Mathematical modeling of Earth's dynamical systems :: a primer /
Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J. :
Princeton University Press,
©2011.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of d. |
Beschreibung: | 1 online resource (xii, 231 pages) : illustrations, maps |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781400839117 1400839114 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn719383459 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 110502s2011 njuab ob 001 0 eng d | ||
010 | |a 2010041656 | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d E7B |d CDX |d EBLCP |d MHW |d OCLCQ |d UMI |d COD |d REDDC |d OCLCQ |d COO |d OCLCQ |d DEBSZ |d OCLCQ |d JSTOR |d OCLCQ |d CUI |d OCLCQ |d LOA |d YDX |d OCLCQ |d OCLCO |d AGLDB |d TOA |d MOR |d PIFAG |d ZCU |d MERUC |d OCLCQ |d IOG |d U3W |d EZ9 |d STF |d WRM |d VTS |d CUS |d ICG |d VT2 |d INT |d CEF |d OCLCQ |d WYU |d LVT |d TKN |d OCLCQ |d UAB |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d OCLCA |d UKCRE |d MM9 |d OCLCO |d OCLCQ |d OCLCL |d HOPLA | ||
019 | |a 710018926 |a 715161214 |a 773205577 |a 781406509 |a 960201464 |a 961011161 |a 961503258 |a 962675185 |a 965422691 |a 988536544 |a 992076753 |a 1037913221 |a 1038570125 |a 1048148449 |a 1050975319 |a 1055355166 |a 1061029809 |a 1064111990 |a 1103280382 |a 1129361598 |a 1148113107 |a 1181907548 |a 1192335201 |a 1202538548 |a 1228603766 | ||
020 | |a 9781400839117 |q (electronic bk.) | ||
020 | |a 1400839114 |q (electronic bk.) | ||
020 | |z 9780691145136 | ||
020 | |z 069114513X | ||
020 | |z 9780691145143 | ||
020 | |z 0691145148 | ||
024 | 8 | |a 3574376 | |
035 | |a (OCoLC)719383459 |z (OCoLC)710018926 |z (OCoLC)715161214 |z (OCoLC)773205577 |z (OCoLC)781406509 |z (OCoLC)960201464 |z (OCoLC)961011161 |z (OCoLC)961503258 |z (OCoLC)962675185 |z (OCoLC)965422691 |z (OCoLC)988536544 |z (OCoLC)992076753 |z (OCoLC)1037913221 |z (OCoLC)1038570125 |z (OCoLC)1048148449 |z (OCoLC)1050975319 |z (OCoLC)1055355166 |z (OCoLC)1061029809 |z (OCoLC)1064111990 |z (OCoLC)1103280382 |z (OCoLC)1129361598 |z (OCoLC)1148113107 |z (OCoLC)1181907548 |z (OCoLC)1192335201 |z (OCoLC)1202538548 |z (OCoLC)1228603766 | ||
037 | |a CL0500000122 |b Safari Books Online | ||
037 | |a 22573/ctt107qk |b JSTOR | ||
050 | 4 | |a QH331 |b .S55 2011eb | |
072 | 7 | |a SCI |x 019000 |2 bisacsh | |
072 | 7 | |a SCI |x 032000 |2 bisacsh | |
072 | 7 | |a MAT003000 |2 bisacsh | |
072 | 7 | |a SCI019000 |2 bisacsh | |
082 | 7 | |a 550.1/5118 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Slingerland, Rudy, |e author. |0 http://id.loc.gov/authorities/names/n90703490 | |
245 | 1 | 0 | |a Mathematical modeling of Earth's dynamical systems : |b a primer / |c Rudy Slingerland and Lee Kump. |
260 | |a Princeton, N.J. : |b Princeton University Press, |c ©2011. | ||
300 | |a 1 online resource (xii, 231 pages) : |b illustrations, maps | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a 1 Modeling and Mathematical Concepts -- Pros and Cons of Dynamical Models -- An Important Modeling Assumption -- Some Examples -- Example I: Simulation of Chicxulub Impact and Its Consequences -- Example II: Storm Surge of Hurricane Ivan in Escambia Bay -- Steps in Model Building -- Basic Definitions and Concepts -- Nondimensionalization -- A Brief Mathematical Review 2 Basics of Numerical Solutions by Finite Difference -- First Some Matrix Algebra -- Solution of Linear Systems of Algebraic Equations -- General Finite Difference Approach -- Discretization -- Obtaining Difference Operators by Taylor Series -- Explicit Schemes -- Implicit Schemes -- How Good Is My Finite Difference Scheme? -- Stability Is Not Accuracy 3 Box Modeling: Unsteady, Uniform Conservation of Mass -- Translations -- Example I: Radiocarbon Content of the Biosphere as a One-Box Model -- Example II: The Carbon Cycle as a Multibox Model -- Example III: One-Dimensional Energy Balance Climate Model -- Finite Difference Solutions of Box Models -- The Forward Euler Method -- Predictor-Corrector Methods -- Stiff Systems -- Example IV: Rothman