Regular variation /:
This book is a comprehensive account of the theory and applications of regular variation. It is concerned with the asymptotic behaviour of a real function of a real variable x which is 'close' to a power of x. Such functions are much more than a convenient extension of powers. In many limi...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [Cambridgeshire] ; New York :
Cambridge University Press,
1987.
|
Schriftenreihe: | Encyclopedia of mathematics and its applications ;
v. 27. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book is a comprehensive account of the theory and applications of regular variation. It is concerned with the asymptotic behaviour of a real function of a real variable x which is 'close' to a power of x. Such functions are much more than a convenient extension of powers. In many limit theorems regular variation is intrinsic to the result, and exactly characterises the limit behaviour. The book emphasises such characterisations, and gives a comprehensive treatment of those applications where regular variation plays an essential (rather then merely convenient) role. The authors rigorously develop the basic ideas of Karamata theory and de Haan theory including many new results and 'second-order' theorems. They go on to discuss the role of regular variation in Abelian, Tauberian, and Mercerian theorems. These results are then applied in analytic number theory, complex analysis, and probability, with the aim above all of setting the theory in context. A widely scattered literature is thus brought together in a unified approach. With several appendices and a comprehensive list of references, analysts, number theorists, and probabilists will find this an invaluable and complete account of regular variation. It will provide a rigorous and authoritative introduction to the subject for research students in these fields. |
Beschreibung: | Includes indexes. |
Beschreibung: | 1 online resource (xix, 491 pages) : illustrations |
Format: | Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |
Bibliographie: | Includes bibliographical references (pages 445-466). |
ISBN: | 9781107087651 1107087651 9780511721434 0511721439 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn802299813 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr bn||||||abp | ||
007 | cr bn||||||ada | ||
008 | 120728s1987 enka ob 001 0 eng d | ||
040 | |a OCLCE |b eng |e pn |c OCLCE |d OCLCO |d OCLCQ |d N$T |d IDEBK |d E7B |d CAMBR |d OCLCF |d OCLCQ |d YDXCP |d OCLCQ |d OCLCO |d UAB |d OCLCQ |d VTS |d REC |d OCLCO |d STF |d AU@ |d OCLCO |d M8D |d OCLCQ |d K6U |d OCLCO |d YDX |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 852898938 |a 1030083422 |a 1030132275 |a 1117478154 |a 1125681539 |a 1136376388 | ||
020 | |a 9781107087651 |q (electronic bk.) | ||
020 | |a 1107087651 |q (electronic bk.) | ||
020 | |a 9780511721434 |q (electronic bk.) | ||
020 | |a 0511721439 |q (electronic bk.) | ||
020 | |z 0521307872 | ||
020 | |z 9780521307871 | ||
020 | |z 0521379431 |q (pbk.) | ||
020 | |z 9780521379434 |q (pbk.) | ||
035 | |a (OCoLC)802299813 |z (OCoLC)852898938 |z (OCoLC)1030083422 |z (OCoLC)1030132275 |z (OCoLC)1117478154 |z (OCoLC)1125681539 |z (OCoLC)1136376388 | ||
042 | |a dlr | ||
050 | 4 | |a QA331.5 |b .B54 1987 | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515.8 |2 19 | |
084 | |a 31.40 |2 bcl | ||
084 | |a SK 420 |2 rvk | ||
084 | |a SK 660 |2 rvk | ||
084 | |a MAT 269f |2 stub | ||
084 | |a MAT 285f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Bingham, N. H. | |
245 | 1 | 0 | |a Regular variation / |c N.H. Bingham, C.M. Goldie, J.L. Teugels. |
260 | |a Cambridge [Cambridgeshire] ; |a New York : |b Cambridge University Press, |c 1987. | ||
300 | |a 1 online resource (xix, 491 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of mathematics and its applications ; |v v. 27 | |
504 | |a Includes bibliographical references (pages 445-466). | ||
500 | |a Includes indexes. | ||
506 | |3 Use copy |f Restrictions unspecified |2 star |5 MiAaHDL | ||
533 | |a Electronic reproduction. |b [Place of publication not identified] : |c HathiTrust Digital Library, |d 2012. |5 MiAaHDL | ||
538 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |u http://purl.oclc.org/DLF/benchrepro0212 |5 MiAaHDL | ||
583 | 1 | |a digitized |c 2012 |h HathiTrust Digital Library |l committed to preserve |2 pda |5 MiAaHDL | |
588 | 0 | |a Print version record. | |
505 | 0 | |a Karamata theory -- Further Karamata theory -- De Haan theory -- Abelian and Tauberian theorems -- Mercerian theorems -- Applications to analytic number theory -- Applications to complex analysis -- Applications to probability theory -- Appendices. | |
