Evaporative Self-assembly of Ordered Complex Structures.:
The use of spontaneous self-assembly, as a lithographic tool and as an external field-free means to construct well-ordered and intriguing patterns, has received much attention due to its ease of producing complex, large-scale structures with small feature sizes. An extremely simple route to highly-o...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore :
World Scientific,
2012.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The use of spontaneous self-assembly, as a lithographic tool and as an external field-free means to construct well-ordered and intriguing patterns, has received much attention due to its ease of producing complex, large-scale structures with small feature sizes. An extremely simple route to highly-ordered, complex structures is the evaporative self-assembly of nonvolatile solutes (e.g., polymers, nanoparticles, carbon nanotubes, and DNA) from a sessile droplet on a solid substrate. To date, a few studies have elegantly demonstrated that self-organized nanoscale, microscale, and hierarchically. |
Beschreibung: | 3.2.3. The effect of electrolytes and surfactants. |
Beschreibung: | 1 online resource (395 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9789814304696 9814304697 1280669195 9781280669194 9786613646125 6613646121 |
Internformat
MARC
LEADER | 00000cam a2200000Mu 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn794328389 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 120528s2012 si ob 001 0 eng d | ||
010 | |a 2011278446 | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d OCLCQ |d LGG |d VGM |d N$T |d YDXCP |d OCLCQ |d OCLCF |d OCLCQ |d OCLCO |d OCLCQ |d E7B |d NTE |d DEBSZ |d STF |d NNO |d OCLCQ |d LOA |d JBG |d OCLCQ |d AGLDB |d MOR |d PIFAG |d ZCU |d MERUC |d OCLCQ |d U3W |d WRM |d VTS |d ICG |d INT |d NRAMU |d VT2 |d OCLCQ |d WYU |d OCLCQ |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d LEAUB |d UKCRE |d AJS |d MHW |d OCLCO |d OCLCQ |d QGK |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
015 | |a GBB126045 |2 bnb | ||
016 | 7 | |a 015759124 |2 Uk | |
019 | |a 793804772 |a 797852199 |a 960205897 |a 966487004 |a 988435504 |a 992114570 |a 1037754469 |a 1038667060 |a 1045525268 |a 1066574409 |a 1081220821 |a 1086442405 |a 1087385425 |a 1153512358 |a 1228566476 |a 1259256006 |a 1264925487 |a 1297473216 |a 1297573880 | ||
020 | |a 9789814304696 |q (electronic bk.) | ||
020 | |a 9814304697 |q (electronic bk.) | ||
020 | |z 9789814304689 | ||
020 | |z 9814304689 | ||
020 | |a 1280669195 | ||
020 | |a 9781280669194 | ||
020 | |a 9786613646125 | ||
020 | |a 6613646121 | ||
035 | |a (OCoLC)794328389 |z (OCoLC)793804772 |z (OCoLC)797852199 |z (OCoLC)960205897 |z (OCoLC)966487004 |z (OCoLC)988435504 |z (OCoLC)992114570 |z (OCoLC)1037754469 |z (OCoLC)1038667060 |z (OCoLC)1045525268 |z (OCoLC)1066574409 |z (OCoLC)1081220821 |z (OCoLC)1086442405 |z (OCoLC)1087385425 |z (OCoLC)1153512358 |z (OCoLC)1228566476 |z (OCoLC)1259256006 |z (OCoLC)1264925487 |z (OCoLC)1297473216 |z (OCoLC)1297573880 | ||
050 | 4 | |a QD262 | |
072 | 7 | |a SCI |x 013040 |2 bisacsh | |
082 | 7 | |a 547.2 | |
049 | |a MAIN | ||
100 | 1 | |a Lin, Zhiqun, |d 1972- |1 https://id.oclc.org/worldcat/entity/E39PCjtDk9mT6KJWCTVVdVHVFq |0 http://id.loc.gov/authorities/names/no2012078592 | |
245 | 1 | 0 | |a Evaporative Self-assembly of Ordered Complex Structures. |
260 | |a Singapore : |b World Scientific, |c 2012. | ||
300 | |a 1 online resource (395 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
505 | 0 | |a Preface; CONTENTS; 1. Drying a Sessile Droplet: Imaging and Analysis of Transport and Deposition Patterns; 1.1. Introduction; 1.2. The Basic Droplet-Drying Phenomenon; 1.3. Mathematic Models; 1.3.1. Droplet shape; 1.3.2. Governing equations; 1.3.3. Boundary conditions; 1.3.3.1. Mass transfer in the vapor phase; 1.3.3.2. Heat transfer in droplet and substrate; 1.3.3.3. Momentum transfer; 1.4. Vapor Phase Transport; 1.4.1. Analytical solutions; 1.4.2. Finite element analysis; 1.5. Height-Averaged Radial Velocity; 1.6. Full Flow Solution without Marangoni Effect. | |