Ocean -- Backward Euler Method -- Model Enhancements 4 One-Dimensional Diffusion Problems -- Translations -- Example I: Dissolved Species in a Homogeneous Aquifer -- Example II: Evolution of a Sandy Coastline -- Example III: Diffusion of Momentum -- Finite Difference Solutions to 1-D Diffusion Problems 5 Multidimensional Diffusion Problems -- Translations -- Example I: Landscape Evolution as a 2-D Diffusion Problem -- Example II: Pollutant Transport in a Confined Aquifer -- Example III: Thermal Considerations in Radioactive Waste Disposal -- Finite Difference Solutions to Parabolic PDEs and Elliptic Boundary Value Problems -- An Explicit Scheme -- Implicit Schemes -- Case of Variable Coefficients 6 Advection-Dominated Problems -- Translations -- Example I: A Dissolved Species in a River -- Example II: Lahars Flowing along Simple Channels -- Finite Difference Solution Schemes to the Linear Advection Equation 7 Advection and Diffusion (Transport) Problems -- Translations -- Example I: A Generic 1-DCase -- Example II: Transport of Suspended Sediment in a Stream -- Example III: Sedimentary Diagenesis -- Finite Difference Solutions to the Transport Equation -- QUICK Scheme -- QUICKEST Scheme 8 Transport Problems with a Twist: The Transport of Momentum -- Translations -- Example I: One-Dimensional Transport of Momentum in a Newtonian Fluid (Burgers' Equation) -- An Analytic Solution to Burgers' Equation -- Finite Difference Scheme for Burgers' Equation -- Solution Scheme Accuracy -- Diffusive Momentum Transport in turbulent Flows -- Adding Sources and Sinks of Momentum:The General Law of Motion 9 Systems of One-Dimensional Non linear Partial Differential Equations -- Translations -- Example I: Gradually Varied Flow in an Open Channel -- Finite Difference Solution Schemes for Equation Sets -- Explicit FTCS Scheme on a Staggered Mesh -- Four-Point Implicit Scheme -- The Dam-Break Problem: An Example 10. Two-Dimensional Nonlinear Hyperbolic Systems -- Translations -- Example I The Circulation of Lakes, Estuaries, and the Coastal Ocean -- An Explicit Solution Scheme for 2-D Vertically Integrated Geophysical Flows -- Lake Ontario Wind-Driven Circulation: An Example. | |
520 | |a Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of d. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Gaia hypothesis |x Mathematical models. | |
650 | 6 | |a Hypothèse Gaïa |x Modèles mathématiques. | |
650 | 7 | |a SCIENCE |x Earth Sciences |x General. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Physics |x Geophysics. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Applied. |2 bisacsh | |
650 | 7 | |a Geowissenschaften |2 gnd | |
650 | 7 | |a Mathematisches Modell |2 gnd |0 http://d-nb.info/gnd/4114528-8 | |
650 | 7 | |a Geostatistik |2 gnd |0 http://d-nb.info/gnd/4020279-3 | |
700 | 1 | |a Kump, Lee R., |e author. |0 http://id.loc.gov/authorities/names/n98095528 | |
758 | |i has work: |a Mathematical modeling of Earth's dynamical systems (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGv9fmtRdFg6CWfV9WJTBP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Slingerland, Rudy. |t Mathematical modeling of Earth's dynamical systems. |d Princeton, N.J. : Princeton University Press, ©2011 |z 9780691145136 |w (DLC) 2010041656 |w (OCoLC)671916625 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=363219 |3 Volltext |
938 | |a hoopla Digital |b HOPL |n MWT13281728 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26387945 | ||
938 | |a Coutts Information Services |b COUT |n 17416884 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL664639 | ||
938 | |a ebrary |b EBRY |n ebr10449970 | ||
938 | |a EBSCOhost |b EBSC |n 363219 | ||
938 | |a YBP Library Services |b YANK |n 3636408 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn719383459 |
---|---|
_version_ | 1816881758233165824 |
adam_text | |
any_adam_object | |
author | Slingerland, Rudy Kump, Lee R. |
author_GND | http://id.loc.gov/authorities/names/n90703490 http://id.loc.gov/authorities/names/n98095528 |
author_facet | Slingerland, Rudy Kump, Lee R. |
