The geometrical language of continuum mechanics /:
"Epstein presents the fundamental concepts of modern differential geometry within the framework of continuum mechanics. Divided into three parts of roughly equal length, the book opens with a motivational chapter to impress upon the reader that differential geometry is indeed the natural langua...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Cambridge University Press,
2010.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "Epstein presents the fundamental concepts of modern differential geometry within the framework of continuum mechanics. Divided into three parts of roughly equal length, the book opens with a motivational chapter to impress upon the reader that differential geometry is indeed the natural language of continuum mechanics or, better still, that the latter is a prime example of the application and materialisation of the former. In the second part, the fundamental notions of differential geometry are presented with rigor using a writing style that is as informal as possible. Differentiable manifolds, tangent bundles, exterior derivatives, Lie derivatives, and Lie groups are illustrated in terms of their mechanical interpretations. The third part includes the theory of fiber bundles, G-structures, and groupoids, which are applicable to bodies with internal structure and to the description of material inhomogeneity. The abstract notions of differential geometry are thus illuminated by practical and intuitively meaningful engineering applications"-- |
Beschreibung: | 1 online resource (xii, 312 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781139042093 1139042092 9780511762673 0511762674 9781139044721 1139044729 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn710992643 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 110404s2010 nyua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d CDX |d E7B |d OCLCQ |d OUP |d UIU |d REDDC |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCF |d OCLCQ |d COO |d OCLCQ |d K6U |d OCLCQ |d OCLCO |d OCLCQ |d YDX |d OCLCO |d OCLCL | ||
019 | |a 1373221248 |a 1433227837 | ||
020 | |a 9781139042093 |q (electronic bk.) | ||
020 | |a 1139042092 |q (electronic bk.) | ||
020 | |a 9780511762673 |q (electronic bk.) | ||
020 | |a 0511762674 |q (electronic bk.) | ||
020 | |a 9781139044721 | ||
020 | |a 1139044729 | ||
020 | |z 9780521198554 | ||
020 | |z 0521198550 | ||
035 | |a (OCoLC)710992643 |z (OCoLC)1373221248 |z (OCoLC)1433227837 | ||
050 | 4 | |a QA808.2 |b .E67 2010eb | |
072 | 7 | |a SCI |x 041000 |2 bisacsh | |
072 | 7 | |a SCI |x 096000 |2 bisacsh | |
082 | 7 | |a 531 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Epstein, M. |q (Marcelo) |1 https://id.oclc.org/worldcat/entity/E39PCjrfhj8Ccb4bVCryvHMPry |0 http://id.loc.gov/authorities/names/n80105163 | |
245 | 1 | 4 | |a The geometrical language of continuum mechanics / |c Marcelo Epstein. |
260 | |a New York : |b Cambridge University Press, |c 2010. | ||
300 | |a 1 online resource (xii, 312 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
520 | |a "Epstein presents the fundamental concepts of modern differential geometry within the framework of continuum mechanics. Divided into three parts of roughly equal length, the book opens with a motivational chapter to impress upon the reader that differential geometry is indeed the natural language of continuum mechanics or, better still, that the latter is a prime example of the application and materialisation of the former. In the second part, the fundamental notions of differential geometry are presented with rigor using a writing style that is as informal as possible. Differentiable manifolds, tangent bundles, exterior derivatives, Lie derivatives, and Lie groups are illustrated in terms of their mechanical interpretations. The third part includes the theory of fiber bundles, G-structures, and groupoids, which are applicable to bodies with internal structure and to the description of material inhomogeneity. The abstract notions of differential geometry are thus illuminated by practical and intuitively meaningful engineering applications"-- |c Provided by publisher | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Part I. Motivation and Background. The case for differential geometry -- Vector and affine spaces -- Tensor algebras and multivectors -- Part II. Differential Geometry. Differentiable manifolds -- Lie derivatives, Lie groups, Lie algebras -- Integration and fluxes -- Part III. Further Topics. Fibre bundles -- Inhomogeneity theory -- Connection, curvature, torsion -- Appendix A.A primer in continuum mechanics. | |
650 | 0 | |a Continuum mechanics. |0 http://id.loc.gov/authorities/subjects/sh85031576 | |
650 | 6 | |a Mécanique des milieux continus. | |
650 | 7 | |a SCIENCE |x Mechanics |x General. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Mechanics |x Solids. |2 bisacsh | |
650 | 7 | |a Continuum mechanics |2 fast | |
650 | 7 | |a Kontinuumsmechanik |x Geometrie. |2 idsbb | |
650 | 7 | |a Geometrie |x Kontinuumsmechanik. |2 idsbb | |
650 | 7 | |a Kontinuumsmechanik. |2 idszbz | |
650 | 7 | |a Differentialgeometrie. |2 idszbz | |
758 | |i has work: |a The geometrical language of continuum mechanics (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGj97hvh3x4WgPJ9dpTd8K |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Epstein, M. (Marcelo). |t Geometrical language of continuum mechanics. |d New York : Cambridge University Press, 2010 |z 9780521198554 |z 0521198550 |w (DLC) 2010019217 |w (OCoLC)535491405 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=361551 |3 Volltext |
938 | |a Coutts Information Services |b COUT |n 17668642 | ||
938 | |a ebrary |b EBRY |n ebr10460519 | ||
938 | |a EBSCOhost |b EBSC |n 361551 | ||
938 | |a YBP Library Services |b YANK |n 4196656 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn710992643 |
