfaces of solids -- 6.1 Hydroxylation of the surface by chemisorption of water -- 6.2 Mono- and multilayer physisorption and Brunauer-Emmett-Teller (BET) theory -- 6.3 Capillary condensation of water vapor -- 7. Modeling the kinetics of diffusion of water in solids -- 8. Surface conduction mechanisms on solids and humidity- induced surface conductivity modulation -- 9. Dielectric properties of solids containing adsorbed water -- 9.1 The modified Clausius-Mosotti equation in the presence of moisture -- 9.2 Maxwell-Wagner effect in heterogeneous binary systems -- 9.3 Sillars's theory for spheroidal particles sparsely distributed in an insulator -- 10. Fleming's approach: surface electrostatic field model -- 11. Theory of the porous alumina humidity sensor, and simulation of its capacitance and resistance characteristics -- 11.1 Microstructure of porous anodic alumina -- 11.2 Water vapor adsorption on porous alumina -- 11.3 Adsorption isotherm on porous alumina -- 11.4 Surface conduction mechanisms on porous alumina and their correlation with surface conductivity variation with humidity -- 11.5 Statistical distribution of humidity-dependent surface conductivity of alumina among pores -- 11.6 Response of dielectric properties of alumina to humidity changes -- 11.7 Influence of pore shape parameter [lambda] on capacitance and resistance variation -- 12. Dynamic behavior and transient response modeling of humidity sensors -- 12.1 The Tetelin-Pellet model -- 12.2 Designing a short-response-time humidity sensor structure -- 13. Modeling the diffusion kinetics of cylindrical film and cylindrical body structures for enhanced-speed humidity sensing -- 14. Effect of ionic doping on humidity sensor performance -- 14.1 Anionic doping in Al2O3 humidity sensors -- 14.2 Alternative doping techniques -- 15. Modeling the drift and ageing of humidity sensors -- 16. Artificial neural network (ANN)-based behavioral modeling of humidity sensors -- 17. Modeling other types of humidity sensors -- 17.1 Microgravimetric humidity sensors: the Sauerbrey equation -- 17.2 Surface acoustic wave (SAW) delay-line humidity sensors using velocity and attenuation changes -- 17.3 Microcantilever stress-based humidity sensors: Stoney's formula -- 17.4 Field-effect humidity sensors -- 18. Discussion of humidity sensor models -- 19. Conclusions and outlook -- Dedication -- Acknowledgments -- References. 5. The sensing mechanism and response simulation of the MIS hydrogen sensor / Linfeng Zhang -- 1. Introduction -- 2. Sensors and their sensing mechanisms -- 2.1 Metal-semiconductor sensors -- 2.2 Metal-semiconductor-metal sensors -- 2.3 Metal-insulator-semiconductor sensors -- 3. Gas diffusion -- 4. Kinetics of surface and interface adsorption -- 5. Simulations -- 5.1 MS sensors -- 5.2 MIS sensors -- Conclusions -- Appendix -- References. 6. Modeling and signal processing strategies for microacoustic chemical sensors / G. Fischerauer, F. Thalmayr -- 1. Sensing principles of microacoustic chemical sensors -- 1.1 Introduction -- 1.2 Microacoustic chemical sensors -- 2. Simulation and modeling of acoustic wave propagation, excitation, and detection -- 2.1 Analytical solution to the undisturbed wave propagation problem -- 2.2 Analytical solution to the wave excitation and detection problem -- 2.3 Finite-element method -- 2.4 Equivalent-circuit models -- 3. Sensor steady-state response -- 3.1 Perturbation approaches -- 3.2 Temperature effects -- 4. Sensor dynamics -- 4.1 Linear model -- 4.2 State-space description -- 5. Sensor signal processing -- 5.1 Suppression of temperature effects -- 5.2 Signal processing based on linear analytical model -- 5.3 Wiener deconvolution -- 5.4 Kalman filter -- 5.5 Discussion of state-space-based signal processing -- 6. Summary -- 7. Nomenclature -- References. 7. Hierarchical simulation of carbon nanotube array-based chemical sensors with acoustic pickup / V. Barkaline, A. Chashynski -- 1. Introduction -- 2. Simulation levels of nanodesign -- 3. Prototype of hierarchical simulation system for nanodesign -- 4. Continual simulation of SAW propagation in a layered medium -- 5. Structure of carbon nanotubes and adsoption properties of CNT arrays -- 5.1 Atomic structure of single- and multiwalled nanotubes -- 5.2 Quantum mechanical study of the adsorption of simple gases on carbon nanotubes -- 5.3 Molecular mechanics of physical adsorption of the individual molecules on the CNT -- 6. Simulation of a carbon nanotube array-based chemical sensor with an acoustic pickup -- 6.1 Molecular dynamics calculation of the elastic moduli of individual carbon nanotubes -- 6.2 Molecular dynamics study of distribution of adsorbed molecules in CNT array pores and calculation of acoustic parameters of CNT arrays -- 6.3 SAW phase velocity change due to molecular adsorption on CNT arrays in SAW-based chemical sensors -- 6.4 Simulation of adsorption on the "swelling" CNT array -- 7. Conclusion -- References. 