A Guide to Topology /:
A Guide to Topology is an introduction to basic topology. It covers point-set topology as well as Moore-Smith convergence and function spaces. It treats continuity, compactness, the separation axioms, connectedness, completeness, the relative topology, the quotient topology, the product topology, an...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2012.
|
Schriftenreihe: | Dolciani mathematical expositions.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | A Guide to Topology is an introduction to basic topology. It covers point-set topology as well as Moore-Smith convergence and function spaces. It treats continuity, compactness, the separation axioms, connectedness, completeness, the relative topology, the quotient topology, the product topology, and all the other fundamental ideas of the subject. The book is filled with examples and illustrations. Graduate students studying for the qualifying exams will find this book to be a concise, focused and informative resource. Professional mathematicians who need a quick review of the subject, or need a place to look up a key fact, will find this book to be a useful research too. Steven Krantz is well-known for his skill in expository writing and this volume confirms it. He is the author of more than 50 books, and more than 150 scholarly papers. The MAA has awarded him both the Beckenbach Book Prize and the Chauvenet Prize. |
Beschreibung: | Title from publishers bibliographic system (viewed on 30 Jan 2012). |
Beschreibung: | 1 online resource (1 online resource) |
Bibliographie: | ""Bibliography""""Index""; ""About the Author"" |
ISBN: | 9780883859179 0883859173 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn775429112 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 111104s2012 enk ob 001 0 eng d | ||
040 | |a COO |b eng |e pn |c COO |d N$T |d OCLCQ |d YDXCP |d OCLCQ |d OCLCF |d CAMBR |d JSTOR |d OCLCQ |d EBLCP |d DEBSZ |d OCLCQ |d AGLDB |d ZCU |d MERUC |d BNG |d JBG |d OCLCQ |d VTS |d ICG |d OCLCQ |d STF |d DKC |d OCLCQ |d AJS |d OCLCO |d RDF |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 923220489 |a 929120470 | ||
020 | |a 9780883859179 |q (electronic bk.) | ||
020 | |a 0883859173 |q (electronic bk.) | ||
035 | |a (OCoLC)775429112 |z (OCoLC)923220489 |z (OCoLC)929120470 | ||
037 | |a 22573/ctt69twtk |b JSTOR | ||
050 | 4 | |a QA611 | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
072 | 7 | |a MAT038000 |2 bisacsh | |
082 | 7 | |a 514 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Krantz, Steven G. |q (Steven George), |d 1951- |1 https://id.oclc.org/worldcat/entity/E39PBJw8VQ7cxG48KCfPym3RKd |0 http://id.loc.gov/authorities/names/n81051364 | |
245 | 1 | 2 | |a A Guide to Topology / |c Steven G. Krantz. |
260 | |a Cambridge : |b Cambridge University Press, |c 2012. | ||
300 | |a 1 online resource (1 online resource) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Dolciani Mathematical Expositions ; |v v. 40 | |
500 | |a Title from publishers bibliographic system (viewed on 30 Jan 2012). | ||
504 | |a ""Bibliography""""Index""; ""About the Author"" | ||
505 | 0 | |a Preface -- Contents -- 1 Fundamentals -- 1.1 What is Topology? -- 1.2 First Definitions -- 1.3 Mappings -- 1.4 The Separation Axioms -- 1.5 Compactness -- 1.6 Homeomorphisms -- 1.7 Connectedness -- 1.8 Path-Connectedness -- 1.9 Continua -- 1.10 Totally Disconnected Spaces -- 1.11 The Cantor Set -- 1.12 Metric Spaces -- 1.13 Metrizability -- 1.14 Baire�s Theorem -- 1.15 Lebesgue�s Lemma and Lebesgue Numbers -- 2 Advanced Properties of Topological Spaces -- 2.1 Basis and Subbasis -- 2.2 Product Spaces -- 2.3 Relative Topology | |
505 | 8 | |a 2.4 First Countable, Second Countable, and So Forth2.5 Compactifications -- 2.6 Quotient Topologies -- 2.7 Uniformities -- 2.8 Morse Theory -- 2.9 Proper Mappings -- 2.10 Paracompactness -- 3 Moore-Smith Convergence and Nets -- 3.1 Introductory Remarks -- 3.2 Nets -- 4 Function Spaces -- 4.1 Preliminary Ideas -- 4.2 The Topology of Pointwise Convergence -- 4.3 The Compact-Open Topology -- 4.4 Uniform Convergence -- 4.5 Equicontinuity and the Ascoli-Arzela Theorem -- 4.6 The Weierstrass Approximation Theorem -- Table of Notation -- Glossary | |