author_role | aut aut |
author_sort | Slingerland, Rudy |
author_variant | r s rs l r k lr lrk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QH331 |
callnumber-raw | QH331 .S55 2011eb |
callnumber-search | QH331 .S55 2011eb |
callnumber-sort | QH 3331 S55 42011EB |
callnumber-subject | QH - Natural History and Biology |
collection | ZDB-4-EBA |
contents | 1 Modeling and Mathematical Concepts -- Pros and Cons of Dynamical Models -- An Important Modeling Assumption -- Some Examples -- Example I: Simulation of Chicxulub Impact and Its Consequences -- Example II: Storm Surge of Hurricane Ivan in Escambia Bay -- Steps in Model Building -- Basic Definitions and Concepts -- Nondimensionalization -- A Brief Mathematical Review 2 Basics of Numerical Solutions by Finite Difference -- First Some Matrix Algebra -- Solution of Linear Systems of Algebraic Equations -- General Finite Difference Approach -- Discretization -- Obtaining Difference Operators by Taylor Series -- Explicit Schemes -- Implicit Schemes -- How Good Is My Finite Difference Scheme? -- Stability Is Not Accuracy 3 Box Modeling: Unsteady, Uniform Conservation of Mass -- Translations -- Example I: Radiocarbon Content of the Biosphere as a One-Box Model -- Example II: The Carbon Cycle as a Multibox Model -- Example III: One-Dimensional Energy Balance Climate Model -- Finite Difference Solutions of Box Models -- The Forward Euler Method -- Predictor-Corrector Methods -- Stiff Systems -- Example IV: Rothman Ocean -- Backward Euler Method -- Model Enhancements 4 One-Dimensional Diffusion Problems -- Translations -- Example I: Dissolved Species in a Homogeneous Aquifer -- Example II: Evolution of a Sandy Coastline -- Example III: Diffusion of Momentum -- Finite Difference Solutions to 1-D Diffusion Problems 5 Multidimensional Diffusion Problems -- Translations -- Example I: Landscape Evolution as a 2-D Diffusion Problem -- Example II: Pollutant Transport in a Confined Aquifer -- Example III: Thermal Considerations in Radioactive Waste Disposal -- Finite Difference Solutions to Parabolic PDEs and Elliptic Boundary Value Problems -- An Explicit Scheme -- Implicit Schemes -- Case of Variable Coefficients 6 Advection-Dominated Problems -- Translations -- Example I: A Dissolved Species in a River -- Example II: Lahars Flowing along Simple Channels -- Finite Difference Solution Schemes to the Linear Advection Equation 7 Advection and Diffusion (Transport) Problems -- Translations -- Example I: A Generic 1-DCase -- Example II: Transport of Suspended Sediment in a Stream -- Example III: Sedimentary Diagenesis -- Finite Difference Solutions to the Transport Equation -- QUICK Scheme -- QUICKEST Scheme 8 Transport Problems with a Twist: The Transport of Momentum -- Translations -- Example I: One-Dimensional Transport of Momentum in a Newtonian Fluid (Burgers' Equation) -- An Analytic Solution to Burgers' Equation -- Finite Difference Scheme for Burgers' Equation -- Solution Scheme Accuracy -- Diffusive Momentum Transport in turbulent Flows -- Adding Sources and Sinks of Momentum:The General Law of Motion 9 Systems of One-Dimensional Non linear Partial Differential Equations -- Translations -- Example I: Gradually Varied Flow in an Open Channel -- Finite Difference Solution Schemes for Equation Sets -- Explicit FTCS Scheme on a Staggered Mesh -- Four-Point Implicit Scheme -- The Dam-Break Problem: An Example 10. Two-Dimensional Nonlinear Hyperbolic Systems -- Translations -- Example I The Circulation of Lakes, Estuaries, and the Coastal Ocean -- An Explicit Solution Scheme for 2-D Vertically Integrated Geophysical Flows -- Lake Ontario Wind-Driven Circulation: An Example. |
ctrlnum | (OCoLC)719383459 |
dewey-full | 550.1/5118 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 550 - Earth sciences |
dewey-raw | 550.1/5118 |
dewey-search | 550.1/5118 |
dewey-sort | 3550.1 45118 |
dewey-tens | 550 - Earth sciences |
