Lectures on random evolution /:
Random evolution denotes a class of stochastic processes which evolve according to a rule which varies in time according to jumps. This is in contrast to diffusion processes, which assume that the rule changes continuously with time. Random evolutions provide a very flexible language, having the adv...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; River Edge, N.J. :
World Scientific,
©1991.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Random evolution denotes a class of stochastic processes which evolve according to a rule which varies in time according to jumps. This is in contrast to diffusion processes, which assume that the rule changes continuously with time. Random evolutions provide a very flexible language, having the advantage that they permit direct numerical simulation-which is not possible for a diffusion process. Furthermore, they allow connections with hyperbolic partial differential equations and the kinetic theory of gases, which is impossible within the domain of diffusion proceses. They also posses great geometric invariance, allowing formulation on an arbitrary Riemannian manifold. In the field of stochastic stability, random evolutions furnish some easily computable models in which to study the Lyapunov exponent and rotation numbers of oscillators under the influence of noise. This monograph presents the various aspects of random evolution in an accessible and interesting format which will appeal to a large scientific audience. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9789812779359 9812779353 128363564X 9781283635646 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn813395946 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 121008s1991 si ob 000 0 eng d | ||
040 | |a IDEBK |b eng |e pn |c IDEBK |d N$T |d EBLCP |d E7B |d DEBSZ |d OCLCQ |d YDXCP |d OCLCQ |d OCLCF |d OCLCQ |d AGLDB |d OCLCQ |d VTS |d OCLCQ |d STF |d LEAUB |d UKAHL |d OCLCQ |d OCLCO |d INARC |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 817818895 | ||
020 | |a 9789812779359 |q (electronic bk.) | ||
020 | |a 9812779353 |q (electronic bk.) | ||
020 | |a 128363564X | ||
020 | |a 9781283635646 | ||
020 | |z 6613948101 | ||
020 | |z 9786613948106 | ||
020 | |z 9810205597 | ||
020 | |z 9789810205591 | ||
035 | |a (OCoLC)813395946 |z (OCoLC)817818895 | ||
050 | 4 | |a QA274 | |
072 | 7 | |a PBT |2 bicssc | |
072 | 7 | |a MAT |x 029000 |2 bisacsh | |
082 | 7 | |a 519.2 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Pinsky, Mark A., |d 1940- |1 https://id.oclc.org/worldcat/entity/E39PBJhtbmDbqHGFYRpm98tqcP |0 http://id.loc.gov/authorities/names/n83190416 | |
245 | 1 | 0 | |a Lectures on random evolution / |c Mark A. Pinsky. |
260 | |a Singapore ; |a River Edge, N.J. : |b World Scientific, |c ©1991. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references. | ||
520 | |a Random evolution denotes a class of stochastic processes which evolve according to a rule which varies in time according to jumps. This is in contrast to diffusion processes, which assume that the rule changes continuously with time. Random evolutions provide a very flexible language, having the advantage that they permit direct numerical simulation-which is not possible for a diffusion process. Furthermore, they allow connections with hyperbolic partial differential equations and the kinetic theory of gases, which is impossible within the domain of diffusion proceses. They also posses great geometric invariance, allowing formulation on an arbitrary Riemannian manifold. In the field of stochastic stability, random evolutions furnish some easily computable models in which to study the Lyapunov exponent and rotation numbers of oscillators under the influence of noise. This monograph presents the various aspects of random evolution in an accessible and interesting format which will appeal to a large scientific audience. | ||
505 | 0 | |a Ch. 0. Two-state random velocity model. 0.1. Two-state Markov chain -- 0.2. Random velocity model -- 0.3. Weak law and central limit theorem -- 0.4. Distribution functions of two-state model -- 0.5. Passage-time distributions -- 0.6. Asymptotic behavior with probability one -- ch. 1. Additive functionals of finite Markov chains. 1.1. Finite Markov chains -- 1.2. Asymptotic properties of the transition matrix -- 1.3. The weak law of large numbers and the central limit theorem -- 1.4. Recurrence properties -- 1.5. Limit theorems for discontinuous additive functionals -- 1.6. Proof of the Markov property -- ch. 2. General random evolutions. 2.1. Preliminaries on semigroups of operators -- 2.2. Construction of random evolution process -- 2.3. Discontinuous random evolutions -- 2.4. Limit theorems for random evolutions -- 2.5. Application to diffusion approximations -- 2.6. Martingale formulation of random evolution -- ch. 3. Applications to the Kinetic theory of gases. 3.1. Physical background -- 3.2. Stochastic solution of the linearized Boltzmann equation -- 3.3. Asymptotic analysis of the linearized Boltzmann equation -- ch. 4. Applications to isotropic transport on manifolds. 4.1. The Rayleigh problem of random flights -- 4.2. Isotropic transport process on a manifold -- 4.3. Applications to recurrence -- 4.4. Isotropic transport process of a frame field on a manifold -- ch. 5. Applications to stability of random oscillators. 5.1. Linear stochastic systems with multiplicative noise -- 5.2. Simple harmonic oscillator with small noise -- 5.3. Nilpotent linear systems with small noise. | |