520 | |a A Guide to Topology is an introduction to basic topology. It covers point-set topology as well as Moore-Smith convergence and function spaces. It treats continuity, compactness, the separation axioms, connectedness, completeness, the relative topology, the quotient topology, the product topology, and all the other fundamental ideas of the subject. The book is filled with examples and illustrations. Graduate students studying for the qualifying exams will find this book to be a concise, focused and informative resource. Professional mathematicians who need a quick review of the subject, or need a place to look up a key fact, will find this book to be a useful research too. Steven Krantz is well-known for his skill in expository writing and this volume confirms it. He is the author of more than 50 books, and more than 150 scholarly papers. The MAA has awarded him both the Beckenbach Book Prize and the Chauvenet Prize. | ||
650 | 0 | |a Topology. |0 http://id.loc.gov/authorities/subjects/sh85136089 | |
650 | 6 | |a Topologie. | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a Topology |2 fast | |
776 | 0 | 8 | |i Print version: |a Krantz, Steven G. |t Guide to Topology. |d Washington : Mathematical Association of America, ©2014 |z 9780883853467 |
830 | 0 | |a Dolciani mathematical expositions. |0 http://id.loc.gov/authorities/names/n42009859 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450275 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450275 |3 Volltext | |
938 | |a EBL - Ebook Library |b EBLB |n EBL3330376 | ||
938 | |a EBSCOhost |b EBSC |n 450275 | ||
938 | |a YBP Library Services |b YANK |n 7349788 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn775429112 |
---|---|
_version_ | 1813903426835185664 |
adam_text | |
any_adam_object | |
author | Krantz, Steven G. (Steven George), 1951- |
author_GND | http://id.loc.gov/authorities/names/n81051364 |
author_facet | Krantz, Steven G. (Steven George), 1951- |
author_role | |
author_sort | Krantz, Steven G. 1951- |
author_variant | s g k sg sgk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA611 |
callnumber-raw | QA611 |
callnumber-search | QA611 |
callnumber-sort | QA 3611 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preface -- Contents -- 1 Fundamentals -- 1.1 What is Topology? -- 1.2 First Definitions -- 1.3 Mappings -- 1.4 The Separation Axioms -- 1.5 Compactness -- 1.6 Homeomorphisms -- 1.7 Connectedness -- 1.8 Path-Connectedness -- 1.9 Continua -- 1.10 Totally Disconnected Spaces -- 1.11 The Cantor Set -- 1.12 Metric Spaces -- 1.13 Metrizability -- 1.14 Baire�s Theorem -- 1.15 Lebesgue�s Lemma and Lebesgue Numbers -- 2 Advanced Properties of Topological Spaces -- 2.1 Basis and Subbasis -- 2.2 Product Spaces -- 2.3 Relative Topology 2.4 First Countable, Second Countable, and So Forth2.5 Compactifications -- 2.6 Quotient Topologies -- 2.7 Uniformities -- 2.8 Morse Theory -- 2.9 Proper Mappings -- 2.10 Paracompactness -- 3 Moore-Smith Convergence and Nets -- 3.1 Introductory Remarks -- 3.2 Nets -- 4 Function Spaces -- 4.1 Preliminary Ideas -- 4.2 The Topology of Pointwise Convergence -- 4.3 The Compact-Open Topology -- 4.4 Uniform Convergence -- 4.5 Equicontinuity and the Ascoli-Arzela Theorem -- 4.6 The Weierstrass Approximation Theorem -- Table of Notation -- Glossary |
ctrlnum | (OCoLC)775429112 |
dewey-full | 514 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514 |
dewey-search | 514 |
dewey-sort | 3514 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04246cam a2200517Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn775429112</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">111104s2012 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">COO</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">COO</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">CAMBR</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">BNG</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">RDF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">923220489</subfield><subfield code="a">929120470</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780883859179</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0883859173</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)775429112</subfield><subfield code="z">(OCoLC)923220489</subfield><subfield code="z">(OCoLC)929120470</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt69twtk</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA611</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">514</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krantz, Steven G.</subfield><subfield code="q">(Steven George),</subfield><subfield code="d">1951-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJw8VQ7cxG48KCfPym3RKd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n81051364</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Guide to Topology /</subfield><subfield code="c">Steven G. Krantz.