505 | 8 | |a 1.6.1. The derivation of the flow field1.6.2. Finite element analysis; 1.6.3. Comparison between finite element and analytical solutions; 1.6.4. Application to deposition and stretching of DNA; 1.7. Full Flow Solutions with Marangoni Effect; 1.7.1. Expressions for the velocity field with a thermal Marangoni stress boundary condition; 1.7.2. General expressions for the velocity field with Marangoni stresses; 1.7.3. Full analytical solutions; 1.7.4. Temperature field; 1.7.5. Velocity field; 1.7.6. Surface-active contaminants; 1.7.7. Marangoni stress reverses particle deposition pattern. | |
505 | 8 | |a 1.8. Manipulation of Flow for Patterned Depositions1.9. Conclusions and Outlook; References; 2. Convective Assembly of Patterned Media; 2.1. Introduction; 2.2. Review of Prevailing Mechanisms in Convective Assembly; 2.2.1. Drop casting of colloidal suspensions; 2.2.2. Deposition of colloidal particles in plate-withdrawal experiments or vertical deposition; 2.3. Spontaneously Patterned Colloidal Structures; 2.3.1. Patterning by exploiting the Marangoni-Bénard instability; 2.3.2. Patterning by fingering instabilities or unstable fluid fronts; 2.3.3. Patterning by the capillary instability. | |
505 | 8 | |a 2.3.4. Patterning by contact line pinning and jumping2.3.5. Patterning by spontaneous dewetting; 2.4. Templating of Colloidal Structures Using Patterned Substrates; 2.4.1. Particle patterning exploiting surfaces of patterned surface charge; 2.4.2. Particle patterning exploiting surfaces of patterned wetting; 2.4.3. Particle patterning exploiting surfaces of patterned topography; 2.4.3.1. Capillarity based assembly in surfaces of patterned topography; 2.4.3.2. Ordering in the presence of applied fields; 2.4.3.3. The use of confinement and capillary interactions to form ordered structures. | |
505 | 8 | |a 2.5. Open Issues2.6. Conclusions and Outlook; References; 3. Materials Deposition in Evaporating Menisci -- Fundamentals and Engineering Applications of the Convective Assembly Process; 3.1. Introduction and Background to Convective Assembly; 3.1.1. Convective assembly in thin wetting films; 3.1.2. Drying droplets -- The dynamics of deposition and structure of the deposits; 3.2. Engineering of the Process of Convective Assembly at High Volume Fractions; 3.2.1. The effect of evaporation rate and particle concentration; 3.2.2. The effect of temperature. | |
500 | |a 3.2.3. The effect of electrolytes and surfactants. | ||
520 | |a The use of spontaneous self-assembly, as a lithographic tool and as an external field-free means to construct well-ordered and intriguing patterns, has received much attention due to its ease of producing complex, large-scale structures with small feature sizes. An extremely simple route to highly-ordered, complex structures is the evaporative self-assembly of nonvolatile solutes (e.g., polymers, nanoparticles, carbon nanotubes, and DNA) from a sessile droplet on a solid substrate. To date, a few studies have elegantly demonstrated that self-organized nanoscale, microscale, and hierarchically. | ||
588 | 0 | |a Print version record. | |
504 | |a Includes bibliographical references and index. | ||
546 | |a English. | ||
650 | 0 | |a Self-assembly (Chemistry) |0 http://id.loc.gov/authorities/subjects/sh00005345 | |
650 | 6 | |a Autoassemblage. | |
650 | 7 | |a SCIENCE |x Chemistry |x Organic. |2 bisacsh | |
650 | 7 | |a Self-assembly (Chemistry) |2 fast | |
758 | |i has work: |a Evaporative self-assembly of ordered complex structures (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGPmXTXWRBx7T4FxdJ4J8P |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Lin, Zhiqun. |t Evaporative Self-assembly of Ordered Complex Structures. |d Singapore : World Scientific, ©2012 |z 9789814304689 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457193 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25565223 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL919094 | ||
938 | |a ebrary |b EBRY |n ebr10563501 | ||
938 | |a EBSCOhost |b EBSC |n 457193 | ||
938 | |a YBP Library Services |b YANK |n 7651204 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn794328389 |
---|---|
_version_ | 1816881795674669056 |
adam_text | |
any_adam_object | |
author | Lin, Zhiqun, 1972- |
author_GND | http://id.loc.gov/authorities/names/no2012078592 |
author_facet | Lin, Zhiqun, 1972- |
author_role | |
