Development of elliptic functions according to Ramanujan /:
This unique book provides an innovative and efficient approach to elliptic functions, based on the ideas of the great Indian mathematician Srinivasa Ramanujan. The original 1988 monograph of K Venkatachaliengar has been completely revised. Many details, omitted from the original version, have been i...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, NJ :
World Scientific,
©2012.
|
Ausgabe: | [Rev. ed.]. |
Schriftenreihe: | Monographs in number theory ;
v. 6. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This unique book provides an innovative and efficient approach to elliptic functions, based on the ideas of the great Indian mathematician Srinivasa Ramanujan. The original 1988 monograph of K Venkatachaliengar has been completely revised. Many details, omitted from the original version, have been included, and the book has been made comprehensive by notes at the end of each chapter. The book is for graduate students and researchers in Number Theory and Classical Analysis, as well for scholars and aficionados of Ramanujan's work. It can be read by anyone with some undergraduate knowledge of re. |
Beschreibung: | Originally published as a Technical Report 2 by Madurai Kamaraj University in February, 1988. |
Beschreibung: | 1 online resource (xv, 167 pages) : illustrations. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9814366463 9789814366465 |
ISSN: | 1793-8341 ; |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn774956284 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 120130s2012 si a ob 001 0 eng d | ||
010 | |z 2011293884 | ||
040 | |a YDXCP |b eng |e pn |c YDXCP |d N$T |d E7B |d OCLCQ |d DEBSZ |d OCLCQ |d OSU |d OCLCQ |d NLGGC |d OCLCQ |d OCLCF |d OCLCQ |d AZK |d LOA |d AGLDB |d MOR |d PIFPO |d OTZ |d OCLCQ |d OCLCO |d COO |d U3W |d STF |d WRM |d OCLCQ |d VTS |d COCUF |d INT |d VT2 |d AU@ |d OCLCQ |d WYU |d OCLCQ |d M8D |d HS0 |d UKCRE |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
066 | |c (S | ||
019 | |a 961492900 |a 962667874 |a 966196850 |a 988409778 |a 992064640 |a 994897052 |a 1037697385 |a 1038659983 |a 1038671155 |a 1055318099 |a 1058115686 |a 1062986130 |a 1081276033 |a 1153457514 |a 1228585401 | ||
020 | |a 9814366463 |q (electronic bk.) | ||
020 | |a 9789814366465 |q (electronic bk.) | ||
020 | |z 9789814366458 | ||
020 | |z 9814366455 | ||
024 | 8 | |a 40020291186 | |
035 | |a (OCoLC)774956284 |z (OCoLC)961492900 |z (OCoLC)962667874 |z (OCoLC)966196850 |z (OCoLC)988409778 |z (OCoLC)992064640 |z (OCoLC)994897052 |z (OCoLC)1037697385 |z (OCoLC)1038659983 |z (OCoLC)1038671155 |z (OCoLC)1055318099 |z (OCoLC)1058115686 |z (OCoLC)1062986130 |z (OCoLC)1081276033 |z (OCoLC)1153457514 |z (OCoLC)1228585401 | ||
050 | 4 | |a QA343 |b .V46 2012 | |
072 | 7 | |a MAT |x 040000 |2 bisacsh | |
082 | 7 | |a 515.983 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Venkatachaliengar, K. | |
245 | 1 | 0 | |a Development of elliptic functions according to Ramanujan / |c originally by K. Venkatachaliengar ; edited and revised by Shaun Cooper. |
250 | |a [Rev. ed.]. | ||
260 | |a Singapore ; |a Hackensack, NJ : |b World Scientific, |c ©2012. | ||
300 | |a 1 online resource (xv, 167 pages) : |b illustrations. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Monographs in number theory, |x 1793-8341 ; |v v. 6 | |
500 | |a Originally published as a Technical Report 2 by Madurai Kamaraj University in February, 1988. | ||
505 | 0 | |6 880-01 |a The basic identity -- The differential equations of P, Q and R -- The Jordan-Kronecker function -- The Weierstrassian invariants -- The Weierstrassian invariants, II -- Development of elliptic functions -- The modular function [Lambda]. | |
504 | |a Includes bibliographical references and index. | ||
520 | |a This unique book provides an innovative and efficient approach to elliptic functions, based on the ideas of the great Indian mathematician Srinivasa Ramanujan. The original 1988 monograph of K Venkatachaliengar has been completely revised. Many details, omitted from the original version, have been included, and the book has been made comprehensive by notes at the end of each chapter. The book is for graduate students and researchers in Number Theory and Classical Analysis, as well for scholars and aficionados of Ramanujan's work. It can be read by anyone with some undergraduate knowledge of re. | ||
600 | 1 | 0 | |a Ramanujan Aiyangar, Srinivasa, |d 1887-1920. |0 http://id.loc.gov/authorities/names/n50054441 |
600 | 1 | 7 | |a Ramanujan Aiyangar, Srinivasa, |d 1887-1920 |2 fast |1 https://id.oclc.org/worldcat/entity/E39PBJjtcjjYWv63v7w3DyDrMP |
650 | 0 | |a Elliptic functions. |0 http://id.loc.gov/authorities/subjects/sh85052336 | |
650 | 6 | |a Fonctions elliptiques. | |
650 | 7 | |a MATHEMATICS |x Complex Analysis. |2 bisacsh | |
650 | 7 | |a Elliptic functions |2 fast | |
700 | 1 | |a Cooper, Shaun. | |
776 | 0 | 8 | |i Print version: |z 9789814366458 |z 9814366455 |w (DLC) 2011293884 |
