Nonparametric inference on manifolds :: with applications to shape spaces /
A systematic introduction to a general nonparametric theory of statistics on manifolds, with emphasis on manifolds of shapes.
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2012.
|
Schriftenreihe: | Institute of Mathematical Statistics monographs.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | A systematic introduction to a general nonparametric theory of statistics on manifolds, with emphasis on manifolds of shapes. |
Beschreibung: | 9.3 Asymptotic distribution of the sample extrinsic mean. |
Beschreibung: | 1 online resource (237 pages) |
Bibliographie: | Includes bibliographical references (pages 229-234) and index. |
ISBN: | 9781139337021 1139337025 9781139094764 1139094769 9781139340342 1139340344 1107231159 9781107231153 9786613572097 6613572098 1139337890 9781139337892 1139341928 9781139341929 9781107484313 1107484316 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn792684311 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 120430s2012 enk ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d OCLCQ |d N$T |d CDX |d COO |d YDXCP |d E7B |d UIU |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCF |d OCLCQ |d UAB |d OCLCQ |d COCUF |d STF |d LOA |d CUY |d MERUC |d ZCU |d ICG |d K6U |d VT2 |d U3W |d AU@ |d DEBBG |d OCLCQ |d WYU |d LVT |d TKN |d DKC |d OCLCQ |d OL$ |d OCLCQ |d A6Q |d G3B |d OCLCQ |d VLY |d UKAHL |d AJS |d LUN |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL | ||
066 | |c (S | ||
015 | |a GBB1C1465 |2 bnb | ||
016 | 7 | |a 015951831 |2 Uk | |
019 | |a 794731510 |a 853661450 |a 1055326305 |a 1058054151 |a 1066617547 |a 1081238577 |a 1162472185 |a 1171160289 |a 1172766535 |a 1228622373 |a 1241791528 |a 1259246119 | ||
020 | |a 9781139337021 |q (electronic bk.) | ||
020 | |a 1139337025 |q (electronic bk.) | ||
020 | |a 9781139094764 |q (electronic bk.) | ||
020 | |a 1139094769 |q (electronic bk.) | ||
020 | |a 9781139340342 | ||
020 | |a 1139340344 | ||
020 | |z 9781139338769 | ||
020 | |z 1139338765 | ||
020 | |z 9781107019584 |q (hbk.) | ||
020 | |z 1107019583 |q (hbk.) | ||
020 | |a 1107231159 | ||
020 | |a 9781107231153 | ||
020 | |a 9786613572097 | ||
020 | |a 6613572098 | ||
020 | |a 1139337890 | ||
020 | |a 9781139337892 | ||
020 | |a 1139341928 | ||
020 | |a 9781139341929 | ||
020 | |a 9781107484313 |q (paperback) | ||
020 | |a 1107484316 | ||
024 | 8 | |a 9786613572097 | |
035 | |a (OCoLC)792684311 |z (OCoLC)794731510 |z (OCoLC)853661450 |z (OCoLC)1055326305 |z (OCoLC)1058054151 |z (OCoLC)1066617547 |z (OCoLC)1081238577 |z (OCoLC)1162472185 |z (OCoLC)1171160289 |z (OCoLC)1172766535 |z (OCoLC)1228622373 |z (OCoLC)1241791528 |z (OCoLC)1259246119 | ||
050 | 4 | |a QA278.8 | |
072 | 7 | |a MAT |x 029000 |2 bisacsh | |
082 | 7 | |a 519.5 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Bhattacharya, Abhishek. | |
245 | 1 | 0 | |a Nonparametric inference on manifolds : |b with applications to shape spaces / |c Abhishek Bhattacharya, Rabi Bhattacharya. |
260 | |a Cambridge : |b Cambridge University Press, |c 2012. | ||
300 | |a 1 online resource (237 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Institute of Mathematical Statistics Monographs ; |v v. 2 | |
505 | 0 | |a Cover; Nonparametric Inference on Manifolds; Title; Copyright; Contents; Commonly used notation; Preface; 1: Introduction; 2: Examples; 2.1 Data example on S1: wind and ozone; 2.2 Data examples on S2: paleomagnetism; 2.3 Data example on Sk2: shapes of gorilla skulls; 2.4 Data example on Sk2: brain scan shapes of schizophrenic and normal patients; 2.5 Data example on affine shape space ASk2: application to handwritten digit recognition; 2.6 Data example on reflection similarity shape space RSk3: glaucoma detection; 2.7 References; 3: Location and spread on metric spaces; 3.1 Introduction. | |
505 | 8 | |a 3.2 Location on metric spaces3.3 Variation on metric spaces; 3.4 Asymptotic distribution of the sample mean; 3.5 Asymptotic distribution of the sample variation; 3.6 An example: the unit circle; 3.7 Data example on S1; 3.8 References; 4: Extrinsic analysis on manifolds; 4.1 Extrinsic mean and variation; 4.2 Asymptotic distribution of the sample extrinsic mean; 4.3 Asymptotic distribution of the sample extrinsic variation; 4.4 Asymptotic joint distribution of the sample extrinsic mean and variation; 4.5 Two-sample extrinsic tests; 4.5.1 Independent samples; 4.5.2 Matched pair samples. | |
505 | 8 | |a 4.6 Hypothesis testing using extrinsic mean and variation4.6.1 Independent samples; 4.7 Equivariant embedding; 4.8 Extrinsic analysis on the unit sphere Sd; 4.9 Applications on the sphere; 4.9.1 Magnetization direction data; 4.9.2 Volcano Location Data; 4.10 References; 5: Intrinsic analysis on manifolds; 5.1 Intrinsic mean and variation; 5.2 Asymptotic distribution of the sample intrinsic mean; 5.3 Intrinsic analysis on Sd; 5.4 Two-sample intrinsic tests; 5.4.1 Independent samples; 5.4.2 Matched pair samples; 5.5 Data example on S2. | |