author_sort | Lin, Zhiqun, 1972- |
author_variant | z l zl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QD262 |
callnumber-raw | QD262 |
callnumber-search | QD262 |
callnumber-sort | QD 3262 |
callnumber-subject | QD - Chemistry |
collection | ZDB-4-EBA |
contents | Preface; CONTENTS; 1. Drying a Sessile Droplet: Imaging and Analysis of Transport and Deposition Patterns; 1.1. Introduction; 1.2. The Basic Droplet-Drying Phenomenon; 1.3. Mathematic Models; 1.3.1. Droplet shape; 1.3.2. Governing equations; 1.3.3. Boundary conditions; 1.3.3.1. Mass transfer in the vapor phase; 1.3.3.2. Heat transfer in droplet and substrate; 1.3.3.3. Momentum transfer; 1.4. Vapor Phase Transport; 1.4.1. Analytical solutions; 1.4.2. Finite element analysis; 1.5. Height-Averaged Radial Velocity; 1.6. Full Flow Solution without Marangoni Effect. 1.6.1. The derivation of the flow field1.6.2. Finite element analysis; 1.6.3. Comparison between finite element and analytical solutions; 1.6.4. Application to deposition and stretching of DNA; 1.7. Full Flow Solutions with Marangoni Effect; 1.7.1. Expressions for the velocity field with a thermal Marangoni stress boundary condition; 1.7.2. General expressions for the velocity field with Marangoni stresses; 1.7.3. Full analytical solutions; 1.7.4. Temperature field; 1.7.5. Velocity field; 1.7.6. Surface-active contaminants; 1.7.7. Marangoni stress reverses particle deposition pattern. 1.8. Manipulation of Flow for Patterned Depositions1.9. Conclusions and Outlook; References; 2. Convective Assembly of Patterned Media; 2.1. Introduction; 2.2. Review of Prevailing Mechanisms in Convective Assembly; 2.2.1. Drop casting of colloidal suspensions; 2.2.2. Deposition of colloidal particles in plate-withdrawal experiments or vertical deposition; 2.3. Spontaneously Patterned Colloidal Structures; 2.3.1. Patterning by exploiting the Marangoni-Bénard instability; 2.3.2. Patterning by fingering instabilities or unstable fluid fronts; 2.3.3. Patterning by the capillary instability. 2.3.4. Patterning by contact line pinning and jumping2.3.5. Patterning by spontaneous dewetting; 2.4. Templating of Colloidal Structures Using Patterned Substrates; 2.4.1. Particle patterning exploiting surfaces of patterned surface charge; 2.4.2. Particle patterning exploiting surfaces of patterned wetting; 2.4.3. Particle patterning exploiting surfaces of patterned topography; 2.4.3.1. Capillarity based assembly in surfaces of patterned topography; 2.4.3.2. Ordering in the presence of applied fields; 2.4.3.3. The use of confinement and capillary interactions to form ordered structures. 2.5. Open Issues2.6. Conclusions and Outlook; References; 3. Materials Deposition in Evaporating Menisci -- Fundamentals and Engineering Applications of the Convective Assembly Process; 3.1. Introduction and Background to Convective Assembly; 3.1.1. Convective assembly in thin wetting films; 3.1.2. Drying droplets -- The dynamics of deposition and structure of the deposits; 3.2. Engineering of the Process of Convective Assembly at High Volume Fractions; 3.2.1. The effect of evaporation rate and particle concentration; 3.2.2. The effect of temperature. |
ctrlnum | (OCoLC)794328389 |
dewey-full | 547.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 547 - Organic chemistry |
dewey-raw | 547.2 |
dewey-search | 547.2 |
dewey-sort | 3547.2 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06846cam a2200673Mu 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn794328389</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|---|||||</controlfield><controlfield tag="008">120528s2012 si ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2011278446</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LGG</subfield><subfield code="d">VGM</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">E7B</subfield><subfield code="d">NTE</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">STF</subfield><subfield code="d">NNO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">NRAMU</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">UKCRE</subfield><subfield code="d">AJS</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB126045</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">015759124</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">793804772</subfield><subfield