830 | 0 | |a Monographs in number theory ; |v v. 6. |0 http://id.loc.gov/authorities/names/no2009064241 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=426455 |3 Volltext |
880 | 0 | |6 505-01/(S |a Machine generated contents note: 1.1. Introduction -- 1.2. The generalized Ramanujan identity -- 1.3. The Weierstrass elliptic function -- 1.4. Notes -- 2.1. Ramanujan's differential equations -- 2.2. Ramanujan's 1ψ1 summation formula -- 2.3. Ramanujan's transcendentals U2n and V2n -- 2.4. The imaginary transformation and Dedekind's eta-function -- 2.5. Notes -- 3.1. The Jordan-Kronecker function -- 3.2. The fundamental multiplicative identity -- 3.3. Partitions -- 3.4. The hypergeometric function 2F1(1/2,1/2;1;x): first method -- 3.5. Notes -- 4.1. Halphen's differential equations -- 4.2. Jacobi's identities and sums of two and four squares -- 4.3. Quadratic transformations -- 4.4. The hypergeometric function 2F1(1/2,1/2;1;x): second method -- 4.5. Notes -- 5.1. Parameterizations of Eisenstein series -- 5.2. Sums of eight squares and sums of eight, triangular numbers -- 5.3. Quadratic transformations -- 5.4. The hypergeometric function 2F1(1/4, 3/4; 1; x). | |
938 | |a ebrary |b EBRY |n ebr10524613 | ||
938 | |a EBSCOhost |b EBSC |n 426455 | ||
938 | |a YBP Library Services |b YANK |n 7150504 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn774956284 |
---|---|
_version_ | 1816881784973950976 |
adam_text | |
any_adam_object | |
author | Venkatachaliengar, K. |
author2 | Cooper, Shaun |
author2_role | |
author2_variant | s c sc |
author_facet | Venkatachaliengar, K. Cooper, Shaun |
author_role | |
author_sort | Venkatachaliengar, K. |
author_variant | k v kv |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA343 |
callnumber-raw | QA343 .V46 2012 |
callnumber-search | QA343 .V46 2012 |
callnumber-sort | QA 3343 V46 42012 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | The basic identity -- The differential equations of P, Q and R -- The Jordan-Kronecker function -- The Weierstrassian invariants -- The Weierstrassian invariants, II -- Development of elliptic functions -- The modular function [Lambda]. |
ctrlnum | (OCoLC)774956284 |
dewey-full | 515.983 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.983 |
dewey-search | 515.983 |
dewey-sort | 3515.983 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | [Rev. ed.]. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04860cam a2200601Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn774956284</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">120130s2012 si a ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2011293884</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDXCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">YDXCP</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFPO</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">COO</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">COCUF</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">HS0</subfield><subfield code="d">UKCRE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">961492900</subfield><subfield code="a">962667874</subfield><subfield code="a">966196850</subfield><subfield code="a">988409778</subfield><subfield code="a">992064640</subfield><subfield code="a">994897052</subfield><subfield code="a">1037697385</subfield><subfield code="a">1038659983</subfield><subfield code="a">1038671155</subfield><subfield code="a">1055318099</subfield><subfield code="a">1058115686</subfield><subfield code="a">1062986130</subfield><subfield code="a">1081276033</subfield><subfield code="a">1153457514</subfield><subfield code="a">1228585401</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814366463</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814366465</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814366458</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814366455</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">40020291186</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)774956284</subfield><subfield code="z">(OCoLC)961492900</subfield><subfield code="z">(OCoLC)962667874</subfield><subfield code="z">(OCoLC)966196850</subfield><subfield code="z">(OCoLC)988409778</subfield><subfield code="z">(OCoLC)992064640</subfield><subfield code="z">(OCoLC)994897052</subfield><subfield code="z">(OCoLC)1037697385</subfield><subfield code="z">(OCoLC)1038659983</subfield><subfield code="z">(OCoLC)1038671155</subfield><subfield code="z">(OCoLC)1055318099</subfield><subfield code="z">(OCoLC)1058115686</subfield><subfield code="z">(OCoLC)1062986130</subfield><subfield code="z">(OCoLC)1081276033</subfield><subfield code="z">(OCoLC)1153457514</subfield><subfield code="z">(OCoLC)1228585401</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA343</subfield><subfield code="b">.V46 2012</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.983</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Venkatachaliengar, K.