505 | 8 | |a 5.6 Some remarks on the uniqueness of the intrinsic mean and the nonsingularity of the asymptotic distribution of the sample mean5.7 References; 6: Landmark-based shape spaces; 6.1 Introduction; 6.2 Geometry of shape manifolds; 6.2.1 Similarity shape spaces Skm; 6.2.2 Reflection similarity shape spaces RSkm; 6.2.3 Affine shape spaces ASkm; 6.2.4 Projective shape spaces PSk; 6.3 References; 7: Kendall's similarity shape spaces Skm; 7.1 Introduction; 7.2 Geometry of similarity shape spaces; 7.3 References; 8: The planar shape space Sk2; 8.1 Introduction; 8.2 Geometry of the planar shape space. | |
505 | 8 | |a 8.3 Examples8.3.1 Gorilla skulls; 8.3.2 Schizophrenic patients; 8.4 Intrinsic analysis on the planar shape space; 8.5 Other Fréchet functions; 8.6 Extrinsic analysis on the planar shape space; 8.7 Extrinsic mean and variation; 8.8 Asymptotic distribution of the sample extrinsic mean; 8.9 Two-sample extrinsic tests on the planar shape space; 8.10 Planar size-and-shape manifold; 8.11 Applications; 8.11.1 Gorilla skulls; 8.11.2 Schizophrenia detection; 8.12 References; 9: Reflection similarity shape spaces RSkm; 9.1 Introduction; 9.2 Extrinsic analysis on the reflection shape space. | |
500 | |a 9.3 Asymptotic distribution of the sample extrinsic mean. | ||
520 | |a A systematic introduction to a general nonparametric theory of statistics on manifolds, with emphasis on manifolds of shapes. | ||
588 | 0 | |a Print version record. | |
504 | |a Includes bibliographical references (pages 229-234) and index. | ||
546 | |a English. | ||
650 | 0 | |a Nonparametric statistics. |0 http://id.loc.gov/authorities/subjects/sh85092349 | |
650 | 0 | |a Manifolds (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85080549 | |
650 | 4 | |a Mathematical statistics. | |
650 | 4 | |a Probabilities. | |
650 | 4 | |a Sequences (Mathematics) | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 4 | |a Nonparametric statistics. | |
650 | 6 | |a Statistique non paramétrique. | |
650 | 6 | |a Variétés (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Probability & Statistics |x General. |2 bisacsh | |
650 | 7 | |a Manifolds (Mathematics) |2 fast | |
650 | 7 | |a Nonparametric statistics |2 fast | |
700 | 1 | |a Bhattacharya, Rabi. | |
758 | |i has work: |a Nonparametric inference on manifolds (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGPGV8fKmVcDMWtWdqYvRC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Bhattacharya, Abhishek. |t Nonparametric Inference on Manifolds. |d Cambridge : Cambridge University Press, 2012 |z 9781139338769 |
830 | 0 | |a Institute of Mathematical Statistics monographs. |0 http://id.loc.gov/authorities/names/no2010152956 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=438982 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=438982 |3 Volltext | |
880 | 8 | |6 505-00/(S |a 8.3 Examples8.3.1 Gorilla skulls; 8.3.2 Schizophrenic patients; 8.4 Intrinsic analysis on the planar shape space; 8.5 Other Fréchet functions; 8.6 Extrinsic analysis on the planar shape space; 8.7 Extrinsic mean and variation; 8.8 Asymptotic distribution of the sample extrinsic mean; 8.9 Two-sample extrinsic tests on the planar shape space; 8.10 Planar size-and-shape manifold; 8.11 Applications; 8.11.1 Gorilla skulls; 8.11.2 Schizophrenia detection; 8.12 References; 9: Reflection similarity shape spaces RΣkm; 9.1 Introduction; 9.2 Extrinsic analysis on the reflection shape space. | |
880 | 0 | |6 505-00/(S |a Cover; Nonparametric Inference on Manifolds; Title; Copyright; Contents; Commonly used notation; Preface; 1: Introduction; 2: Examples; 2.1 Data example on S1: wind and ozone; 2.2 Data examples on S2: paleomagnetism; 2.3 Data example on Σk2: shapes of gorilla skulls; 2.4 Data example on Σk2: brain scan shapes of schizophrenic and normal patients; 2.5 Data example on affine shape space AΣk2: application to handwritten digit recognition; 2.6 Data example on reflection similarity shape space RΣk3: glaucoma detection; 2.7 References; 3: Location and spread on metric spaces; 3.1 Introduction. | |
880 | 8 | |6 505-00/(S |a 5.6 Some remarks on the uniqueness of the intrinsic mean and the nonsingularity of the asymptotic distribution of the sample mean5.7 References; 6: Landmark-based shape spaces; 6.1 Introduction; 6.2 Geometry of shape manifolds; 6.2.1 Similarity shape spaces Σkm; 6.2.2 Reflection similarity shape spaces RΣkm; 6.2.3 Affine shape spaces AΣkm; 6.2.4 Projective shape spaces PΣk; 6.3 References; 7: Kendall's similarity shape spaces Σkm; 7.1 Introduction; 7.2 Geometry of similarity shape spaces; 7.3 References; 8: The planar shape space Σk2; 8.1 Introduction; 8.2 Geometry of the planar shape space. | |