---|---|
_version_ | 1816881755072757760 |
adam_text | |
any_adam_object | |
author | Epstein, M. (Marcelo) |
author_GND | http://id.loc.gov/authorities/names/n80105163 |
author_facet | Epstein, M. (Marcelo) |
author_role | |
author_sort | Epstein, M. |
author_variant | m e me |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA808 |
callnumber-raw | QA808.2 .E67 2010eb |
callnumber-search | QA808.2 .E67 2010eb |
callnumber-sort | QA 3808.2 E67 42010EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Part I. Motivation and Background. The case for differential geometry -- Vector and affine spaces -- Tensor algebras and multivectors -- Part II. Differential Geometry. Differentiable manifolds -- Lie derivatives, Lie groups, Lie algebras -- Integration and fluxes -- Part III. Further Topics. Fibre bundles -- Inhomogeneity theory -- Connection, curvature, torsion -- Appendix A.A primer in continuum mechanics. |
ctrlnum | (OCoLC)710992643 |
dewey-full | 531 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531 |
dewey-search | 531 |
dewey-sort | 3531 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04258cam a2200625 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn710992643</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">110404s2010 nyua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">CDX</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OUP</subfield><subfield code="d">UIU</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1373221248</subfield><subfield code="a">1433227837</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139042093</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139042092</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511762673</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511762674</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139044721</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139044729</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521198554</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521198550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)710992643</subfield><subfield code="z">(OCoLC)1373221248</subfield><subfield code="z">(OCoLC)1433227837</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA808.2</subfield><subfield code="b">.E67 2010eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">041000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">096000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">531</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Epstein, M.</subfield><subfield code="q">(Marcelo)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjrfhj8Ccb4bVCryvHMPry</subfield><subfield code="0">http://id.loc.gov/authorities/names/n80105163</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The geometrical language of continuum mechanics /</subfield><subfield code="c">Marcelo Epstein.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2010.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 312 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Epstein presents the fundamental concepts of modern differential geometry within the framework of continuum mechanics. Divided into three parts of roughly equal length, the book opens with a motivational chapter to impress upon the reader that differential geometry is indeed the natural language of continuum mechanics or, better still, that the latter is a prime example of the application and materialisation of the former. In the second part, the fundamental notions of differential geometry are presented with rigor using a writing style that is as informal as possible. Differentiable manifolds, tangent bundles, exterior derivatives, Lie derivatives, and Lie groups are illustrated in terms of their mechanical interpretations. The third part includes the theory of fiber bundles, G-structures, and groupoids, which are applicable to bodies with internal structure and to the description of material inhomogeneity. The abstract notions of differential geometry are thus illuminated by practical and intuitively meaningful engineering applications"--</subfield><subfield code="c">Provided by publisher</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Part I. Motivation and Background. The case for differential geometry -- Vector and affine spaces -- Tensor algebras and multivectors -- Part II. Differential Geometry. Differentiable manifolds -- Lie derivatives, Lie groups, Lie algebras -- Integration and fluxes -- Part III. Further Topics. Fibre bundles -- Inhomogeneity theory -- Connection, curvature, torsion -- Appendix A.A primer in continuum mechanics.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Continuum mechanics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85031576</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mécanique des milieux continus.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mechanics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mechanics</subfield><subfield code="x">Solids.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Continuum mechanics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="x">Geometrie.</subfield><subfield code="2">idsbb</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometrie</subfield><subfield code="x">Kontinuumsmechanik.</subfield><subfield code="2">idsbb</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kontinuumsmechanik.</subfield><subfield code="2">idszbz</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differentialgeometrie.</subfield><subfield code="2">idszbz</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">The geometrical language of continuum mechanics (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGj97hvh3x4WgPJ9dpTd8K</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Epstein, M. (Marcelo).</subfield><subfield code="t">Geometrical language of continuum mechanics.</subfield><subfield code="d">New York : Cambridge University Press, 2010</subfield><subfield code="z">9780521198554</subfield><subfield code="z">0521198550</subfield><subfield code="w">(DLC) 2010019217</subfield><subfield code="w">(OCoLC)535491405</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=361551</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">17668642</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10460519</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">361551</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">4196656</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn710992643 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:45Z |