520 | |a This book is a comprehensive account of the theory and applications of regular variation. It is concerned with the asymptotic behaviour of a real function of a real variable x which is 'close' to a power of x. Such functions are much more than a convenient extension of powers. In many limit theorems regular variation is intrinsic to the result, and exactly characterises the limit behaviour. The book emphasises such characterisations, and gives a comprehensive treatment of those applications where regular variation plays an essential (rather then merely convenient) role. The authors rigorously develop the basic ideas of Karamata theory and de Haan theory including many new results and 'second-order' theorems. They go on to discuss the role of regular variation in Abelian, Tauberian, and Mercerian theorems. These results are then applied in analytic number theory, complex analysis, and probability, with the aim above all of setting the theory in context. A widely scattered literature is thus brought together in a unified approach. With several appendices and a comprehensive list of references, analysts, number theorists, and probabilists will find this an invaluable and complete account of regular variation. It will provide a rigorous and authoritative introduction to the subject for research students in these fields. | ||
650 | 0 | |a Functions of real variables. |0 http://id.loc.gov/authorities/subjects/sh85052357 | |
650 | 0 | |a Calculus. |0 http://id.loc.gov/authorities/subjects/sh85018802 | |
650 | 6 | |a Fonctions de variables réelles. | |
650 | 6 | |a Calcul infinitésimal. | |
650 | 7 | |a calculus. |2 aat | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Calculus |2 fast | |
650 | 7 | |a Functions of real variables |2 fast | |
650 | 7 | |a Reguläres Variationsproblem |2 gnd |0 http://d-nb.info/gnd/4401284-6 | |
650 | 7 | |a Fonctions d'une variable réelle. |2 ram | |
653 | |a Calculus |a Functions of real variables | ||
700 | 1 | |a Goldie, C. M. | |
700 | 1 | |a Teugels, Jef L. | |
776 | 0 | 8 | |i Print version: |w (DLC) 86028422 |w (OCoLC)14719199 |
830 | 0 | |a Encyclopedia of mathematics and its applications ; |v v. 27. |0 http://id.loc.gov/authorities/names/n42010632 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569298 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10733629 | ||
938 | |a EBSCOhost |b EBSC |n 569298 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26006770 | ||
938 | |a YBP Library Services |b YANK |n 10858952 | ||
938 | |a YBP Library Services |b YANK |n 10862013 | ||
938 | |a YBP Library Services |b YANK |n 10866253 | ||
938 | |a YBP Library Services |b YANK |n 10869750 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn802299813 |
---|---|
_version_ | 1816882202480214017 |
adam_text | |
any_adam_object | |
author | Bingham, N. H. |
author2 | Goldie, C. M. Teugels, Jef L. |
author2_role | |
author2_variant | c m g cm cmg j l t jl jlt |
author_facet | Bingham, N. H. Goldie, C. M. Teugels, Jef L. |
author_role | |
author_sort | Bingham, N. H. |
author_variant | n h b nh nhb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA331 |
callnumber-raw | QA331.5 .B54 1987 |
callnumber-search | QA331.5 .B54 1987 |
callnumber-sort | QA 3331.5 B54 41987 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 420 SK 660 |
classification_tum | MAT 269f MAT 285f |
collection | ZDB-4-EBA |
contents | Karamata theory -- Further Karamata theory -- De Haan theory -- Abelian and Tauberian theorems -- Mercerian theorems -- Applications to analytic number theory -- Applications to complex analysis -- Applications to probability theory -- Appendices. |
ctrlnum | (OCoLC)802299813 |
dewey-full | 515.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.8 |
dewey-search | 515.8 |
dewey-sort | 3515.8 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05536cam a2200877 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn802299813</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr bn||||||abp</controlfield><controlfield tag="007">cr bn||||||ada</controlfield><controlfield tag="008">120728s1987 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">OCLCE</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">OCLCE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">852898938</subfield><subfield code="a">1030083422</subfield><subfield code="a">1030132275</subfield><subfield code="a">1117478154</subfield><subfield code="a">1125681539</subfield><subfield code="a">1136376388</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107087651</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107087651</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511721434</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511721439</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521307872</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521307871</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521379431</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521379434</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)802299813</subfield><subfield code="z">(OCoLC)852898938</subfield><subfield code="z">(OCoLC)1030083422</subfield><subfield code="z">(OCoLC)1030132275</subfield><subfield code="z">(OCoLC)1117478154</subfield><subfield code="z">(OCoLC)1125681539</subfield><subfield code="z">(OCoLC)1136376388</subfield></datafield><datafield tag="042" ind1=" " ind2=" "><subfield code="a">dlr</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA331.5</subfield><subfield code="b">.B54 1987</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.8</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.40</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 420</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 660</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 269f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 285f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bingham, N. H.