938 | |a Askews and Holts Library Services |b ASKH |n AH28321182 | ||
938 | |a Coutts Information Services |b COUT |n 22216944 |c 50.00 GBP | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL866805 | ||
938 | |a ebrary |b EBRY |n ebr10558192 | ||
938 | |a EBSCOhost |b EBSC |n 438982 | ||
938 | |a YBP Library Services |b YANK |n 7623387 | ||
938 | |a YBP Library Services |b YANK |n 7641123 | ||
938 | |a YBP Library Services |b YANK |n 7663991 | ||
938 | |a YBP Library Services |b YANK |n 7636404 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn792684311 |
---|---|
_version_ | 1813903434329358336 |
adam_text | |
any_adam_object | |
author | Bhattacharya, Abhishek |
author2 | Bhattacharya, Rabi |
author2_role | |
author2_variant | r b rb |
author_facet | Bhattacharya, Abhishek Bhattacharya, Rabi |
author_role | |
author_sort | Bhattacharya, Abhishek |
author_variant | a b ab |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA278 |
callnumber-raw | QA278.8 |
callnumber-search | QA278.8 |
callnumber-sort | QA 3278.8 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Nonparametric Inference on Manifolds; Title; Copyright; Contents; Commonly used notation; Preface; 1: Introduction; 2: Examples; 2.1 Data example on S1: wind and ozone; 2.2 Data examples on S2: paleomagnetism; 2.3 Data example on Sk2: shapes of gorilla skulls; 2.4 Data example on Sk2: brain scan shapes of schizophrenic and normal patients; 2.5 Data example on affine shape space ASk2: application to handwritten digit recognition; 2.6 Data example on reflection similarity shape space RSk3: glaucoma detection; 2.7 References; 3: Location and spread on metric spaces; 3.1 Introduction. 3.2 Location on metric spaces3.3 Variation on metric spaces; 3.4 Asymptotic distribution of the sample mean; 3.5 Asymptotic distribution of the sample variation; 3.6 An example: the unit circle; 3.7 Data example on S1; 3.8 References; 4: Extrinsic analysis on manifolds; 4.1 Extrinsic mean and variation; 4.2 Asymptotic distribution of the sample extrinsic mean; 4.3 Asymptotic distribution of the sample extrinsic variation; 4.4 Asymptotic joint distribution of the sample extrinsic mean and variation; 4.5 Two-sample extrinsic tests; 4.5.1 Independent samples; 4.5.2 Matched pair samples. 4.6 Hypothesis testing using extrinsic mean and variation4.6.1 Independent samples; 4.7 Equivariant embedding; 4.8 Extrinsic analysis on the unit sphere Sd; 4.9 Applications on the sphere; 4.9.1 Magnetization direction data; 4.9.2 Volcano Location Data; 4.10 References; 5: Intrinsic analysis on manifolds; 5.1 Intrinsic mean and variation; 5.2 Asymptotic distribution of the sample intrinsic mean; 5.3 Intrinsic analysis on Sd; 5.4 Two-sample intrinsic tests; 5.4.1 Independent samples; 5.4.2 Matched pair samples; 5.5 Data example on S2. 5.6 Some remarks on the uniqueness of the intrinsic mean and the nonsingularity of the asymptotic distribution of the sample mean5.7 References; 6: Landmark-based shape spaces; 6.1 Introduction; 6.2 Geometry of shape manifolds; 6.2.1 Similarity shape spaces Skm; 6.2.2 Reflection similarity shape spaces RSkm; 6.2.3 Affine shape spaces ASkm; 6.2.4 Projective shape spaces PSk; 6.3 References; 7: Kendall's similarity shape spaces Skm; 7.1 Introduction; 7.2 Geometry of similarity shape spaces; 7.3 References; 8: The planar shape space Sk2; 8.1 Introduction; 8.2 Geometry of the planar shape space. 8.3 Examples8.3.1 Gorilla skulls; 8.3.2 Schizophrenic patients; 8.4 Intrinsic analysis on the planar shape space; 8.5 Other Fréchet functions; 8.6 Extrinsic analysis on the planar shape space; 8.7 Extrinsic mean and variation; 8.8 Asymptotic distribution of the sample extrinsic mean; 8.9 Two-sample extrinsic tests on the planar shape space; 8.10 Planar size-and-shape manifold; 8.11 Applications; 8.11.1 Gorilla skulls; 8.11.2 Schizophrenia detection; 8.12 References; 9: Reflection similarity shape spaces RSkm; 9.1 Introduction; 9.2 Extrinsic analysis on the reflection shape space. |