650 | 0 | |a Stochastic processes. |0 http://id.loc.gov/authorities/subjects/sh85128181 | |
650 | 0 | |a Semigroups. |0 http://id.loc.gov/authorities/subjects/sh85119920 | |
650 | 2 | |a Stochastic Processes |0 https://id.nlm.nih.gov/mesh/D013269 | |
650 | 6 | |a Processus stochastiques. | |
650 | 6 | |a Semi-groupes. | |
650 | 7 | |a MATHEMATICS |x Probability & Statistics |x General. |2 bisacsh | |
650 | 7 | |a Semigroups |2 fast | |
650 | 7 | |a Stochastic processes |2 fast | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=491510 |3 Volltext |
938 | |a Internet Archive |b INAR |n lecturesonrandom0000pins | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH24433076 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1044379 | ||
938 | |a ebrary |b EBRY |n ebr10607783 | ||
938 | |a EBSCOhost |b EBSC |n 491510 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 394810 | ||
938 | |a YBP Library Services |b YANK |n 9782155 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn813395946 |
---|---|
_version_ | 1816882211475947521 |
adam_text | |
any_adam_object | |
author | Pinsky, Mark A., 1940- |
author_GND | http://id.loc.gov/authorities/names/n83190416 |
author_facet | Pinsky, Mark A., 1940- |
author_role | |
author_sort | Pinsky, Mark A., 1940- |
author_variant | m a p ma map |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA274 |
callnumber-raw | QA274 |
callnumber-search | QA274 |
callnumber-sort | QA 3274 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Ch. 0. Two-state random velocity model. 0.1. Two-state Markov chain -- 0.2. Random velocity model -- 0.3. Weak law and central limit theorem -- 0.4. Distribution functions of two-state model -- 0.5. Passage-time distributions -- 0.6. Asymptotic behavior with probability one -- ch. 1. Additive functionals of finite Markov chains. 1.1. Finite Markov chains -- 1.2. Asymptotic properties of the transition matrix -- 1.3. The weak law of large numbers and the central limit theorem -- 1.4. Recurrence properties -- 1.5. Limit theorems for discontinuous additive functionals -- 1.6. Proof of the Markov property -- ch. 2. General random evolutions. 2.1. Preliminaries on semigroups of operators -- 2.2. Construction of random evolution process -- 2.3. Discontinuous random evolutions -- 2.4. Limit theorems for random evolutions -- 2.5. Application to diffusion approximations -- 2.6. Martingale formulation of random evolution -- ch. 3. Applications to the Kinetic theory of gases. 3.1. Physical background -- 3.2. Stochastic solution of the linearized Boltzmann equation -- 3.3. Asymptotic analysis of the linearized Boltzmann equation -- ch. 4. Applications to isotropic transport on manifolds. 4.1. The Rayleigh problem of random flights -- 4.2. Isotropic transport process on a manifold -- 4.3. Applications to recurrence -- 4.4. Isotropic transport process of a frame field on a manifold -- ch. 5. Applications to stability of random oscillators. 5.1. Linear stochastic systems with multiplicative noise -- 5.2. Simple harmonic oscillator with small noise -- 5.3. Nilpotent linear systems with small noise. |
ctrlnum | (OCoLC)813395946 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05042cam a2200613 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn813395946</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">121008s1991 si ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">IDEBK</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">IDEBK</subfield><subfield code="d">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">E7B</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">LEAUB</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">817818895</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812779359</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812779353</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">128363564X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283635646</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">6613948101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9786613948106</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9810205597</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789810205591</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)813395946</subfield><subfield code="z">(OCoLC)817818895</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA274</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBT</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">029000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pinsky, Mark A.,</subfield><subfield code="d">1940-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJhtbmDbqHGFYRpm98tqcP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83190416</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on random evolution /</subfield><subfield code="c">Mark A. Pinsky.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">River Edge, N.J. :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©1991.