discipline | Geologie / Paläontologie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07936cam a2200709 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn719383459</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">110502s2011 njuab ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2010041656</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">E7B</subfield><subfield code="d">CDX</subfield><subfield code="d">EBLCP</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UMI</subfield><subfield code="d">COD</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CUI</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AGLDB</subfield><subfield code="d">TOA</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">U3W</subfield><subfield code="d">EZ9</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">CUS</subfield><subfield code="d">ICG</subfield><subfield code="d">VT2</subfield><subfield code="d">INT</subfield><subfield code="d">CEF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">UKCRE</subfield><subfield code="d">MM9</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">HOPLA</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">710018926</subfield><subfield code="a">715161214</subfield><subfield code="a">773205577</subfield><subfield code="a">781406509</subfield><subfield code="a">960201464</subfield><subfield code="a">961011161</subfield><subfield code="a">961503258</subfield><subfield code="a">962675185</subfield><subfield code="a">965422691</subfield><subfield code="a">988536544</subfield><subfield code="a">992076753</subfield><subfield code="a">1037913221</subfield><subfield code="a">1038570125</subfield><subfield code="a">1048148449</subfield><subfield code="a">1050975319</subfield><subfield code="a">1055355166</subfield><subfield code="a">1061029809</subfield><subfield code="a">1064111990</subfield><subfield code="a">1103280382</subfield><subfield code="a">1129361598</subfield><subfield code="a">1148113107</subfield><subfield code="a">1181907548</subfield><subfield code="a">1192335201</subfield><subfield code="a">1202538548</subfield><subfield code="a">1228603766</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400839117</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400839114</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691145136</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">069114513X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691145143</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691145148</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">3574376</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)719383459</subfield><subfield code="z">(OCoLC)710018926</subfield><subfield code="z">(OCoLC)715161214</subfield><subfield code="z">(OCoLC)773205577</subfield><subfield code="z">(OCoLC)781406509</subfield><subfield code="z">(OCoLC)960201464</subfield><subfield code="z">(OCoLC)961011161</subfield><subfield code="z">(OCoLC)961503258</subfield><subfield code="z">(OCoLC)962675185</subfield><subfield code="z">(OCoLC)965422691</subfield><subfield code="z">(OCoLC)988536544</subfield><subfield code="z">(OCoLC)992076753</subfield><subfield code="z">(OCoLC)1037913221</subfield><subfield code="z">(OCoLC)1038570125</subfield><subfield code="z">(OCoLC)1048148449</subfield><subfield code="z">(OCoLC)1050975319</subfield><subfield code="z">(OCoLC)1055355166</subfield><subfield code="z">(OCoLC)1061029809</subfield><subfield code="z">(OCoLC)1064111990</subfield><subfield code="z">(OCoLC)1103280382</subfield><subfield code="z">(OCoLC)1129361598</subfield><subfield code="z">(OCoLC)1148113107</subfield><subfield code="z">(OCoLC)1181907548</subfield><subfield code="z">(OCoLC)1192335201</subfield><subfield code="z">(OCoLC)1202538548</subfield><subfield code="z">(OCoLC)1228603766</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000122</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt107qk</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QH331</subfield><subfield code="b">.S55 2011eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">019000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">032000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT003000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI019000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">550.1/5118</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Slingerland, Rudy,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90703490</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical modeling of Earth's dynamical systems :</subfield><subfield code="b">a primer /</subfield><subfield code="c">Rudy Slingerland and Lee Kump.