code="a">797852199</subfield><subfield code="a">960205897</subfield><subfield code="a">966487004</subfield><subfield code="a">988435504</subfield><subfield code="a">992114570</subfield><subfield code="a">1037754469</subfield><subfield code="a">1038667060</subfield><subfield code="a">1045525268</subfield><subfield code="a">1066574409</subfield><subfield code="a">1081220821</subfield><subfield code="a">1086442405</subfield><subfield code="a">1087385425</subfield><subfield code="a">1153512358</subfield><subfield code="a">1228566476</subfield><subfield code="a">1259256006</subfield><subfield code="a">1264925487</subfield><subfield code="a">1297473216</subfield><subfield code="a">1297573880</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814304696</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814304697</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814304689</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814304689</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1280669195</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781280669194</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786613646125</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6613646121</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)794328389</subfield><subfield code="z">(OCoLC)793804772</subfield><subfield code="z">(OCoLC)797852199</subfield><subfield code="z">(OCoLC)960205897</subfield><subfield code="z">(OCoLC)966487004</subfield><subfield code="z">(OCoLC)988435504</subfield><subfield code="z">(OCoLC)992114570</subfield><subfield code="z">(OCoLC)1037754469</subfield><subfield code="z">(OCoLC)1038667060</subfield><subfield code="z">(OCoLC)1045525268</subfield><subfield code="z">(OCoLC)1066574409</subfield><subfield code="z">(OCoLC)1081220821</subfield><subfield code="z">(OCoLC)1086442405</subfield><subfield code="z">(OCoLC)1087385425</subfield><subfield code="z">(OCoLC)1153512358</subfield><subfield code="z">(OCoLC)1228566476</subfield><subfield code="z">(OCoLC)1259256006</subfield><subfield code="z">(OCoLC)1264925487</subfield><subfield code="z">(OCoLC)1297473216</subfield><subfield code="z">(OCoLC)1297573880</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QD262</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">013040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">547.2</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lin, Zhiqun,</subfield><subfield code="d">1972-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjtDk9mT6KJWCTVVdVHVFq</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2012078592</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaporative Self-assembly of Ordered Complex Structures.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (395 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; CONTENTS; 1. Drying a Sessile Droplet: Imaging and Analysis of Transport and Deposition Patterns; 1.1. Introduction; 1.2. The Basic Droplet-Drying Phenomenon; 1.3. Mathematic Models; 1.3.1. Droplet shape; 1.3.2. Governing equations; 1.3.3. Boundary conditions; 1.3.3.1. Mass transfer in the vapor phase; 1.3.3.2. Heat transfer in droplet and substrate; 1.3.3.3. Momentum transfer; 1.4. Vapor Phase Transport; 1.4.1. Analytical solutions; 1.4.2. Finite element analysis; 1.5. Height-Averaged Radial Velocity; 1.6. Full Flow Solution without Marangoni Effect.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.6.1. The derivation of the flow field1.6.2. Finite element analysis; 1.6.3. Comparison between finite element and analytical solutions; 1.6.4. Application to deposition and stretching of DNA; 1.7. Full Flow Solutions with Marangoni Effect; 1.7.1. Expressions for the velocity field with a thermal Marangoni stress boundary condition; 1.7.2. General expressions for the velocity field with Marangoni stresses; 1.7.3. Full analytical solutions; 1.7.4. Temperature field; 1.7.5. Velocity field; 1.7.6. Surface-active contaminants; 1.7.7. Marangoni stress reverses particle deposition pattern.