ctrlnum | (OCoLC)792684311 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>09269cam a2201045 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn792684311</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">120430s2012 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">CDX</subfield><subfield code="d">COO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">E7B</subfield><subfield code="d">UIU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">STF</subfield><subfield code="d">LOA</subfield><subfield code="d">CUY</subfield><subfield code="d">MERUC</subfield><subfield code="d">ZCU</subfield><subfield code="d">ICG</subfield><subfield code="d">K6U</subfield><subfield code="d">VT2</subfield><subfield code="d">U3W</subfield><subfield code="d">AU@</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">TKN</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OL$</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">A6Q</subfield><subfield code="d">G3B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VLY</subfield><subfield code="d">UKAHL</subfield><subfield code="d">AJS</subfield><subfield code="d">LUN</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB1C1465</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">015951831</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">794731510</subfield><subfield code="a">853661450</subfield><subfield code="a">1055326305</subfield><subfield code="a">1058054151</subfield><subfield code="a">1066617547</subfield><subfield code="a">1081238577</subfield><subfield code="a">1162472185</subfield><subfield code="a">1171160289</subfield><subfield code="a">1172766535</subfield><subfield code="a">1228622373</subfield><subfield code="a">1241791528</subfield><subfield code="a">1259246119</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139337021</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139337025</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139094764</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139094769</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139340342</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139340344</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781139338769</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1139338765</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107019584</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1107019583</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107231159</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107231153</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786613572097</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6613572098</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139337890</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139337892</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139341928</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139341929</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107484313</subfield><subfield code="q">(paperback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107484316</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786613572097</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)792684311</subfield><subfield code="z">(OCoLC)794731510</subfield><subfield code="z">(OCoLC)853661450</subfield><subfield code="z">(OCoLC)1055326305</subfield><subfield code="z">(OCoLC)1058054151</subfield><subfield code="z">(OCoLC)1066617547</subfield><subfield code="z">(OCoLC)1081238577</subfield><subfield code="z">(OCoLC)1162472185</subfield><subfield code="z">(OCoLC)1171160289</subfield><subfield code="z">(OCoLC)1172766535</subfield><subfield code="z">(OCoLC)1228622373</subfield><subfield code="z">(OCoLC)1241791528</subfield><subfield code="z">(OCoLC)1259246119</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA278.8</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">029000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bhattacharya, Abhishek.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonparametric inference on manifolds :</subfield><subfield code="b">with applications to shape spaces /</subfield><subfield code="c">Abhishek Bhattacharya, Rabi Bhattacharya.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (237 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Institute of Mathematical Statistics Monographs ;</subfield><subfield code="v">v. 2</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Nonparametric Inference on Manifolds; Title; Copyright; Contents; Commonly used notation; Preface; 1: Introduction; 2: Examples; 2.1 Data example on S1: wind and ozone; 2.2 Data examples on S2: paleomagnetism; 2.3 Data example on Sk2: shapes of gorilla skulls; 2.4 Data example on Sk2: brain scan shapes of schizophrenic and normal patients; 2.5 Data example on affine shape space ASk2: application to handwritten digit recognition; 2.6 Data example on reflection similarity shape space RSk3: glaucoma detection; 2.7 References; 3: Location and spread on metric spaces; 3.1 Introduction.