Episodes from the Early History of Mathematics /:
Among other things, Aaboe shows us how the Babylonians did calculations, how Euclid proved that there are infinitely many primes, how Ptolemy constructed a trigonometric table in his Almagest, and how Archimedes trisected the angle. Some of the topics may be familiar to the reader, while others will...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2012.
|
Schriftenreihe: | Anneli Lax new mathematical library.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Among other things, Aaboe shows us how the Babylonians did calculations, how Euclid proved that there are infinitely many primes, how Ptolemy constructed a trigonometric table in his Almagest, and how Archimedes trisected the angle. Some of the topics may be familiar to the reader, while others will seem surprising or be new. |
Beschreibung: | Title from publishers bibliographic system (viewed on 30 Jan 2012). |
Beschreibung: | 1 online resource |
ISBN: | 9780883859285 0883859289 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn775428911 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 111006s2012 enk o 001 0 eng d | ||
040 | |a COO |b eng |e pn |c COO |d N$T |d OCLCQ |d OCLCF |d CAMBR |d YDXCP |d OCLCQ |d EBLCP |d DEBSZ |d OCLCQ |d AGLDB |d ZCU |d MERUC |d OCLCQ |d VTS |d ICG |d OCLCQ |d STF |d DKC |d OCLCQ |d AJS |d RDF |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 903621762 |a 923220180 |a 929120257 |a 1011004131 |a 1087376006 |a 1264744334 |a 1297560179 |a 1297795038 | ||
020 | |a 9780883859285 |q (electronic bk.) | ||
020 | |a 0883859289 |q (electronic bk.) | ||
035 | |a (OCoLC)775428911 |z (OCoLC)903621762 |z (OCoLC)923220180 |z (OCoLC)929120257 |z (OCoLC)1011004131 |z (OCoLC)1087376006 |z (OCoLC)1264744334 |z (OCoLC)1297560179 |z (OCoLC)1297795038 | ||
050 | 4 | |a QA22 | |
072 | 7 | |a MAT |x 015000 |2 bisacsh | |
082 | 7 | |a 510.901 | |
049 | |a MAIN | ||
100 | 1 | |a Aaboe, Asger. | |
245 | 1 | 0 | |a Episodes from the Early History of Mathematics / |c Asger Aaboe. |
260 | |a Cambridge : |b Cambridge University Press, |c 2012. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Anneli Lax New Mathematical Library ; |v v. 13 | |
500 | |a Title from publishers bibliographic system (viewed on 30 Jan 2012). | ||
505 | 0 | |a Front Cover -- Episodes From the Early History of Mathematics -- Copyright Page -- Contents -- Introduction -- Chapter 1. Babylonian Mathematics -- 1.1 Sources -- 1.2 The Babylonian Number System. A Multiplication Table -- 1.3 The Babylonian Number System. A Table of Reciprocals -- 1.4 Positional Number Systems -- 1.5 Babylonian Arithmetic -- 1.6 Three Babylonian Mathematical Texts -- 1.7 Summary -- Chapter 2. Early Greek Mathematics and Euclid�s Construction of the Regular Pentagon -- 2.1 Sources -- 2.2 Greek Mathematics before Euclid | |
505 | 8 | |a 2.3 Euclid�s Elements2.4 Euclid�s Construction of the Regular Pentagon -- Chapter 3. Three Samples of Archimedean Mathematics -- 3.1 Archimedes� Life -- 3.2 Archimedes� Works -- 3.3 Constructions of Regular Polygons -- 3.4 Archimedes� Trisection of an Angle -- 3.5 Archimedes� Construction of the Regular Heptagon -- 3.6 Volume and Surface of a Sphere According to The Method -- Chapter 4. Ptolemy�s Construction of a Trigonometric Table -- 4.1 Ptolemy and The Almaugest -- 4.2 Ptolemy�s Table of Chords and Its Uses | |
505 | 8 | |a 4.3 Ptolemy�s Construction of the Table of ChordsAppendix: Ptolemy�s Epicyclic Models -- Solutions to Problems -- Bibliography -- Back Cover | |
520 | |a Among other things, Aaboe shows us how the Babylonians did calculations, how Euclid proved that there are infinitely many primes, how Ptolemy constructed a trigonometric table in his Almagest, and how Archimedes trisected the angle. Some of the topics may be familiar to the reader, while others will seem surprising or be new. | ||
650 | 0 | |a Mathematics |x History. | |
650 | 6 | |a Mathématiques |x Histoire. | |
650 | 7 | |a MATHEMATICS |x History & Philosophy. |2 bisacsh | |
650 | 7 | |a Mathematics |2 fast | |
655 | 7 | |a History |2 fast | |