8. Microcantilever-based chemical sensors / S. Martin, G. Louarn -- 1. Introduction -- 2. Natural frequencies and normal modes of vibration -- 3. Experimental procedure -- 4. Natural frequencies of free rectangular cantilevers -- 4.1 Analytical calculations -- 4.2 Simulation with finite-element method -- 4.3 Experimental and modelling results on a rectangular beam -- 5. Natural frequencies of V-shaped microcantilevers -- 6. Natural frequencies of V-shaped coated cantilevers -- 7. Conclusion and prospects -- 8. Acknowledgments -- References. 9. Modeling of micromachined thermoelectric gas sensors / S. Udina, M. Carmona, C. Calaza -- 1. Principles of MTGS modeling -- 1.1 Introduction to the theory of heat transfer -- 1.2 Key thermal contributions and parameters involved in sensor operation and modeling -- 1.3 Influence of the packaging -- 2. Modeling and simulation methods -- 2.1 Complexity model levels -- 2.2 Analytical models -- 2.3 Finite-element method -- 2.4 Thermal conductivity of gases -- 3. Application to thermoelectric gas sensors -- 3.1 Case study -- 3.2 Analytical model -- 3.3 Static FEM -- 3.4 Dynamic FEM -- 3.5 Device optimization -- Acknowledgments -- Nomenclature -- References. 10. Modeling, simulation, and information processing for development of a polymeric electronic nose system / R.D.S. Yadava -- 1. Introduction -- 2. Sensor array approach -- 2.1 System characteristics -- 2.2 Sensing platform and system design -- 3. Sensor transient approach -- 4. Design and modeling of SAW sensing platform -- 4.1 Generic sensor model -- 4.2 Designing a SAW platform for mass sensitivity -- 4.3 Designing a SAW platform for multifrequency sensing -- 5. Vapor solvation, diffusion, and polymer loading -- 5.1 Solvation model and data processing -- 5.2 Sorption kinetics and transient signal model -- 6. Data mining and simulation for polymer selection -- 6.1 Case study of explosive vapor detection -- 6.2 Case study of body-odor detection -- 7. Optimizing data processing methods -- 7.1 Transient signal analysis -- 7.2 Steady-state sensor array response analysis -- 7.3 Enhancing sensor intelligence by information fusion -- 7.4 Simultaneous recognition and quantitation -- 8. Conclusion -- Acknowledgments -- References -- Index. Chemical detectors. http://id.loc.gov/authorities/subjects/sh85022895 Solid state electronics. http://id.loc.gov/authorities/subjects/sh85124637 Nanostructured materials. http://id.loc.gov/authorities/subjects/sh93000864 Nanostructures https://id.nlm.nih.gov/mesh/D049329 Détecteurs de produits chimiques. Électronique de l'état solide. Nanomatériaux. TECHNOLOGY & ENGINEERING Sensors. bisacsh Chemical detectors fast Nanostructured materials fast Solid state electronics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85022895 http://id.loc.gov/authorities/subjects/sh85124637 http://id.loc.gov/authorities/subjects/sh93000864 https://id.nlm.nih.gov/mesh/D049329 |
title | Chemical sensors : simulation and modeling. |
title_alt | Simulation and modeling Solid-state devices |
title_auth | Chemical sensors : simulation and modeling. |
title_exact_search | Chemical sensors : simulation and modeling. |
title_full | Chemical sensors : simulation and modeling. Volume 3, Solid-state devices / edited by Ghenadii Korotcenkov. |
title_fullStr | Chemical sensors : simulation and modeling. Volume 3, Solid-state devices / edited by Ghenadii Korotcenkov. |
title_full_unstemmed | Chemical sensors : simulation and modeling. Volume 3, Solid-state devices / edited by Ghenadii Korotcenkov. |
title_short | Chemical sensors : |
title_sort | chemical sensors simulation and modeling solid state devices |
title_sub | simulation and modeling. |
topic | Chemical detectors. http://id.loc.gov/authorities/subjects/sh85022895 Solid state electronics. http://id.loc.gov/authorities/subjects/sh85124637 Nanostructured materials. http://id.loc.gov/authorities/subjects/sh93000864 Nanostructures https://id.nlm.nih.gov/mesh/D049329 Détecteurs de produits chimiques. Électronique de l'état solide. Nanomatériaux. TECHNOLOGY & ENGINEERING Sensors. bisacsh Chemical detectors fast Nanostructured materials fast Solid state electronics fast |
topic_facet | Chemical detectors. Solid state electronics. Nanostructured materials. Nanostructures Détecteurs de produits chimiques. Électronique de l'état solide. Nanomatériaux. TECHNOLOGY & ENGINEERING Sensors. Chemical detectors Nanostructured materials Solid state electronics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=511572 |
work_keys_str_mv | AT korotchenkovgs chemicalsensorssimulationandmodelingvolume3 AT korotchenkovgs simulationandmodeling AT korotchenkovgs solidstatedevices |