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2 Location on metric spaces3.3 Variation on metric spaces; 3.4 Asymptotic distribution of the sample mean; 3.5 Asymptotic distribution of the sample variation; 3.6 An example: the unit circle; 3.7 Data example on S1; 3.8 References; 4: Extrinsic analysis on manifolds; 4.1 Extrinsic mean and variation; 4.2 Asymptotic distribution of the sample extrinsic mean; 4.3 Asymptotic distribution of the sample extrinsic variation; 4.4 Asymptotic joint distribution of the sample extrinsic mean and variation; 4.5 Two-sample extrinsic tests; 4.5.1 Independent samples; 4.5.2 Matched pair samples.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.6 Hypothesis testing using extrinsic mean and variation4.6.1 Independent samples; 4.7 Equivariant embedding; 4.8 Extrinsic analysis on the unit sphere Sd; 4.9 Applications on the sphere; 4.9.1 Magnetization direction data; 4.9.2 Volcano Location Data; 4.10 References; 5: Intrinsic analysis on manifolds; 5.1 Intrinsic mean and variation; 5.2 Asymptotic distribution of the sample intrinsic mean; 5.3 Intrinsic analysis on Sd; 5.4 Two-sample intrinsic tests; 5.4.1 Independent samples; 5.4.2 Matched pair samples; 5.5 Data example on S2.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.6 Some remarks on the uniqueness of the intrinsic mean and the nonsingularity of the asymptotic distribution of the sample mean5.7 References; 6: Landmark-based shape spaces; 6.1 Introduction; 6.2 Geometry of shape manifolds; 6.2.1 Similarity shape spaces Skm; 6.2.2 Reflection similarity shape spaces RSkm; 6.2.3 Affine shape spaces ASkm; 6.2.4 Projective shape spaces PSk; 6.3 References; 7: Kendall's similarity shape spaces Skm; 7.1 Introduction; 7.2 Geometry of similarity shape spaces; 7.3 References; 8: The planar shape space Sk2; 8.1 Introduction; 8.2 Geometry of the planar shape space.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.3 Examples8.3.1 Gorilla skulls; 8.3.2 Schizophrenic patients; 8.4 Intrinsic analysis on the planar shape space; 8.5 Other Fréchet functions; 8.6 Extrinsic analysis on the planar shape space; 8.7 Extrinsic mean and variation; 8.8 Asymptotic distribution of the sample extrinsic mean; 8.9 Two-sample extrinsic tests on the planar shape space; 8.10 Planar size-and-shape manifold; 8.11 Applications; 8.11.1 Gorilla skulls; 8.11.2 Schizophrenia detection; 8.12 References; 9: Reflection similarity shape spaces RSkm; 9.1 Introduction; 9.2 Extrinsic analysis on the reflection shape space.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">9.3 Asymptotic distribution of the sample extrinsic mean.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A systematic introduction to a general nonparametric theory of statistics on manifolds, with emphasis on manifolds of shapes.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 229-234) and index.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nonparametric statistics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85092349</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85080549</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sequences (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonparametric statistics.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Statistique non paramétrique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Probability & Statistics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonparametric statistics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bhattacharya, Rabi.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Nonparametric inference on manifolds (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGPGV8fKmVcDMWtWdqYvRC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Bhattacharya, Abhishek.</subfield><subfield code="t">Nonparametric Inference on Manifolds.</subfield><subfield code="d">Cambridge : Cambridge University Press, 2012</subfield><subfield code="z">9781139338769</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Institute of Mathematical Statistics monographs.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2010152956</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=438982</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=438982</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="8" ind2=" "><subfield code="6">505-00/(S</subfield><subfield code="a">8.3 Examples8.3.1 Gorilla skulls; 8.3.2 Schizophrenic patients; 8.4 Intrinsic analysis on the planar shape space; 8.5 Other Fréchet functions; 8.6 Extrinsic analysis on the planar shape space; 8.7 Extrinsic mean and variation; 8.8 Asymptotic distribution of the sample extrinsic mean; 8.9 Two-sample extrinsic tests on the planar shape space; 8.10 Planar size-and-shape manifold; 8.11 Applications; 8.11.1 Gorilla skulls; 8.11.2 Schizophrenia detection; 8.12 References; 9: Reflection similarity shape spaces RΣkm; 9.1 Introduction; 9.2 Extrinsic analysis on the reflection shape space.