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Regular variation /</subfield><subfield code="c">N.H. Bingham, C.M. Goldie, J.L. Teugels.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [Cambridgeshire] ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1987.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xix, 491 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">v. 27</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 445-466).</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes indexes.</subfield></datafield><datafield tag="506" ind1=" " ind2=" "><subfield code="3">Use copy</subfield><subfield code="f">Restrictions unspecified</subfield><subfield code="2">star</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="a">Electronic reproduction.</subfield><subfield code="b">[Place of publication not identified] :</subfield><subfield code="c">HathiTrust Digital Library,</subfield><subfield code="d">2012.</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="538" ind1=" " ind2=" "><subfield code="a">Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.</subfield><subfield code="u">http://purl.oclc.org/DLF/benchrepro0212</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">digitized</subfield><subfield code="c">2012</subfield><subfield code="h">HathiTrust Digital Library</subfield><subfield code="l">committed to preserve</subfield><subfield code="2">pda</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Karamata theory -- Further Karamata theory -- De Haan theory -- Abelian and Tauberian theorems -- Mercerian theorems -- Applications to analytic number theory -- Applications to complex analysis -- Applications to probability theory -- Appendices.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is a comprehensive account of the theory and applications of regular variation. It is concerned with the asymptotic behaviour of a real function of a real variable x which is 'close' to a power of x. Such functions are much more than a convenient extension of powers. In many limit theorems regular variation is intrinsic to the result, and exactly characterises the limit behaviour. The book emphasises such characterisations, and gives a comprehensive treatment of those applications where regular variation plays an essential (rather then merely convenient) role. The authors rigorously develop the basic ideas of Karamata theory and de Haan theory including many new results and 'second-order' theorems. They go on to discuss the role of regular variation in Abelian, Tauberian, and Mercerian theorems. These results are then applied in analytic number theory, complex analysis, and probability, with the aim above all of setting the theory in context. A widely scattered literature is thus brought together in a unified approach. With several appendices and a comprehensive list of references, analysts, number theorists, and probabilists will find this an invaluable and complete account of regular variation. It will provide a rigorous and authoritative introduction to the subject for research students in these fields.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Functions of real variables.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052357</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Calculus.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85018802</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fonctions de variables réelles.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Calcul infinitésimal.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">calculus.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Calculus</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functions of real variables</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reguläres Variationsproblem</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4401284-6</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fonctions d'une variable réelle.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Calculus</subfield><subfield code="a">Functions of real variables</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goldie, C. M.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Teugels, Jef L.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="w">(DLC) 86028422</subfield><subfield code="w">(OCoLC)14719199</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">v. 27.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42010632</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569298</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10733629</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">569298</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26006770</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10858952</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10862013</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10866253</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10869750</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn802299813 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:24:52Z |
institution | BVB |
isbn | 9781107087651 1107087651 9780511721434 0511721439 |
language | English |
oclc_num | 802299813 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xix, 491 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Cambridge University Press, |