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.8. Manipulation of Flow for Patterned Depositions1.9. Conclusions and Outlook; References; 2. Convective Assembly of Patterned Media; 2.1. Introduction; 2.2. Review of Prevailing Mechanisms in Convective Assembly; 2.2.1. Drop casting of colloidal suspensions; 2.2.2. Deposition of colloidal particles in plate-withdrawal experiments or vertical deposition; 2.3. Spontaneously Patterned Colloidal Structures; 2.3.1. Patterning by exploiting the Marangoni-Bénard instability; 2.3.2. Patterning by fingering instabilities or unstable fluid fronts; 2.3.3. Patterning by the capillary instability.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3.4. Patterning by contact line pinning and jumping2.3.5. Patterning by spontaneous dewetting; 2.4. Templating of Colloidal Structures Using Patterned Substrates; 2.4.1. Particle patterning exploiting surfaces of patterned surface charge; 2.4.2. Particle patterning exploiting surfaces of patterned wetting; 2.4.3. Particle patterning exploiting surfaces of patterned topography; 2.4.3.1. Capillarity based assembly in surfaces of patterned topography; 2.4.3.2. Ordering in the presence of applied fields; 2.4.3.3. The use of confinement and capillary interactions to form ordered structures.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.5. Open Issues2.6. Conclusions and Outlook; References; 3. Materials Deposition in Evaporating Menisci -- Fundamentals and Engineering Applications of the Convective Assembly Process; 3.1. Introduction and Background to Convective Assembly; 3.1.1. Convective assembly in thin wetting films; 3.1.2. Drying droplets -- The dynamics of deposition and structure of the deposits; 3.2. Engineering of the Process of Convective Assembly at High Volume Fractions; 3.2.1. The effect of evaporation rate and particle concentration; 3.2.2. The effect of temperature.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">3.2.3. The effect of electrolytes and surfactants.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The use of spontaneous self-assembly, as a lithographic tool and as an external field-free means to construct well-ordered and intriguing patterns, has received much attention due to its ease of producing complex, large-scale structures with small feature sizes. An extremely simple route to highly-ordered, complex structures is the evaporative self-assembly of nonvolatile solutes (e.g., polymers, nanoparticles, carbon nanotubes, and DNA) from a sessile droplet on a solid substrate. To date, a few studies have elegantly demonstrated that self-organized nanoscale, microscale, and hierarchically.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Self-assembly (Chemistry)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh00005345</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Autoassemblage.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Chemistry</subfield><subfield code="x">Organic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Self-assembly (Chemistry)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Evaporative self-assembly of ordered complex structures (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGPmXTXWRBx7T4FxdJ4J8P</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Lin, Zhiqun.</subfield><subfield code="t">Evaporative Self-assembly of Ordered Complex Structures.</subfield><subfield code="d">Singapore : World Scientific, ©2012</subfield><subfield code="z">9789814304689</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457193</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25565223</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL919094</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10563501</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">457193</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7651204</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn794328389 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:18:24Z |
institution | BVB |
isbn | 9789814304696 9814304697 1280669195 9781280669194 9786613646125 6613646121 |
language | English |
lccn | 2011278446 |
oclc_num | 794328389 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (395 pages) |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | World Scientific, |
record_format | marc |