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development of elliptic functions according to Ramanujan /</subfield><subfield code="c">originally by K. Venkatachaliengar ; edited and revised by Shaun Cooper.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[Rev. ed.].</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 167 pages) :</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Monographs in number theory,</subfield><subfield code="x">1793-8341 ;</subfield><subfield code="v">v. 6</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Originally published as a Technical Report 2 by Madurai Kamaraj University in February, 1988.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="6">880-01</subfield><subfield code="a">The basic identity -- The differential equations of P, Q and R -- The Jordan-Kronecker function -- The Weierstrassian invariants -- The Weierstrassian invariants, II -- Development of elliptic functions -- The modular function [Lambda].</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This unique book provides an innovative and efficient approach to elliptic functions, based on the ideas of the great Indian mathematician Srinivasa Ramanujan. The original 1988 monograph of K Venkatachaliengar has been completely revised. Many details, omitted from the original version, have been included, and the book has been made comprehensive by notes at the end of each chapter. The book is for graduate students and researchers in Number Theory and Classical Analysis, as well for scholars and aficionados of Ramanujan's work. It can be read by anyone with some undergraduate knowledge of re.</subfield></datafield><datafield tag="600" ind1="1" ind2="0"><subfield code="a">Ramanujan Aiyangar, Srinivasa,</subfield><subfield code="d">1887-1920.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n50054441</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Ramanujan Aiyangar, Srinivasa,</subfield><subfield code="d">1887-1920</subfield><subfield code="2">fast</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJjtcjjYWv63v7w3DyDrMP</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Elliptic functions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052336</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fonctions elliptiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Complex Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Elliptic functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cooper, Shaun.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9789814366458</subfield><subfield code="z">9814366455</subfield><subfield code="w">(DLC) 2011293884</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Monographs in number theory ;</subfield><subfield code="v">v. 6.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2009064241</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=426455</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="0" ind2=" "><subfield code="6">505-01/(S</subfield><subfield code="a">Machine generated contents note: 1.1. Introduction -- 1.2. The generalized Ramanujan identity -- 1.3. The Weierstrass elliptic function -- 1.4. Notes -- 2.1. Ramanujan's differential equations -- 2.2. Ramanujan's 1ψ1 summation formula -- 2.3. Ramanujan's transcendentals U2n and V2n -- 2.4. The imaginary transformation and Dedekind's eta-function -- 2.5. Notes -- 3.1. The Jordan-Kronecker function -- 3.2. The fundamental multiplicative identity -- 3.3. Partitions -- 3.4. The hypergeometric function 2F1(1/2,1/2;1;x): first method -- 3.5. Notes -- 4.1. Halphen's differential equations -- 4.2. Jacobi's identities and sums of two and four squares -- 4.3. Quadratic transformations -- 4.4. The hypergeometric function 2F1(1/2,1/2;1;x): second method -- 4.5. Notes -- 5.1. Parameterizations of Eisenstein series -- 5.2. Sums of eight squares and sums of eight, triangular numbers -- 5.3. Quadratic transformations -- 5.4. The hypergeometric function 2F1(1/4, 3/4; 1; x).</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10524613</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">426455</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7150504</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn774956284 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:18:14Z |
institution | BVB |
isbn | 9814366463 9789814366465 |
issn | 1793-8341 ; |
language | English |
oclc_num | 774956284 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xv, 167 pages) : illustrations. |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | World Scientific, |
record_format | marc |
series | Monographs in number theory ; |
series2 | Monographs in number theory, |