record_format | marc |
series | Encyclopedia of mathematics and its applications ; |
series2 | Encyclopedia of mathematics and its applications ; |
spelling | Bingham, N. H. Regular variation / N.H. Bingham, C.M. Goldie, J.L. Teugels. Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1987. 1 online resource (xix, 491 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Encyclopedia of mathematics and its applications ; v. 27 Includes bibliographical references (pages 445-466). Includes indexes. Use copy Restrictions unspecified star MiAaHDL Electronic reproduction. [Place of publication not identified] : HathiTrust Digital Library, 2012. MiAaHDL Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. http://purl.oclc.org/DLF/benchrepro0212 MiAaHDL digitized 2012 HathiTrust Digital Library committed to preserve pda MiAaHDL Print version record. Karamata theory -- Further Karamata theory -- De Haan theory -- Abelian and Tauberian theorems -- Mercerian theorems -- Applications to analytic number theory -- Applications to complex analysis -- Applications to probability theory -- Appendices. This book is a comprehensive account of the theory and applications of regular variation. It is concerned with the asymptotic behaviour of a real function of a real variable x which is 'close' to a power of x. Such functions are much more than a convenient extension of powers. In many limit theorems regular variation is intrinsic to the result, and exactly characterises the limit behaviour. The book emphasises such characterisations, and gives a comprehensive treatment of those applications where regular variation plays an essential (rather then merely convenient) role. The authors rigorously develop the basic ideas of Karamata theory and de Haan theory including many new results and 'second-order' theorems. They go on to discuss the role of regular variation in Abelian, Tauberian, and Mercerian theorems. These results are then applied in analytic number theory, complex analysis, and probability, with the aim above all of setting the theory in context. A widely scattered literature is thus brought together in a unified approach. With several appendices and a comprehensive list of references, analysts, number theorists, and probabilists will find this an invaluable and complete account of regular variation. It will provide a rigorous and authoritative introduction to the subject for research students in these fields. Functions of real variables. http://id.loc.gov/authorities/subjects/sh85052357 Calculus. http://id.loc.gov/authorities/subjects/sh85018802 Fonctions de variables réelles. Calcul infinitésimal. calculus. aat MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Calculus fast Functions of real variables fast Reguläres Variationsproblem gnd http://d-nb.info/gnd/4401284-6 Fonctions d'une variable réelle. ram Calculus Functions of real variables Goldie, C. M. Teugels, Jef L. Print version: (DLC) 86028422 (OCoLC)14719199 Encyclopedia of mathematics and its applications ; v. 27. http://id.loc.gov/authorities/names/n42010632 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569298 Volltext |
spellingShingle | Bingham, N. H. Regular variation / Encyclopedia of mathematics and its applications ; Karamata theory -- Further Karamata theory -- De Haan theory -- Abelian and Tauberian theorems -- Mercerian theorems -- Applications to analytic number theory -- Applications to complex analysis -- Applications to probability theory -- Appendices. Functions of real variables. http://id.loc.gov/authorities/subjects/sh85052357 Calculus. http://id.loc.gov/authorities/subjects/sh85018802 Fonctions de variables réelles. Calcul infinitésimal. calculus. aat MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Calculus fast Functions of real variables fast Reguläres Variationsproblem gnd http://d-nb.info/gnd/4401284-6 Fonctions d'une variable réelle. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85052357 http://id.loc.gov/authorities/subjects/sh85018802 http://d-nb.info/gnd/4401284-6 |
title | Regular variation / |
title_auth | Regular variation / |
title_exact_search | Regular variation / |
title_full | Regular variation / N.H. Bingham, C.M. Goldie, J.L. Teugels. |
title_fullStr | Regular variation / N.H. Bingham, C.M. Goldie, J.L. Teugels. |
title_full_unstemmed | Regular variation / N.H. Bingham, C.M. Goldie, J.L. Teugels. |
title_short | Regular variation / |
title_sort | regular variation |
topic | Functions of real variables. http://id.loc.gov/authorities/subjects/sh85052357 Calculus. http://id.loc.gov/authorities/subjects/sh85018802 Fonctions de variables réelles. Calcul infinitésimal. calculus. aat MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Calculus fast Functions of real variables fast Reguläres Variationsproblem gnd http://d-nb.info/gnd/4401284-6 Fonctions d'une variable réelle. ram |
topic_facet | Functions of real variables. Calculus. Fonctions de variables réelles. Calcul infinitésimal. calculus. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Calculus Functions of real variables Reguläres Variationsproblem Fonctions d'une variable réelle. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569298 |
work_keys_str_mv | AT binghamnh regularvariation AT goldiecm regularvariation AT teugelsjefl regularvariation |