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 online resource)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Dolciani Mathematical Expositions ;</subfield><subfield code="v">v. 40</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publishers bibliographic system (viewed on 30 Jan 2012).</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">""Bibliography""""Index""; ""About the Author""</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface -- Contents -- 1 Fundamentals -- 1.1 What is Topology? -- 1.2 First Definitions -- 1.3 Mappings -- 1.4 The Separation Axioms -- 1.5 Compactness -- 1.6 Homeomorphisms -- 1.7 Connectedness -- 1.8 Path-Connectedness -- 1.9 Continua -- 1.10 Totally Disconnected Spaces -- 1.11 The Cantor Set -- 1.12 Metric Spaces -- 1.13 Metrizability -- 1.14 Baireâ€?s Theorem -- 1.15 Lebesgueâ€?s Lemma and Lebesgue Numbers -- 2 Advanced Properties of Topological Spaces -- 2.1 Basis and Subbasis -- 2.2 Product Spaces -- 2.3 Relative Topology</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.4 First Countable, Second Countable, and So Forth2.5 Compactifications -- 2.6 Quotient Topologies -- 2.7 Uniformities -- 2.8 Morse Theory -- 2.9 Proper Mappings -- 2.10 Paracompactness -- 3 Moore-Smith Convergence and Nets -- 3.1 Introductory Remarks -- 3.2 Nets -- 4 Function Spaces -- 4.1 Preliminary Ideas -- 4.2 The Topology of Pointwise Convergence -- 4.3 The Compact-Open Topology -- 4.4 Uniform Convergence -- 4.5 Equicontinuity and the Ascoli-Arzela Theorem -- 4.6 The Weierstrass Approximation Theorem -- Table of Notation -- Glossary</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A Guide to Topology is an introduction to basic topology. It covers point-set topology as well as Moore-Smith convergence and function spaces. It treats continuity, compactness, the separation axioms, connectedness, completeness, the relative topology, the quotient topology, the product topology, and all the other fundamental ideas of the subject. The book is filled with examples and illustrations. Graduate students studying for the qualifying exams will find this book to be a concise, focused and informative resource. Professional mathematicians who need a quick review of the subject, or need a place to look up a key fact, will find this book to be a useful research too. Steven Krantz is well-known for his skill in expository writing and this volume confirms it. He is the author of more than 50 books, and more than 150 scholarly papers. The MAA has awarded him both the Beckenbach Book Prize and the Chauvenet Prize.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Topology.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85136089</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Topologie.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topology</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Krantz, Steven G.</subfield><subfield code="t">Guide to Topology.</subfield><subfield code="d">Washington : Mathematical Association of America, ©2014</subfield><subfield code="z">9780883853467</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Dolciani mathematical expositions.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42009859</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450275</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450275</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3330376</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">450275</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7349788</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn775429112 |
illustrated | Not Illustrated |
indexdate | 2024-10-25T16:18:30Z |
institution | BVB |
isbn | 9780883859179 0883859173 |
language | English |
oclc_num | 775429112 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (1 online resource) |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press, |
record_format | marc |
series | Dolciani mathematical expositions. |
series2 | Dolciani Mathematical Expositions ; |