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton, N.J. :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">©2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 231 pages) :</subfield><subfield code="b">illustrations, maps</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1 Modeling and Mathematical Concepts -- Pros and Cons of Dynamical Models -- An Important Modeling Assumption -- Some Examples -- Example I: Simulation of Chicxulub Impact and Its Consequences -- Example II: Storm Surge of Hurricane Ivan in Escambia Bay -- Steps in Model Building -- Basic Definitions and Concepts -- Nondimensionalization -- A Brief Mathematical Review 2 Basics of Numerical Solutions by Finite Difference -- First Some Matrix Algebra -- Solution of Linear Systems of Algebraic Equations -- General Finite Difference Approach -- Discretization -- Obtaining Difference Operators by Taylor Series -- Explicit Schemes -- Implicit Schemes -- How Good Is My Finite Difference Scheme? -- Stability Is Not Accuracy 3 Box Modeling: Unsteady, Uniform Conservation of Mass -- Translations -- Example I: Radiocarbon Content of the Biosphere as a One-Box Model -- Example II: The Carbon Cycle as a Multibox Model -- Example III: One-Dimensional Energy Balance Climate Model -- Finite Difference Solutions of Box Models -- The Forward Euler Method -- Predictor-Corrector Methods -- Stiff Systems -- Example IV: Rothman Ocean -- Backward Euler Method -- Model Enhancements 4 One-Dimensional Diffusion Problems -- Translations -- Example I: Dissolved Species in a Homogeneous Aquifer -- Example II: Evolution of a Sandy Coastline -- Example III: Diffusion of Momentum -- Finite Difference Solutions to 1-D Diffusion Problems 5 Multidimensional Diffusion Problems -- Translations -- Example I: Landscape Evolution as a 2-D Diffusion Problem -- Example II: Pollutant Transport in a Confined Aquifer -- Example III: Thermal Considerations in Radioactive Waste Disposal -- Finite Difference Solutions to Parabolic PDEs and Elliptic Boundary Value Problems -- An Explicit Scheme -- Implicit Schemes -- Case of Variable Coefficients 6 Advection-Dominated Problems -- Translations -- Example I: A Dissolved Species in a River -- Example II: Lahars Flowing along Simple Channels -- Finite Difference Solution Schemes to the Linear Advection Equation 7 Advection and Diffusion (Transport) Problems -- Translations -- Example I: A Generic 1-DCase -- Example II: Transport of Suspended Sediment in a Stream -- Example III: Sedimentary Diagenesis -- Finite Difference Solutions to the Transport Equation -- QUICK Scheme -- QUICKEST Scheme 8 Transport Problems with a Twist: The Transport of Momentum -- Translations -- Example I: One-Dimensional Transport of Momentum in a Newtonian Fluid (Burgers' Equation) -- An Analytic Solution to Burgers' Equation -- Finite Difference Scheme for Burgers' Equation -- Solution Scheme Accuracy -- Diffusive Momentum Transport in turbulent Flows -- Adding Sources and Sinks of Momentum:The General Law of Motion 9 Systems of One-Dimensional Non linear Partial Differential Equations -- Translations -- Example I: Gradually Varied Flow in an Open Channel -- Finite Difference Solution Schemes for Equation Sets -- Explicit FTCS Scheme on a Staggered Mesh -- Four-Point Implicit Scheme -- The Dam-Break Problem: An Example 10. Two-Dimensional Nonlinear Hyperbolic Systems -- Translations -- Example I The Circulation of Lakes, Estuaries, and the Coastal Ocean -- An Explicit Solution Scheme for 2-D Vertically Integrated Geophysical Flows -- Lake Ontario Wind-Driven Circulation: An Example.