</subfield></datafield><datafield tag="880" ind1="0" ind2=" "><subfield code="6">505-00/(S</subfield><subfield code="a">Cover; Nonparametric Inference on Manifolds; Title; Copyright; Contents; Commonly used notation; Preface; 1: Introduction; 2: Examples; 2.1 Data example on S1: wind and ozone; 2.2 Data examples on S2: paleomagnetism; 2.3 Data example on Σk2: shapes of gorilla skulls; 2.4 Data example on Σk2: brain scan shapes of schizophrenic and normal patients; 2.5 Data example on affine shape space AΣk2: application to handwritten digit recognition; 2.6 Data example on reflection similarity shape space RΣk3: glaucoma detection; 2.7 References; 3: Location and spread on metric spaces; 3.1 Introduction.</subfield></datafield><datafield tag="880" ind1="8" ind2=" "><subfield code="6">505-00/(S</subfield><subfield code="a">5.6 Some remarks on the uniqueness of the intrinsic mean and the nonsingularity of the asymptotic distribution of the sample mean5.7 References; 6: Landmark-based shape spaces; 6.1 Introduction; 6.2 Geometry of shape manifolds; 6.2.1 Similarity shape spaces Σkm; 6.2.2 Reflection similarity shape spaces RΣkm; 6.2.3 Affine shape spaces AΣkm; 6.2.4 Projective shape spaces PΣk; 6.3 References; 7: Kendall's similarity shape spaces Σkm; 7.1 Introduction; 7.2 Geometry of similarity shape spaces; 7.3 References; 8: The planar shape space Σk2; 8.1 Introduction; 8.2 Geometry of the planar shape space.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28321182</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">22216944</subfield><subfield code="c">50.00 GBP</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL866805</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10558192</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">438982</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7623387</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7641123</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7663991</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7636404</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn792684311 |
illustrated | Not Illustrated |
indexdate | 2024-10-25T16:18:37Z |
institution | BVB |
isbn | 9781139337021 1139337025 9781139094764 1139094769 9781139340342 1139340344 1107231159 9781107231153 9786613572097 6613572098 1139337890 9781139337892 1139341928 9781139341929 9781107484313 1107484316 |
language | English |
oclc_num | 792684311 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (237 pages) |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press, |
record_format | marc |
series | Institute of Mathematical Statistics monographs. |
series2 | Institute of Mathematical Statistics Monographs ; |
spelling | Bhattacharya, Abhishek. Nonparametric inference on manifolds : with applications to shape spaces / Abhishek Bhattacharya, Rabi Bhattacharya. Cambridge : Cambridge University Press, 2012. 1 online resource (237 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Institute of Mathematical Statistics Monographs ; v. 2 Cover; Nonparametric Inference on Manifolds; Title; Copyright; Contents; Commonly used notation; Preface; 1: Introduction; 2: Examples; 2.1 Data example on S1: wind and ozone; 2.2 Data examples on S2: paleomagnetism; 2.3 Data example on Sk2: shapes of gorilla skulls; 2.4 Data example on Sk2: brain scan shapes of schizophrenic and normal patients; 2.5 Data example on affine shape space ASk2: application to handwritten digit recognition; 2.6 Data example on reflection similarity shape space RSk3: glaucoma detection; 2.7 References; 3: Location and spread on metric spaces; 3.1 Introduction. 3.2 Location on metric spaces3.3 Variation on metric spaces; 3.4 Asymptotic distribution of the sample mean; 3.5 Asymptotic distribution of the sample variation; 3.6 An example: the unit circle; 3.7 Data example on S1; 3.8 References; 4: Extrinsic analysis on manifolds; 4.1 Extrinsic mean and variation; 4.2 Asymptotic distribution of the sample extrinsic mean; 4.3 Asymptotic distribution of the sample extrinsic variation; 4.4 Asymptotic joint distribution of the sample extrinsic mean and variation; 4.5 Two-sample extrinsic tests; 4.5.1 Independent samples; 4.5.2 Matched pair samples. 4.6 Hypothesis testing using extrinsic mean and variation4.6.1 Independent samples; 4.7 Equivariant embedding; 4.8 Extrinsic analysis on the unit sphere Sd; 4.9 Applications on the sphere; 4.9.1 Magnetization direction data; 4.9.2 Volcano Location Data; 4.10 References; 5: Intrinsic analysis on manifolds; 5.1 Intrinsic mean and variation; 5.2 Asymptotic distribution of the sample intrinsic mean; 5.3 Intrinsic analysis on Sd; 5.4 Two-sample intrinsic tests; 5.4.1 Independent samples; 5.4.2 Matched pair samples; 5.5 Data example on S2. 