institution | BVB |
isbn | 9781139042093 1139042092 9780511762673 0511762674 9781139044721 1139044729 |
language | English |
oclc_num | 710992643 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 312 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge University Press, |
record_format | marc |
spelling | Epstein, M. (Marcelo) https://id.oclc.org/worldcat/entity/E39PCjrfhj8Ccb4bVCryvHMPry http://id.loc.gov/authorities/names/n80105163 The geometrical language of continuum mechanics / Marcelo Epstein. New York : Cambridge University Press, 2010. 1 online resource (xii, 312 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. "Epstein presents the fundamental concepts of modern differential geometry within the framework of continuum mechanics. Divided into three parts of roughly equal length, the book opens with a motivational chapter to impress upon the reader that differential geometry is indeed the natural language of continuum mechanics or, better still, that the latter is a prime example of the application and materialisation of the former. In the second part, the fundamental notions of differential geometry are presented with rigor using a writing style that is as informal as possible. Differentiable manifolds, tangent bundles, exterior derivatives, Lie derivatives, and Lie groups are illustrated in terms of their mechanical interpretations. The third part includes the theory of fiber bundles, G-structures, and groupoids, which are applicable to bodies with internal structure and to the description of material inhomogeneity. The abstract notions of differential geometry are thus illuminated by practical and intuitively meaningful engineering applications"-- Provided by publisher Print version record. Part I. Motivation and Background. The case for differential geometry -- Vector and affine spaces -- Tensor algebras and multivectors -- Part II. Differential Geometry. Differentiable manifolds -- Lie derivatives, Lie groups, Lie algebras -- Integration and fluxes -- Part III. Further Topics. Fibre bundles -- Inhomogeneity theory -- Connection, curvature, torsion -- Appendix A.A primer in continuum mechanics. Continuum mechanics. http://id.loc.gov/authorities/subjects/sh85031576 Mécanique des milieux continus. SCIENCE Mechanics General. bisacsh SCIENCE Mechanics Solids. bisacsh Continuum mechanics fast Kontinuumsmechanik Geometrie. idsbb Geometrie Kontinuumsmechanik. idsbb Kontinuumsmechanik. idszbz Differentialgeometrie. idszbz has work: The geometrical language of continuum mechanics (Text) https://id.oclc.org/worldcat/entity/E39PCGj97hvh3x4WgPJ9dpTd8K https://id.oclc.org/worldcat/ontology/hasWork Print version: Epstein, M. (Marcelo). Geometrical language of continuum mechanics. New York : Cambridge University Press, 2010 9780521198554 0521198550 (DLC) 2010019217 (OCoLC)535491405 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=361551 Volltext |
spellingShingle | Epstein, M. (Marcelo) The geometrical language of continuum mechanics / Part I. Motivation and Background. The case for differential geometry -- Vector and affine spaces -- Tensor algebras and multivectors -- Part II. Differential Geometry. Differentiable manifolds -- Lie derivatives, Lie groups, Lie algebras -- Integration and fluxes -- Part III. Further Topics. Fibre bundles -- Inhomogeneity theory -- Connection, curvature, torsion -- Appendix A.A primer in continuum mechanics. Continuum mechanics. http://id.loc.gov/authorities/subjects/sh85031576 Mécanique des milieux continus. SCIENCE Mechanics General. bisacsh SCIENCE Mechanics Solids. bisacsh Continuum mechanics fast Kontinuumsmechanik Geometrie. idsbb Geometrie Kontinuumsmechanik. idsbb Kontinuumsmechanik. idszbz Differentialgeometrie. idszbz |
subject_GND | http://id.loc.gov/authorities/subjects/sh85031576 |
title | The geometrical language of continuum mechanics / |
title_auth | The geometrical language of continuum mechanics / |
title_exact_search | The geometrical language of continuum mechanics / |
title_full | The geometrical language of continuum mechanics / Marcelo Epstein. |
title_fullStr | The geometrical language of continuum mechanics / Marcelo Epstein. |
title_full_unstemmed | The geometrical language of continuum mechanics / Marcelo Epstein. |
title_short | The geometrical language of continuum mechanics / |
title_sort | geometrical language of continuum mechanics |
topic | Continuum mechanics. http://id.loc.gov/authorities/subjects/sh85031576 Mécanique des milieux continus. SCIENCE Mechanics General. bisacsh SCIENCE Mechanics Solids. bisacsh Continuum mechanics fast Kontinuumsmechanik Geometrie. idsbb Geometrie Kontinuumsmechanik. idsbb Kontinuumsmechanik. idszbz Differentialgeometrie. idszbz |
topic_facet | Continuum mechanics. Mécanique des milieux continus. SCIENCE Mechanics General. SCIENCE Mechanics Solids. Continuum mechanics Kontinuumsmechanik Geometrie. Geometrie Kontinuumsmechanik. Kontinuumsmechanik. Differentialgeometrie. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=361551 |
work_keys_str_mv | AT epsteinm thegeometricallanguageofcontinuummechanics AT epsteinm geometricallanguageofcontinuummechanics |