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of d.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Gaia hypothesis</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Hypothèse Gaïa</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Earth Sciences</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Geophysics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Applied.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geowissenschaften</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4114528-8</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geostatistik</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4020279-3</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kump, Lee R.,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n98095528</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Mathematical modeling of Earth's dynamical systems (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGv9fmtRdFg6CWfV9WJTBP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Slingerland, Rudy.</subfield><subfield code="t">Mathematical modeling of Earth's dynamical systems.</subfield><subfield code="d">Princeton, N.J. : Princeton University Press, ©2011</subfield><subfield code="z">9780691145136</subfield><subfield code="w">(DLC) 2010041656</subfield><subfield code="w">(OCoLC)671916625</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=363219</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">hoopla Digital</subfield><subfield code="b">HOPL</subfield><subfield code="n">MWT13281728</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26387945</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">17416884</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL664639</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10449970</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">363219</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3636408</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn719383459 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:48Z |
institution | BVB |
isbn | 9781400839117 1400839114 |
language | English |
lccn | 2010041656 |
oclc_num | 719383459 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 231 pages) : illustrations, maps |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Princeton University Press, |
record_format | marc |
spelling | Slingerland, Rudy, author. http://id.loc.gov/authorities/names/n90703490 Mathematical modeling of Earth's dynamical systems : a primer / Rudy Slingerland and Lee Kump. Princeton, N.J. : Princeton University Press, ©2011. 1 online resource (xii, 231 pages) : illustrations, maps text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. 1 Modeling and Mathematical Concepts -- Pros and Cons of Dynamical Models -- An Important Modeling Assumption -- Some Examples -- Example I: Simulation of Chicxulub Impact and Its Consequences -- Example II: Storm Surge of Hurricane Ivan in Escambia Bay -- Steps in Model Building -- Basic Definitions and Concepts -- Nondimensionalization -- A Brief Mathematical Review 2 Basics of Numerical Solutions by Finite Difference -- First Some Matrix Algebra -- Solution of Linear Systems of Algebraic Equations -- General Finite Difference Approach -- Discretization -- Obtaining Difference Operators by Taylor Series -- Explicit Schemes -- Implicit Schemes -- How Good Is My Finite Difference Scheme? -- Stability Is Not Accuracy 3 Box Modeling: Unsteady, Uniform Conservation of Mass -- Translations -- Example I: Radiocarbon Content of the Biosphere as a One-Box Model -- Example II: The Carbon Cycle as a Multibox Model -- Example III: One-Dimensional Energy Balance Climate Model -- Finite Difference Solutions of Box Models -- The Forward Euler Method -- Predictor-Corrector Methods -- Stiff Systems -- Example IV: Rothman Ocean -- Backward Euler Method -- Model Enhancements 4 One-Dimensional Diffusion Problems -- Translations -- Example I: Dissolved Species in a Homogeneous Aquifer -- Example II: Evolution of a Sandy Coastline -- Example III: Diffusion of Momentum -- Finite