758 | |i has work: |a Episodes from the early history of mathematics (Text) |1 https://id.oclc.org/worldcat/entity/E39PCH4rGc9V43wpDG9KRYYvBP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Aaboe, Asger. |t Episodes from the Early History of Mathematics. |d Washington : Mathematical Association of America, ©2014 |z 9780883856130 |
830 | 0 | |a Anneli Lax new mathematical library. |0 http://id.loc.gov/authorities/names/n2002012009 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450354 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL3330412 | ||
938 | |a EBSCOhost |b EBSC |n 450354 | ||
938 | |a YBP Library Services |b YANK |n 7349798 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn775428911 |
---|---|
_version_ | 1816881785349341184 |
adam_text | |
any_adam_object | |
author | Aaboe, Asger |
author_facet | Aaboe, Asger |
author_role | |
author_sort | Aaboe, Asger |
author_variant | a a aa |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA22 |
callnumber-raw | QA22 |
callnumber-search | QA22 |
callnumber-sort | QA 222 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Front Cover -- Episodes From the Early History of Mathematics -- Copyright Page -- Contents -- Introduction -- Chapter 1. Babylonian Mathematics -- 1.1 Sources -- 1.2 The Babylonian Number System. A Multiplication Table -- 1.3 The Babylonian Number System. A Table of Reciprocals -- 1.4 Positional Number Systems -- 1.5 Babylonian Arithmetic -- 1.6 Three Babylonian Mathematical Texts -- 1.7 Summary -- Chapter 2. Early Greek Mathematics and Euclid�s Construction of the Regular Pentagon -- 2.1 Sources -- 2.2 Greek Mathematics before Euclid 2.3 Euclid�s Elements2.4 Euclid�s Construction of the Regular Pentagon -- Chapter 3. Three Samples of Archimedean Mathematics -- 3.1 Archimedes� Life -- 3.2 Archimedes� Works -- 3.3 Constructions of Regular Polygons -- 3.4 Archimedes� Trisection of an Angle -- 3.5 Archimedes� Construction of the Regular Heptagon -- 3.6 Volume and Surface of a Sphere According to The Method -- Chapter 4. Ptolemy�s Construction of a Trigonometric Table -- 4.1 Ptolemy and The Almaugest -- 4.2 Ptolemy�s Table of Chords and Its Uses 4.3 Ptolemy�s Construction of the Table of ChordsAppendix: Ptolemy�s Epicyclic Models -- Solutions to Problems -- Bibliography -- Back Cover |
ctrlnum | (OCoLC)775428911 |
dewey-full | 510.901 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510.901 |
dewey-search | 510.901 |
dewey-sort | 3510.901 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03959cam a2200517Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn775428911</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">111006s2012 enk o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">COO</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">COO</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">CAMBR</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">RDF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">903621762</subfield><subfield code="a">923220180</subfield><subfield code="a">929120257</subfield><subfield code="a">1011004131</subfield><subfield code="a">1087376006</subfield><subfield code="a">1264744334</subfield><subfield code="a">1297560179</subfield><subfield code="a">1297795038</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780883859285</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0883859289</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)775428911</subfield><subfield code="z">(OCoLC)903621762</subfield><subfield code="z">(OCoLC)923220180</subfield><subfield code="z">(OCoLC)929120257</subfield><subfield code="z">(OCoLC)1011004131</subfield><subfield code="z">(OCoLC)1087376006</subfield><subfield code="z">(OCoLC)1264744334</subfield><subfield code="z">(OCoLC)1297560179</subfield><subfield code="z">(OCoLC)1297795038</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA22</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">015000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">510.901</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aaboe, Asger.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Episodes from the Early History of Mathematics /</subfield><subfield code="c">Asger Aaboe.