spelling | Venkatachaliengar, K. Development of elliptic functions according to Ramanujan / originally by K. Venkatachaliengar ; edited and revised by Shaun Cooper. [Rev. ed.]. Singapore ; Hackensack, NJ : World Scientific, ©2012. 1 online resource (xv, 167 pages) : illustrations. text txt rdacontent computer c rdamedia online resource cr rdacarrier Monographs in number theory, 1793-8341 ; v. 6 Originally published as a Technical Report 2 by Madurai Kamaraj University in February, 1988. 880-01 The basic identity -- The differential equations of P, Q and R -- The Jordan-Kronecker function -- The Weierstrassian invariants -- The Weierstrassian invariants, II -- Development of elliptic functions -- The modular function [Lambda]. Includes bibliographical references and index. This unique book provides an innovative and efficient approach to elliptic functions, based on the ideas of the great Indian mathematician Srinivasa Ramanujan. The original 1988 monograph of K Venkatachaliengar has been completely revised. Many details, omitted from the original version, have been included, and the book has been made comprehensive by notes at the end of each chapter. The book is for graduate students and researchers in Number Theory and Classical Analysis, as well for scholars and aficionados of Ramanujan's work. It can be read by anyone with some undergraduate knowledge of re. Ramanujan Aiyangar, Srinivasa, 1887-1920. http://id.loc.gov/authorities/names/n50054441 Ramanujan Aiyangar, Srinivasa, 1887-1920 fast https://id.oclc.org/worldcat/entity/E39PBJjtcjjYWv63v7w3DyDrMP Elliptic functions. http://id.loc.gov/authorities/subjects/sh85052336 Fonctions elliptiques. MATHEMATICS Complex Analysis. bisacsh Elliptic functions fast Cooper, Shaun. Print version: 9789814366458 9814366455 (DLC) 2011293884 Monographs in number theory ; v. 6. http://id.loc.gov/authorities/names/no2009064241 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=426455 Volltext 505-01/(S Machine generated contents note: 1.1. Introduction -- 1.2. The generalized Ramanujan identity -- 1.3. The Weierstrass elliptic function -- 1.4. Notes -- 2.1. Ramanujan's differential equations -- 2.2. Ramanujan's 1ψ1 summation formula -- 2.3. Ramanujan's transcendentals U2n and V2n -- 2.4. The imaginary transformation and Dedekind's eta-function -- 2.5. Notes -- 3.1. The Jordan-Kronecker function -- 3.2. The fundamental multiplicative identity -- 3.3. Partitions -- 3.4. The hypergeometric function 2F1(1/2,1/2;1;x): first method -- 3.5. Notes -- 4.1. Halphen's differential equations -- 4.2. Jacobi's identities and sums of two and four squares -- 4.3. Quadratic transformations -- 4.4. The hypergeometric function 2F1(1/2,1/2;1;x): second method -- 4.5. Notes -- 5.1. Parameterizations of Eisenstein series -- 5.2. Sums of eight squares and sums of eight, triangular numbers -- 5.3. Quadratic transformations -- 5.4. The hypergeometric function 2F1(1/4, 3/4; 1; x). |
spellingShingle | Venkatachaliengar, K. Development of elliptic functions according to Ramanujan / Monographs in number theory ; The basic identity -- The differential equations of P, Q and R -- The Jordan-Kronecker function -- The Weierstrassian invariants -- The Weierstrassian invariants, II -- Development of elliptic functions -- The modular function [Lambda]. Ramanujan Aiyangar, Srinivasa, 1887-1920. http://id.loc.gov/authorities/names/n50054441 Ramanujan Aiyangar, Srinivasa, 1887-1920 fast https://id.oclc.org/worldcat/entity/E39PBJjtcjjYWv63v7w3DyDrMP Elliptic functions. http://id.loc.gov/authorities/subjects/sh85052336 Fonctions elliptiques. MATHEMATICS Complex Analysis. bisacsh Elliptic functions fast |
subject_GND | http://id.loc.gov/authorities/names/n50054441 http://id.loc.gov/authorities/subjects/sh85052336 |
title | Development of elliptic functions according to Ramanujan / |
title_auth | Development of elliptic functions according to Ramanujan / |
title_exact_search | Development of elliptic functions according to Ramanujan / |
title_full | Development of elliptic functions according to Ramanujan / originally by K. Venkatachaliengar ; edited and revised by Shaun Cooper. |
title_fullStr | Development of elliptic functions according to Ramanujan / originally by K. Venkatachaliengar ; edited and revised by Shaun Cooper. |
title_full_unstemmed | Development of elliptic functions according to Ramanujan / originally by K. Venkatachaliengar ; edited and revised by Shaun Cooper. |
title_short | Development of elliptic functions according to Ramanujan / |
title_sort | development of elliptic functions according to ramanujan |
topic | Ramanujan Aiyangar, Srinivasa, 1887-1920. http://id.loc.gov/authorities/names/n50054441 Ramanujan Aiyangar, Srinivasa, 1887-1920 fast https://id.oclc.org/worldcat/entity/E39PBJjtcjjYWv63v7w3DyDrMP Elliptic functions. http://id.loc.gov/authorities/subjects/sh85052336 Fonctions elliptiques. MATHEMATICS Complex Analysis. bisacsh Elliptic functions fast |
topic_facet | Ramanujan Aiyangar, Srinivasa, 1887-1920. Ramanujan Aiyangar, Srinivasa, 1887-1920 Elliptic functions. Fonctions elliptiques. MATHEMATICS Complex Analysis. Elliptic functions |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=426455 |
work_keys_str_mv | AT venkatachaliengark developmentofellipticfunctionsaccordingtoramanujan AT coopershaun developmentofellipticfunctionsaccordingtoramanujan |