spelling | Lin, Zhiqun, 1972- https://id.oclc.org/worldcat/entity/E39PCjtDk9mT6KJWCTVVdVHVFq http://id.loc.gov/authorities/names/no2012078592 Evaporative Self-assembly of Ordered Complex Structures. Singapore : World Scientific, 2012. 1 online resource (395 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Preface; CONTENTS; 1. Drying a Sessile Droplet: Imaging and Analysis of Transport and Deposition Patterns; 1.1. Introduction; 1.2. The Basic Droplet-Drying Phenomenon; 1.3. Mathematic Models; 1.3.1. Droplet shape; 1.3.2. Governing equations; 1.3.3. Boundary conditions; 1.3.3.1. Mass transfer in the vapor phase; 1.3.3.2. Heat transfer in droplet and substrate; 1.3.3.3. Momentum transfer; 1.4. Vapor Phase Transport; 1.4.1. Analytical solutions; 1.4.2. Finite element analysis; 1.5. Height-Averaged Radial Velocity; 1.6. Full Flow Solution without Marangoni Effect. 1.6.1. The derivation of the flow field1.6.2. Finite element analysis; 1.6.3. Comparison between finite element and analytical solutions; 1.6.4. Application to deposition and stretching of DNA; 1.7. Full Flow Solutions with Marangoni Effect; 1.7.1. Expressions for the velocity field with a thermal Marangoni stress boundary condition; 1.7.2. General expressions for the velocity field with Marangoni stresses; 1.7.3. Full analytical solutions; 1.7.4. Temperature field; 1.7.5. Velocity field; 1.7.6. Surface-active contaminants; 1.7.7. Marangoni stress reverses particle deposition pattern. 1.8. Manipulation of Flow for Patterned Depositions1.9. Conclusions and Outlook; References; 2. Convective Assembly of Patterned Media; 2.1. Introduction; 2.2. Review of Prevailing Mechanisms in Convective Assembly; 2.2.1. Drop casting of colloidal suspensions; 2.2.2. Deposition of colloidal particles in plate-withdrawal experiments or vertical deposition; 2.3. Spontaneously Patterned Colloidal Structures; 2.3.1. Patterning by exploiting the Marangoni-Bénard instability; 2.3.2. Patterning by fingering instabilities or unstable fluid fronts; 2.3.3. Patterning by the capillary instability. 2.3.4. Patterning by contact line pinning and jumping2.3.5. Patterning by spontaneous dewetting; 2.4. Templating of Colloidal Structures Using Patterned Substrates; 2.4.1. Particle patterning exploiting surfaces of patterned surface charge; 2.4.2. Particle patterning exploiting surfaces of patterned wetting; 2.4.3. Particle patterning exploiting surfaces of patterned topography; 2.4.3.1. Capillarity based assembly in surfaces of patterned topography; 2.4.3.2. Ordering in the presence of applied fields; 2.4.3.3. The use of confinement and capillary interactions to form ordered structures. 2.5. Open Issues2.6. Conclusions and Outlook; References; 3. Materials Deposition in Evaporating Menisci -- Fundamentals and Engineering Applications of the Convective Assembly Process; 3.1. Introduction and Background to Convective Assembly; 3.1.1. Convective assembly in thin wetting films; 3.1.2. Drying droplets -- The dynamics of deposition and structure of the deposits; 3.2. Engineering of the Process of Convective Assembly at High Volume Fractions; 3.2.1. The effect of evaporation rate and particle concentration; 3.2.2. The effect of temperature. 3.2.3. The effect of electrolytes and surfactants. The use of spontaneous self-assembly, as a lithographic tool and as an external field-free means to construct well-ordered and intriguing patterns, has received much attention due to its ease of producing complex, large-scale structures with small feature sizes. An extremely simple route to highly-ordered, complex structures is the evaporative self-assembly of nonvolatile solutes (e.g., polymers, nanoparticles, carbon nanotubes, and DNA) from a sessile droplet on a solid substrate. To date, a few studies have elegantly demonstrated that self-organized nanoscale, microscale, and hierarchically. Print version record. Includes bibliographical references and index. English. Self-assembly (Chemistry) http://id.loc.gov/authorities/subjects/sh00005345 Autoassemblage. SCIENCE Chemistry Organic. bisacsh Self-assembly (Chemistry) fast has work: Evaporative self-assembly of ordered complex structures (Text) https://id.oclc.org/worldcat/entity/E39PCGPmXTXWRBx7T4FxdJ4J8P https://id.oclc.org/worldcat/ontology/hasWork Print version: Lin, Zhiqun. Evaporative Self-assembly of Ordered Complex Structures. Singapore : World Scientific, ©2012 9789814304689 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457193 Volltext |