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Anneli Lax New Mathematical Library ;</subfield><subfield code="v">v. 13</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publishers bibliographic system (viewed on 30 Jan 2012).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover -- Episodes From the Early History of Mathematics -- Copyright Page -- Contents -- Introduction -- Chapter 1. Babylonian Mathematics -- 1.1 Sources -- 1.2 The Babylonian Number System. A Multiplication Table -- 1.3 The Babylonian Number System. A Table of Reciprocals -- 1.4 Positional Number Systems -- 1.5 Babylonian Arithmetic -- 1.6 Three Babylonian Mathematical Texts -- 1.7 Summary -- Chapter 2. Early Greek Mathematics and Euclidâ€?s Construction of the Regular Pentagon -- 2.1 Sources -- 2.2 Greek Mathematics before Euclid</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3 Euclidâ€?s Elements2.4 Euclidâ€?s Construction of the Regular Pentagon -- Chapter 3. Three Samples of Archimedean Mathematics -- 3.1 Archimedesâ€? Life -- 3.2 Archimedesâ€? Works -- 3.3 Constructions of Regular Polygons -- 3.4 Archimedesâ€? Trisection of an Angle -- 3.5 Archimedesâ€? Construction of the Regular Heptagon -- 3.6 Volume and Surface of a Sphere According to The Method -- Chapter 4. Ptolemyâ€?s Construction of a Trigonometric Table -- 4.1 Ptolemy and The Almaugest -- 4.2 Ptolemyâ€?s Table of Chords and Its Uses</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3 Ptolemyâ€?s Construction of the Table of ChordsAppendix: Ptolemyâ€?s Epicyclic Models -- Solutions to Problems -- Bibliography -- Back Cover</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Among other things, Aaboe shows us how the Babylonians did calculations, how Euclid proved that there are infinitely many primes, how Ptolemy constructed a trigonometric table in his Almagest, and how Archimedes trisected the angle. Some of the topics may be familiar to the reader, while others will seem surprising or be new.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield><subfield code="x">History.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mathématiques</subfield><subfield code="x">Histoire.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">History & Philosophy.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">History</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Episodes from the early history of mathematics (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCH4rGc9V43wpDG9KRYYvBP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Aaboe, Asger.</subfield><subfield code="t">Episodes from the Early History of Mathematics.</subfield><subfield code="d">Washington : Mathematical Association of America, ©2014</subfield><subfield code="z">9780883856130</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Anneli Lax new mathematical library.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2002012009</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450354</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3330412</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">450354</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7349798</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | History fast |
genre_facet | History |
id | ZDB-4-EBA-ocn775428911 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:18:14Z |
institution | BVB |
isbn | 9780883859285 0883859289 |
language | English |
oclc_num | 775428911 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press, |
record_format | marc |
series | Anneli Lax new mathematical library. |
series2 | Anneli Lax New Mathematical Library ; |