Difference Solutions to 1-D Diffusion Problems 5 Multidimensional Diffusion Problems -- Translations -- Example I: Landscape Evolution as a 2-D Diffusion Problem -- Example II: Pollutant Transport in a Confined Aquifer -- Example III: Thermal Considerations in Radioactive Waste Disposal -- Finite Difference Solutions to Parabolic PDEs and Elliptic Boundary Value Problems -- An Explicit Scheme -- Implicit Schemes -- Case of Variable Coefficients 6 Advection-Dominated Problems -- Translations -- Example I: A Dissolved Species in a River -- Example II: Lahars Flowing along Simple Channels -- Finite Difference Solution Schemes to the Linear Advection Equation 7 Advection and Diffusion (Transport) Problems -- Translations -- Example I: A Generic 1-DCase -- Example II: Transport of Suspended Sediment in a Stream -- Example III: Sedimentary Diagenesis -- Finite Difference Solutions to the Transport Equation -- QUICK Scheme -- QUICKEST Scheme 8 Transport Problems with a Twist: The Transport of Momentum -- Translations -- Example I: One-Dimensional Transport of Momentum in a Newtonian Fluid (Burgers' Equation) -- An Analytic Solution to Burgers' Equation -- Finite Difference Scheme for Burgers' Equation -- Solution Scheme Accuracy -- Diffusive Momentum Transport in turbulent Flows -- Adding Sources and Sinks of Momentum:The General Law of Motion 9 Systems of One-Dimensional Non linear Partial Differential Equations -- Translations -- Example I: Gradually Varied Flow in an Open Channel -- Finite Difference Solution Schemes for Equation Sets -- Explicit FTCS Scheme on a Staggered Mesh -- Four-Point Implicit Scheme -- The Dam-Break Problem: An Example 10. Two-Dimensional Nonlinear Hyperbolic Systems -- Translations -- Example I The Circulation of Lakes, Estuaries, and the Coastal Ocean -- An Explicit Solution Scheme for 2-D Vertically Integrated Geophysical Flows -- Lake Ontario Wind-Driven Circulation: An Example. Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of d. Print version record. Gaia hypothesis Mathematical models. Hypothèse Gaïa Modèles mathématiques. SCIENCE Earth Sciences General. bisacsh SCIENCE Physics Geophysics. bisacsh MATHEMATICS Applied. bisacsh Geowissenschaften gnd Mathematisches Modell gnd http://d-nb.info/gnd/4114528-8 Geostatistik gnd http://d-nb.info/gnd/4020279-3 Kump, Lee R., author. http://id.loc.gov/authorities/names/n98095528 has work: Mathematical modeling of Earth's dynamical systems (Text) https://id.oclc.org/worldcat/entity/E39PCGv9fmtRdFg6CWfV9WJTBP https://id.oclc.org/worldcat/ontology/hasWork Print version: Slingerland, Rudy. Mathematical modeling of Earth's dynamical systems. Princeton, N.J. : Princeton University Press, ©2011 9780691145136 (DLC) 2010041656 (OCoLC)671916625 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=363219 Volltext |
spellingShingle | Slingerland, Rudy Kump, Lee R. Mathematical modeling of Earth's dynamical systems : a primer / 1 Modeling and Mathematical Concepts -- Pros and Cons of Dynamical Models -- An Important Modeling Assumption -- Some Examples -- Example I: Simulation of Chicxulub Impact and Its Consequences -- Example II: Storm Surge of Hurricane Ivan in Escambia Bay -- Steps in Model Building -- Basic Definitions and Concepts -- Nondimensionalization -- A Brief Mathematical Review 2 Basics of Numerical Solutions by Finite Difference -- First Some Matrix Algebra -- Solution of Linear Systems of Algebraic Equations -- General Finite Difference Approach -- Discretization -- Obtaining Difference Operators by Taylor Series -- Explicit Schemes -- Implicit Schemes -- How Good Is My Finite Difference Scheme? -- Stability Is Not Accuracy 3 Box Modeling: Unsteady, Uniform Conservation of Mass -- Translations -- Example I: Radiocarbon Content of the Biosphere as a One-Box Model -- Example II: The Carbon Cycle as a Multibox Model -- Example III: One-Dimensional Energy Balance Climate Model -- Finite Difference Solutions of Box Models -- The Forward Euler Method -- Predictor-Corrector Methods -- Stiff Systems -- Example IV: Rothman Ocean -- Backward