spellingShingle | Lin, Zhiqun, 1972- Evaporative Self-assembly of Ordered Complex Structures. Preface; CONTENTS; 1. Drying a Sessile Droplet: Imaging and Analysis of Transport and Deposition Patterns; 1.1. Introduction; 1.2. The Basic Droplet-Drying Phenomenon; 1.3. Mathematic Models; 1.3.1. Droplet shape; 1.3.2. Governing equations; 1.3.3. Boundary conditions; 1.3.3.1. Mass transfer in the vapor phase; 1.3.3.2. Heat transfer in droplet and substrate; 1.3.3.3. Momentum transfer; 1.4. Vapor Phase Transport; 1.4.1. Analytical solutions; 1.4.2. Finite element analysis; 1.5. Height-Averaged Radial Velocity; 1.6. Full Flow Solution without Marangoni Effect. 1.6.1. The derivation of the flow field1.6.2. Finite element analysis; 1.6.3. Comparison between finite element and analytical solutions; 1.6.4. Application to deposition and stretching of DNA; 1.7. Full Flow Solutions with Marangoni Effect; 1.7.1. Expressions for the velocity field with a thermal Marangoni stress boundary condition; 1.7.2. General expressions for the velocity field with Marangoni stresses; 1.7.3. Full analytical solutions; 1.7.4. Temperature field; 1.7.5. Velocity field; 1.7.6. Surface-active contaminants; 1.7.7. Marangoni stress reverses particle deposition pattern. 1.8. Manipulation of Flow for Patterned Depositions1.9. Conclusions and Outlook; References; 2. Convective Assembly of Patterned Media; 2.1. Introduction; 2.2. Review of Prevailing Mechanisms in Convective Assembly; 2.2.1. Drop casting of colloidal suspensions; 2.2.2. Deposition of colloidal particles in plate-withdrawal experiments or vertical deposition; 2.3. Spontaneously Patterned Colloidal Structures; 2.3.1. Patterning by exploiting the Marangoni-Bénard instability; 2.3.2. Patterning by fingering instabilities or unstable fluid fronts; 2.3.3. Patterning by the capillary instability. 2.3.4. Patterning by contact line pinning and jumping2.3.5. Patterning by spontaneous dewetting; 2.4. Templating of Colloidal Structures Using Patterned Substrates; 2.4.1. Particle patterning exploiting surfaces of patterned surface charge; 2.4.2. Particle patterning exploiting surfaces of patterned wetting; 2.4.3. Particle patterning exploiting surfaces of patterned topography; 2.4.3.1. Capillarity based assembly in surfaces of patterned topography; 2.4.3.2. Ordering in the presence of applied fields; 2.4.3.3. The use of confinement and capillary interactions to form ordered structures. 2.5. Open Issues2.6. Conclusions and Outlook; References; 3. Materials Deposition in Evaporating Menisci -- Fundamentals and Engineering Applications of the Convective Assembly Process; 3.1. Introduction and Background to Convective Assembly; 3.1.1. Convective assembly in thin wetting films; 3.1.2. Drying droplets -- The dynamics of deposition and structure of the deposits; 3.2. Engineering of the Process of Convective Assembly at High Volume Fractions; 3.2.1. The effect of evaporation rate and particle concentration; 3.2.2. The effect of temperature. Self-assembly (Chemistry) http://id.loc.gov/authorities/subjects/sh00005345 Autoassemblage. SCIENCE Chemistry Organic. bisacsh Self-assembly (Chemistry) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh00005345 |
title | Evaporative Self-assembly of Ordered Complex Structures. |
title_auth | Evaporative Self-assembly of Ordered Complex Structures. |
title_exact_search | Evaporative Self-assembly of Ordered Complex Structures. |
title_full | Evaporative Self-assembly of Ordered Complex Structures. |
title_fullStr | Evaporative Self-assembly of Ordered Complex Structures. |
title_full_unstemmed | Evaporative Self-assembly of Ordered Complex Structures. |
title_short | Evaporative Self-assembly of Ordered Complex Structures. |
title_sort | evaporative self assembly of ordered complex structures |
topic | Self-assembly (Chemistry) http://id.loc.gov/authorities/subjects/sh00005345 Autoassemblage. SCIENCE Chemistry Organic. bisacsh Self-assembly (Chemistry) fast |
topic_facet | Self-assembly (Chemistry) Autoassemblage. SCIENCE Chemistry Organic. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457193 |
work_keys_str_mv | AT linzhiqun evaporativeselfassemblyoforderedcomplexstructures |