spelling | Krantz, Steven G. (Steven George), 1951- https://id.oclc.org/worldcat/entity/E39PBJw8VQ7cxG48KCfPym3RKd http://id.loc.gov/authorities/names/n81051364 A Guide to Topology / Steven G. Krantz. Cambridge : Cambridge University Press, 2012. 1 online resource (1 online resource) text txt rdacontent computer c rdamedia online resource cr rdacarrier Dolciani Mathematical Expositions ; v. 40 Title from publishers bibliographic system (viewed on 30 Jan 2012). ""Bibliography""""Index""; ""About the Author"" Preface -- Contents -- 1 Fundamentals -- 1.1 What is Topology? -- 1.2 First Definitions -- 1.3 Mappings -- 1.4 The Separation Axioms -- 1.5 Compactness -- 1.6 Homeomorphisms -- 1.7 Connectedness -- 1.8 Path-Connectedness -- 1.9 Continua -- 1.10 Totally Disconnected Spaces -- 1.11 The Cantor Set -- 1.12 Metric Spaces -- 1.13 Metrizability -- 1.14 Baireâ€?s Theorem -- 1.15 Lebesgueâ€?s Lemma and Lebesgue Numbers -- 2 Advanced Properties of Topological Spaces -- 2.1 Basis and Subbasis -- 2.2 Product Spaces -- 2.3 Relative Topology 2.4 First Countable, Second Countable, and So Forth2.5 Compactifications -- 2.6 Quotient Topologies -- 2.7 Uniformities -- 2.8 Morse Theory -- 2.9 Proper Mappings -- 2.10 Paracompactness -- 3 Moore-Smith Convergence and Nets -- 3.1 Introductory Remarks -- 3.2 Nets -- 4 Function Spaces -- 4.1 Preliminary Ideas -- 4.2 The Topology of Pointwise Convergence -- 4.3 The Compact-Open Topology -- 4.4 Uniform Convergence -- 4.5 Equicontinuity and the Ascoli-Arzela Theorem -- 4.6 The Weierstrass Approximation Theorem -- Table of Notation -- Glossary A Guide to Topology is an introduction to basic topology. It covers point-set topology as well as Moore-Smith convergence and function spaces. It treats continuity, compactness, the separation axioms, connectedness, completeness, the relative topology, the quotient topology, the product topology, and all the other fundamental ideas of the subject. The book is filled with examples and illustrations. Graduate students studying for the qualifying exams will find this book to be a concise, focused and informative resource. Professional mathematicians who need a quick review of the subject, or need a place to look up a key fact, will find this book to be a useful research too. Steven Krantz is well-known for his skill in expository writing and this volume confirms it. He is the author of more than 50 books, and more than 150 scholarly papers. The MAA has awarded him both the Beckenbach Book Prize and the Chauvenet Prize. Topology. http://id.loc.gov/authorities/subjects/sh85136089 Topologie. MATHEMATICS Topology. bisacsh Topology fast Print version: Krantz, Steven G. Guide to Topology. Washington : Mathematical Association of America, ©2014 9780883853467 Dolciani mathematical expositions. http://id.loc.gov/authorities/names/n42009859 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450275 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450275 Volltext |
spellingShingle | Krantz, Steven G. (Steven George), 1951- A Guide to Topology / Dolciani mathematical expositions. Preface -- Contents -- 1 Fundamentals -- 1.1 What is Topology? -- 1.2 First Definitions -- 1.3 Mappings -- 1.4 The Separation Axioms -- 1.5 Compactness -- 1.6 Homeomorphisms -- 1.7 Connectedness -- 1.8 Path-Connectedness -- 1.9 Continua -- 1.10 Totally Disconnected Spaces -- 1.11 The Cantor Set -- 1.12 Metric Spaces -- 1.13 Metrizability -- 1.14 Baire�s Theorem -- 1.15 Lebesgue�s Lemma and Lebesgue Numbers -- 2 Advanced Properties of Topological Spaces -- 2.1 Basis and Subbasis -- 2.2 Product Spaces -- 2.3 Relative Topology 2.4 First Countable, Second Countable, and So Forth2.5 Compactifications -- 2.6 Quotient Topologies -- 2.7 Uniformities -- 2.8 Morse Theory -- 2.9 Proper Mappings -- 2.10 Paracompactness -- 3 Moore-Smith Convergence and Nets -- 3.1 Introductory Remarks -- 3.2 Nets -- 4 Function Spaces -- 4.1 Preliminary Ideas -- 4.2 The Topology of Pointwise Convergence -- 4.3 The Compact-Open Topology -- 4.4 Uniform Convergence -- 4.5 Equicontinuity and the Ascoli-Arzela Theorem -- 4.6 The Weierstrass Approximation Theorem -- Table of Notation -- Glossary Topology. http://id.loc.gov/authorities/subjects/sh85136089 Topologie. MATHEMATICS Topology. bisacsh Topology fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85136089 |
title | A Guide to Topology / |
title_auth | A Guide to Topology / |
title_exact_search | A Guide to Topology / |
title_full | A Guide to Topology / Steven G. Krantz. |
title_fullStr | A Guide to Topology / Steven G. Krantz. |
title_full_unstemmed | A Guide to Topology / Steven G. Krantz. |
title_short | A Guide to Topology / |
title_sort | guide to topology |
topic | Topology. http://id.loc.gov/authorities/subjects/sh85136089 Topologie. MATHEMATICS Topology. bisacsh Topology fast |
topic_facet | Topology. Topologie. MATHEMATICS Topology. Topology |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450275 |
work_keys_str_mv | AT krantzsteveng aguidetotopology AT krantzsteveng guidetotopology |