Euler Method -- Model Enhancements 4 One-Dimensional Diffusion Problems -- Translations -- Example I: Dissolved Species in a Homogeneous Aquifer -- Example II: Evolution of a Sandy Coastline -- Example III: Diffusion of Momentum -- Finite Difference Solutions to 1-D Diffusion Problems 5 Multidimensional Diffusion Problems -- Translations -- Example I: Landscape Evolution as a 2-D Diffusion Problem -- Example II: Pollutant Transport in a Confined Aquifer -- Example III: Thermal Considerations in Radioactive Waste Disposal -- Finite Difference Solutions to Parabolic PDEs and Elliptic Boundary Value Problems -- An Explicit Scheme -- Implicit Schemes -- Case of Variable Coefficients 6 Advection-Dominated Problems -- Translations -- Example I: A Dissolved Species in a River -- Example II: Lahars Flowing along Simple Channels -- Finite Difference Solution Schemes to the Linear Advection Equation 7 Advection and Diffusion (Transport) Problems -- Translations -- Example I: A Generic 1-DCase -- Example II: Transport of Suspended Sediment in a Stream -- Example III: Sedimentary Diagenesis -- Finite Difference Solutions to the Transport Equation -- QUICK Scheme -- QUICKEST Scheme 8 Transport Problems with a Twist: The Transport of Momentum -- Translations -- Example I: One-Dimensional Transport of Momentum in a Newtonian Fluid (Burgers' Equation) -- An Analytic Solution to Burgers' Equation -- Finite Difference Scheme for Burgers' Equation -- Solution Scheme Accuracy -- Diffusive Momentum Transport in turbulent Flows -- Adding Sources and Sinks of Momentum:The General Law of Motion 9 Systems of One-Dimensional Non linear Partial Differential Equations -- Translations -- Example I: Gradually Varied Flow in an Open Channel -- Finite Difference Solution Schemes for Equation Sets -- Explicit FTCS Scheme on a Staggered Mesh -- Four-Point Implicit Scheme -- The Dam-Break Problem: An Example 10. Two-Dimensional Nonlinear Hyperbolic Systems -- Translations -- Example I The Circulation of Lakes, Estuaries, and the Coastal Ocean -- An Explicit Solution Scheme for 2-D Vertically Integrated Geophysical Flows -- Lake Ontario Wind-Driven Circulation: An Example. Gaia hypothesis Mathematical models. Hypothèse Gaïa Modèles mathématiques. SCIENCE Earth Sciences General. bisacsh SCIENCE Physics Geophysics. bisacsh MATHEMATICS Applied. bisacsh Geowissenschaften gnd Mathematisches Modell gnd http://d-nb.info/gnd/4114528-8 Geostatistik gnd http://d-nb.info/gnd/4020279-3 |
subject_GND | http://d-nb.info/gnd/4114528-8 http://d-nb.info/gnd/4020279-3 |
title | Mathematical modeling of Earth's dynamical systems : a primer / |
title_auth | Mathematical modeling of Earth's dynamical systems : a primer / |
title_exact_search | Mathematical modeling of Earth's dynamical systems : a primer / |
title_full | Mathematical modeling of Earth's dynamical systems : a primer / Rudy Slingerland and Lee Kump. |
title_fullStr | Mathematical modeling of Earth's dynamical systems : a primer / Rudy Slingerland and Lee Kump. |
title_full_unstemmed | Mathematical modeling of Earth's dynamical systems : a primer / Rudy Slingerland and Lee Kump. |
title_short | Mathematical modeling of Earth's dynamical systems : |
title_sort | mathematical modeling of earth s dynamical systems a primer |
title_sub | a primer / |
topic | Gaia hypothesis Mathematical models. Hypothèse Gaïa Modèles mathématiques. SCIENCE Earth Sciences General. bisacsh SCIENCE Physics Geophysics. bisacsh MATHEMATICS Applied. bisacsh Geowissenschaften gnd Mathematisches Modell gnd http://d-nb.info/gnd/4114528-8 Geostatistik gnd http://d-nb.info/gnd/4020279-3 |
topic_facet | Gaia hypothesis Mathematical models. Hypothèse Gaïa Modèles mathématiques. SCIENCE Earth Sciences General. SCIENCE Physics Geophysics. MATHEMATICS Applied. Geowissenschaften Mathematisches Modell Geostatistik |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=363219 |
work_keys_str_mv | AT slingerlandrudy mathematicalmodelingofearthsdynamicalsystemsaprimer AT kumpleer mathematicalmodelingofearthsdynamicalsystemsaprimer |