5.6 Some remarks on the uniqueness of the intrinsic mean and the nonsingularity of the asymptotic distribution of the sample mean5.7 References; 6: Landmark-based shape spaces; 6.1 Introduction; 6.2 Geometry of shape manifolds; 6.2.1 Similarity shape spaces Skm; 6.2.2 Reflection similarity shape spaces RSkm; 6.2.3 Affine shape spaces ASkm; 6.2.4 Projective shape spaces PSk; 6.3 References; 7: Kendall's similarity shape spaces Skm; 7.1 Introduction; 7.2 Geometry of similarity shape spaces; 7.3 References; 8: The planar shape space Sk2; 8.1 Introduction; 8.2 Geometry of the planar shape space. 8.3 Examples8.3.1 Gorilla skulls; 8.3.2 Schizophrenic patients; 8.4 Intrinsic analysis on the planar shape space; 8.5 Other Fréchet functions; 8.6 Extrinsic analysis on the planar shape space; 8.7 Extrinsic mean and variation; 8.8 Asymptotic distribution of the sample extrinsic mean; 8.9 Two-sample extrinsic tests on the planar shape space; 8.10 Planar size-and-shape manifold; 8.11 Applications; 8.11.1 Gorilla skulls; 8.11.2 Schizophrenia detection; 8.12 References; 9: Reflection similarity shape spaces RSkm; 9.1 Introduction; 9.2 Extrinsic analysis on the reflection shape space. 9.3 Asymptotic distribution of the sample extrinsic mean. A systematic introduction to a general nonparametric theory of statistics on manifolds, with emphasis on manifolds of shapes. Print version record. Includes bibliographical references (pages 229-234) and index. English. Nonparametric statistics. http://id.loc.gov/authorities/subjects/sh85092349 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Mathematical statistics. Probabilities. Sequences (Mathematics) Manifolds (Mathematics) Nonparametric statistics. Statistique non paramétrique. Variétés (Mathématiques) MATHEMATICS Probability & Statistics General. bisacsh Manifolds (Mathematics) fast Nonparametric statistics fast Bhattacharya, Rabi. has work: Nonparametric inference on manifolds (Text) https://id.oclc.org/worldcat/entity/E39PCGPGV8fKmVcDMWtWdqYvRC https://id.oclc.org/worldcat/ontology/hasWork Print version: Bhattacharya, Abhishek. Nonparametric Inference on Manifolds. Cambridge : Cambridge University Press, 2012 9781139338769 Institute of Mathematical Statistics monographs. http://id.loc.gov/authorities/names/no2010152956 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=438982 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=438982 Volltext 505-00/(S 8.3 Examples8.3.1 Gorilla skulls; 8.3.2 Schizophrenic patients; 8.4 Intrinsic analysis on the planar shape space; 8.5 Other Fréchet functions; 8.6 Extrinsic analysis on the planar shape space; 8.7 Extrinsic mean and variation; 8.8 Asymptotic distribution of the sample extrinsic mean; 8.9 Two-sample extrinsic tests on the planar shape space; 8.10 Planar size-and-shape manifold; 8.11 Applications; 8.11.1 Gorilla skulls; 8.11.2 Schizophrenia detection; 8.12 References; 9: Reflection similarity shape spaces RΣkm; 9.1 Introduction; 9.2 Extrinsic analysis on the reflection shape space. 505-00/(S Cover; Nonparametric Inference on Manifolds; Title; Copyright; Contents; Commonly used notation; Preface; 1: Introduction; 2: Examples; 2.1 Data example on S1: wind and ozone; 2.2 Data examples on S2: paleomagnetism; 2.3 Data example on Σk2: shapes of gorilla skulls; 2.4 Data example on Σk2: brain scan shapes of schizophrenic and normal patients; 2.5 Data example on affine shape space AΣk2: application to handwritten digit recognition; 2.6 Data example on reflection similarity shape space RΣk3: glaucoma detection; 2.7 References; 3: Location and spread on metric spaces; 3.1 Introduction. 505-00/(S 5.6 Some remarks on the uniqueness of the intrinsic mean and the nonsingularity of the asymptotic distribution of the sample mean5.7 References; 6: Landmark-based shape spaces; 6.1 Introduction; 6.2 Geometry of shape manifolds; 6.2.1 Similarity shape spaces Σkm; 6.2.2 Reflection similarity shape spaces RΣkm; 6.2.3 Affine shape spaces AΣkm; 6.2.4 Projective shape spaces PΣk; 6.3 References; 7: Kendall's similarity shape spaces Σkm; 7.1 Introduction; 7.2 Geometry of similarity shape spaces; 7.3 References; 8: The planar shape space Σk2; 8.1 Introduction; 8.2 Geometry of the planar shape space. |