spelling | Aaboe, Asger. Episodes from the Early History of Mathematics / Asger Aaboe. Cambridge : Cambridge University Press, 2012. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Anneli Lax New Mathematical Library ; v. 13 Title from publishers bibliographic system (viewed on 30 Jan 2012). Front Cover -- Episodes From the Early History of Mathematics -- Copyright Page -- Contents -- Introduction -- Chapter 1. Babylonian Mathematics -- 1.1 Sources -- 1.2 The Babylonian Number System. A Multiplication Table -- 1.3 The Babylonian Number System. A Table of Reciprocals -- 1.4 Positional Number Systems -- 1.5 Babylonian Arithmetic -- 1.6 Three Babylonian Mathematical Texts -- 1.7 Summary -- Chapter 2. Early Greek Mathematics and Euclidâ€?s Construction of the Regular Pentagon -- 2.1 Sources -- 2.2 Greek Mathematics before Euclid 2.3 Euclidâ€?s Elements2.4 Euclidâ€?s Construction of the Regular Pentagon -- Chapter 3. Three Samples of Archimedean Mathematics -- 3.1 Archimedesâ€? Life -- 3.2 Archimedesâ€? Works -- 3.3 Constructions of Regular Polygons -- 3.4 Archimedesâ€? Trisection of an Angle -- 3.5 Archimedesâ€? Construction of the Regular Heptagon -- 3.6 Volume and Surface of a Sphere According to The Method -- Chapter 4. Ptolemyâ€?s Construction of a Trigonometric Table -- 4.1 Ptolemy and The Almaugest -- 4.2 Ptolemyâ€?s Table of Chords and Its Uses 4.3 Ptolemyâ€?s Construction of the Table of ChordsAppendix: Ptolemyâ€?s Epicyclic Models -- Solutions to Problems -- Bibliography -- Back Cover Among other things, Aaboe shows us how the Babylonians did calculations, how Euclid proved that there are infinitely many primes, how Ptolemy constructed a trigonometric table in his Almagest, and how Archimedes trisected the angle. Some of the topics may be familiar to the reader, while others will seem surprising or be new. Mathematics History. Mathématiques Histoire. MATHEMATICS History & Philosophy. bisacsh Mathematics fast History fast has work: Episodes from the early history of mathematics (Text) https://id.oclc.org/worldcat/entity/E39PCH4rGc9V43wpDG9KRYYvBP https://id.oclc.org/worldcat/ontology/hasWork Print version: Aaboe, Asger. Episodes from the Early History of Mathematics. Washington : Mathematical Association of America, ©2014 9780883856130 Anneli Lax new mathematical library. http://id.loc.gov/authorities/names/n2002012009 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450354 Volltext |
spellingShingle | Aaboe, Asger Episodes from the Early History of Mathematics / Anneli Lax new mathematical library. Front Cover -- Episodes From the Early History of Mathematics -- Copyright Page -- Contents -- Introduction -- Chapter 1. Babylonian Mathematics -- 1.1 Sources -- 1.2 The Babylonian Number System. A Multiplication Table -- 1.3 The Babylonian Number System. A Table of Reciprocals -- 1.4 Positional Number Systems -- 1.5 Babylonian Arithmetic -- 1.6 Three Babylonian Mathematical Texts -- 1.7 Summary -- Chapter 2. Early Greek Mathematics and Euclidâ€?s Construction of the Regular Pentagon -- 2.1 Sources -- 2.2 Greek Mathematics before Euclid 2.3 Euclidâ€?s Elements2.4 Euclidâ€?s Construction of the Regular Pentagon -- Chapter 3. Three Samples of Archimedean Mathematics -- 3.1 Archimedesâ€? Life -- 3.2 Archimedesâ€? Works -- 3.3 Constructions of Regular Polygons -- 3.4 Archimedesâ€? Trisection of an Angle -- 3.5 Archimedesâ€? Construction of the Regular Heptagon -- 3.6 Volume and Surface of a Sphere According to The Method -- Chapter 4. Ptolemyâ€?s Construction of a Trigonometric Table -- 4.1 Ptolemy and The Almaugest -- 4.2 Ptolemyâ€?s Table of Chords and Its Uses 4.3 Ptolemyâ€?s Construction of the Table of ChordsAppendix: Ptolemyâ€?s Epicyclic Models -- Solutions to Problems -- Bibliography -- Back Cover Mathematics History. Mathématiques Histoire. MATHEMATICS History & Philosophy. bisacsh Mathematics fast |
title | Episodes from the Early History of Mathematics / |
title_auth | Episodes from the Early History of Mathematics / |
title_exact_search | Episodes from the Early History of Mathematics / |
title_full | Episodes from the Early History of Mathematics / Asger Aaboe. |
title_fullStr | Episodes from the Early History of Mathematics / Asger Aaboe. |
title_full_unstemmed | Episodes from the Early History of Mathematics / Asger Aaboe. |
title_short | Episodes from the Early History of Mathematics / |
title_sort | episodes from the early history of mathematics |
topic | Mathematics History. Mathématiques Histoire. MATHEMATICS History & Philosophy. bisacsh Mathematics fast |
topic_facet | Mathematics History. Mathématiques Histoire. MATHEMATICS History & Philosophy. Mathematics History |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450354 |
work_keys_str_mv | AT aaboeasger episodesfromtheearlyhistoryofmathematics |