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Random evolution denotes a class of stochastic processes which evolve according to a rule which varies in time according to jumps. This is in contrast to diffusion processes, which assume that the rule changes continuously with time. Random evolutions provide a very flexible language, having the advantage that they permit direct numerical simulation-which is not possible for a diffusion process. Furthermore, they allow connections with hyperbolic partial differential equations and the kinetic theory of gases, which is impossible within the domain of diffusion proceses. They also posses great geometric invariance, allowing formulation on an arbitrary Riemannian manifold. In the field of stochastic stability, random evolutions furnish some easily computable models in which to study the Lyapunov exponent and rotation numbers of oscillators under the influence of noise. This monograph presents the various aspects of random evolution in an accessible and interesting format which will appeal to a large scientific audience.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Ch. 0. Two-state random velocity model. 0.1. Two-state Markov chain -- 0.2. Random velocity model -- 0.3. Weak law and central limit theorem -- 0.4. Distribution functions of two-state model -- 0.5. Passage-time distributions -- 0.6. Asymptotic behavior with probability one -- ch. 1. Additive functionals of finite Markov chains. 1.1. Finite Markov chains -- 1.2. Asymptotic properties of the transition matrix -- 1.3. The weak law of large numbers and the central limit theorem -- 1.4. Recurrence properties -- 1.5. Limit theorems for discontinuous additive functionals -- 1.6. Proof of the Markov property -- ch. 2. General random evolutions. 2.1. Preliminaries on semigroups of operators -- 2.2. Construction of random evolution process -- 2.3. Discontinuous random evolutions -- 2.4. Limit theorems for random evolutions -- 2.5. Application to diffusion approximations -- 2.6. Martingale formulation of random evolution -- ch. 3. Applications to the Kinetic theory of gases. 3.1. Physical background -- 3.2. Stochastic solution of the linearized Boltzmann equation -- 3.3. Asymptotic analysis of the linearized Boltzmann equation -- ch. 4. Applications to isotropic transport on manifolds. 4.1. The Rayleigh problem of random flights -- 4.2. Isotropic transport process on a manifold -- 4.3. Applications to recurrence -- 4.4. Isotropic transport process of a frame field on a manifold -- ch. 5. Applications to stability of random oscillators. 5.1. Linear stochastic systems with multiplicative noise -- 5.2. Simple harmonic oscillator with small noise -- 5.3. Nilpotent linear systems with small noise.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Stochastic processes.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85128181</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Semigroups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85119920</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Stochastic Processes</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D013269</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Processus stochastiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Semi-groupes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Probability & Statistics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Semigroups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastic processes</subfield><subfield code="2">fast</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=491510</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">lecturesonrandom0000pins</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24433076</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1044379</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10607783</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">491510</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">394810</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9782155</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn813395946 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:00Z |
institution | BVB |
isbn | 9789812779359 9812779353 128363564X 9781283635646 |
language | English |
oclc_num | 813395946 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | World Scientific, |
record_format | marc |
spelling | Pinsky, Mark A., 1940- https://id.oclc.org/worldcat/entity/E39PBJhtbmDbqHGFYRpm98tqcP http://id.loc.gov/authorities/names/n83190416 Lectures on random evolution / Mark A. Pinsky. Singapore ; River Edge, N.J. : World Scientific, ©1991. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references. Random evolution denotes a class of stochastic processes which evolve according to a rule which varies in time according to jumps. This is in contrast to diffusion processes, which assume that the rule changes continuously with time. Random evolutions provide a very flexible language, having the advantage that they permit direct numerical simulation-which is not possible for a diffusion process. Furthermore, they allow connections with hyperbolic partial differential equations and the kinetic theory of gases, which is impossible within the domain of diffusion proceses. They also posses great geometric invariance, allowing formulation on an arbitrary Riemannian manifold. In the field of stochastic stability, random evolutions furnish some easily computable models in which to study the Lyapunov exponent and rotation numbers of oscillators under the influence of noise. This monograph presents the various aspects of random evolution in an accessible and interesting format which will appeal to a large scientific audience. Ch. 0. Two-state random velocity model. 