spellingShingle | Bhattacharya, Abhishek Nonparametric inference on manifolds : with applications to shape spaces / Institute of Mathematical Statistics monographs. Cover; Nonparametric Inference on Manifolds; Title; Copyright; Contents; Commonly used notation; Preface; 1: Introduction; 2: Examples; 2.1 Data example on S1: wind and ozone; 2.2 Data examples on S2: paleomagnetism; 2.3 Data example on Sk2: shapes of gorilla skulls; 2.4 Data example on Sk2: brain scan shapes of schizophrenic and normal patients; 2.5 Data example on affine shape space ASk2: application to handwritten digit recognition; 2.6 Data example on reflection similarity shape space RSk3: glaucoma detection; 2.7 References; 3: Location and spread on metric spaces; 3.1 Introduction. 3.2 Location on metric spaces3.3 Variation on metric spaces; 3.4 Asymptotic distribution of the sample mean; 3.5 Asymptotic distribution of the sample variation; 3.6 An example: the unit circle; 3.7 Data example on S1; 3.8 References; 4: Extrinsic analysis on manifolds; 4.1 Extrinsic mean and variation; 4.2 Asymptotic distribution of the sample extrinsic mean; 4.3 Asymptotic distribution of the sample extrinsic variation; 4.4 Asymptotic joint distribution of the sample extrinsic mean and variation; 4.5 Two-sample extrinsic tests; 4.5.1 Independent samples; 4.5.2 Matched pair samples. 4.6 Hypothesis testing using extrinsic mean and variation4.6.1 Independent samples; 4.7 Equivariant embedding; 4.8 Extrinsic analysis on the unit sphere Sd; 4.9 Applications on the sphere; 4.9.1 Magnetization direction data; 4.9.2 Volcano Location Data; 4.10 References; 5: Intrinsic analysis on manifolds; 5.1 Intrinsic mean and variation; 5.2 Asymptotic distribution of the sample intrinsic mean; 5.3 Intrinsic analysis on Sd; 5.4 Two-sample intrinsic tests; 5.4.1 Independent samples; 5.4.2 Matched pair samples; 5.5 Data example on S2. 5.6 Some remarks on the uniqueness of the intrinsic mean and the nonsingularity of the asymptotic distribution of the sample mean5.7 References; 6: Landmark-based shape spaces; 6.1 Introduction; 6.2 Geometry of shape manifolds; 6.2.1 Similarity shape spaces Skm; 6.2.2 Reflection similarity shape spaces RSkm; 6.2.3 Affine shape spaces ASkm; 6.2.4 Projective shape spaces PSk; 6.3 References; 7: Kendall's similarity shape spaces Skm; 7.1 Introduction; 7.2 Geometry of similarity shape spaces; 7.3 References; 8: The planar shape space Sk2; 8.1 Introduction; 8.2 Geometry of the planar shape space. 8.3 Examples8.3.1 Gorilla skulls; 8.3.2 Schizophrenic patients; 8.4 Intrinsic analysis on the planar shape space; 8.5 Other Fréchet functions; 8.6 Extrinsic analysis on the planar shape space; 8.7 Extrinsic mean and variation; 8.8 Asymptotic distribution of the sample extrinsic mean; 8.9 Two-sample extrinsic tests on the planar shape space; 8.10 Planar size-and-shape manifold; 8.11 Applications; 8.11.1 Gorilla skulls; 8.11.2 Schizophrenia detection; 8.12 References; 9: Reflection similarity shape spaces RSkm; 9.1 Introduction; 9.2 Extrinsic analysis on the reflection shape space. Nonparametric statistics. http://id.loc.gov/authorities/subjects/sh85092349 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Mathematical statistics. Probabilities. Sequences (Mathematics) Manifolds (Mathematics) Nonparametric statistics. Statistique non paramétrique. Variétés (Mathématiques) MATHEMATICS Probability & Statistics General. bisacsh Manifolds (Mathematics) fast Nonparametric statistics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85092349 http://id.loc.gov/authorities/subjects/sh85080549 |
title | Nonparametric inference on manifolds : with applications to shape spaces / |
title_auth | Nonparametric inference on manifolds : with applications to shape spaces / |
title_exact_search | Nonparametric inference on manifolds : with applications to shape spaces / |
title_full | Nonparametric inference on manifolds : with applications to shape spaces / Abhishek Bhattacharya, Rabi Bhattacharya. |
title_fullStr | Nonparametric inference on manifolds : with applications to shape spaces / Abhishek Bhattacharya, Rabi Bhattacharya. |
title_full_unstemmed | Nonparametric inference on manifolds : with applications to shape spaces / Abhishek Bhattacharya, Rabi Bhattacharya. |
title_short | Nonparametric inference on manifolds : |
title_sort | nonparametric inference on manifolds with applications to shape spaces |
title_sub | with applications to shape spaces / |
topic | Nonparametric statistics. http://id.loc.gov/authorities/subjects/sh85092349 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Mathematical statistics. Probabilities. Sequences (Mathematics) Manifolds (Mathematics) Nonparametric statistics. Statistique non paramétrique. Variétés (Mathématiques) MATHEMATICS Probability & Statistics General. bisacsh Manifolds (Mathematics) fast Nonparametric statistics fast |
topic_facet | Nonparametric statistics. Manifolds (Mathematics) Mathematical statistics. Probabilities. Sequences (Mathematics) Statistique non paramétrique. Variétés (Mathématiques) MATHEMATICS Probability & Statistics General. Nonparametric statistics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=438982 |
work_keys_str_mv | AT bhattacharyaabhishek nonparametricinferenceonmanifoldswithapplicationstoshapespaces AT bhattacharyarabi nonparametricinferenceonmanifoldswithapplicationstoshapespaces |