0.1. Two-state Markov chain -- 0.2. Random velocity model -- 0.3. Weak law and central limit theorem -- 0.4. Distribution functions of two-state model -- 0.5. Passage-time distributions -- 0.6. Asymptotic behavior with probability one -- ch. 1. Additive functionals of finite Markov chains. 1.1. Finite Markov chains -- 1.2. Asymptotic properties of the transition matrix -- 1.3. The weak law of large numbers and the central limit theorem -- 1.4. Recurrence properties -- 1.5. Limit theorems for discontinuous additive functionals -- 1.6. Proof of the Markov property -- ch. 2. General random evolutions. 2.1. Preliminaries on semigroups of operators -- 2.2. Construction of random evolution process -- 2.3. Discontinuous random evolutions -- 2.4. Limit theorems for random evolutions -- 2.5. Application to diffusion approximations -- 2.6. Martingale formulation of random evolution -- ch. 3. Applications to the Kinetic theory of gases. 3.1. Physical background -- 3.2. Stochastic solution of the linearized Boltzmann equation -- 3.3. Asymptotic analysis of the linearized Boltzmann equation -- ch. 4. Applications to isotropic transport on manifolds. 4.1. The Rayleigh problem of random flights -- 4.2. Isotropic transport process on a manifold -- 4.3. Applications to recurrence -- 4.4. Isotropic transport process of a frame field on a manifold -- ch. 5. Applications to stability of random oscillators. 5.1. Linear stochastic systems with multiplicative noise -- 5.2. Simple harmonic oscillator with small noise -- 5.3. Nilpotent linear systems with small noise. Stochastic processes. http://id.loc.gov/authorities/subjects/sh85128181 Semigroups. http://id.loc.gov/authorities/subjects/sh85119920 Stochastic Processes https://id.nlm.nih.gov/mesh/D013269 Processus stochastiques. Semi-groupes. MATHEMATICS Probability & Statistics General. bisacsh Semigroups fast Stochastic processes fast FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=491510 Volltext |
spellingShingle | Pinsky, Mark A., 1940- Lectures on random evolution / Ch. 0. Two-state random velocity model. 0.1. Two-state Markov chain -- 0.2. Random velocity model -- 0.3. Weak law and central limit theorem -- 0.4. Distribution functions of two-state model -- 0.5. Passage-time distributions -- 0.6. Asymptotic behavior with probability one -- ch. 1. Additive functionals of finite Markov chains. 1.1. Finite Markov chains -- 1.2. Asymptotic properties of the transition matrix -- 1.3. The weak law of large numbers and the central limit theorem -- 1.4. Recurrence properties -- 1.5. Limit theorems for discontinuous additive functionals -- 1.6. Proof of the Markov property -- ch. 2. General random evolutions. 2.1. Preliminaries on semigroups of operators -- 2.2. Construction of random evolution process -- 2.3. Discontinuous random evolutions -- 2.4. Limit theorems for random evolutions -- 2.5. Application to diffusion approximations -- 2.6. Martingale formulation of random evolution -- ch. 3. Applications to the Kinetic theory of gases. 3.1. Physical background -- 3.2. Stochastic solution of the linearized Boltzmann equation -- 3.3. Asymptotic analysis of the linearized Boltzmann equation -- ch. 4. Applications to isotropic transport on manifolds. 4.1. The Rayleigh problem of random flights -- 4.2. Isotropic transport process on a manifold -- 4.3. Applications to recurrence -- 4.4. Isotropic transport process of a frame field on a manifold -- ch. 5. Applications to stability of random oscillators. 5.1. Linear stochastic systems with multiplicative noise -- 5.2. Simple harmonic oscillator with small noise -- 5.3. Nilpotent linear systems with small noise. Stochastic processes. http://id.loc.gov/authorities/subjects/sh85128181 Semigroups. http://id.loc.gov/authorities/subjects/sh85119920 Stochastic Processes https://id.nlm.nih.gov/mesh/D013269 Processus stochastiques. Semi-groupes. MATHEMATICS Probability & Statistics General. bisacsh Semigroups fast Stochastic processes fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85128181 http://id.loc.gov/authorities/subjects/sh85119920 https://id.nlm.nih.gov/mesh/D013269 |
title | Lectures on random evolution / |
title_auth | Lectures on random evolution / |
title_exact_search | Lectures on random evolution / |
title_full | Lectures on random evolution / Mark A. Pinsky. |
title_fullStr | Lectures on random evolution / Mark A. Pinsky. |
title_full_unstemmed | Lectures on random evolution / Mark A. Pinsky. |
title_short | Lectures on random evolution / |
title_sort | lectures on random evolution |
topic | Stochastic processes. http://id.loc.gov/authorities/subjects/sh85128181 Semigroups. http://id.loc.gov/authorities/subjects/sh85119920 Stochastic Processes https://id.nlm.nih.gov/mesh/D013269 Processus stochastiques. Semi-groupes. MATHEMATICS Probability & Statistics General. bisacsh Semigroups fast Stochastic processes fast |
topic_facet | Stochastic processes. Semigroups. Stochastic Processes Processus stochastiques. Semi-groupes. MATHEMATICS Probability & Statistics General. Semigroups Stochastic processes |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=491510 |
work_keys_str_mv | AT pinskymarka lecturesonrandomevolution |