The geometry of curvature homogeneous pseudo-Riemannian manifolds /:
Pseudo-Riemannian geometry is an active research field not only in differential geometry but also in mathematical physics where the higher signature geometries play a role in brane theory. An essential reference tool for research mathematicians and physicists, this book also serves as a useful intro...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London : Hackensack, NJ :
Imperial College Press ; Distributed byWorld Scientific Pub.,
©2007.
|
Schriftenreihe: | Imperial College Press advanced texts in mathematics ;
v. 2. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Pseudo-Riemannian geometry is an active research field not only in differential geometry but also in mathematical physics where the higher signature geometries play a role in brane theory. An essential reference tool for research mathematicians and physicists, this book also serves as a useful introduction to students entering this active and rapidly growing field. The author presents a comprehensive treatment of several aspects of pseudo-Riemannian geometry, including the spectral geometry of the curvature tensor, curvature homogeneity, and Stanilov?Tsankov?Videv theory. |
Beschreibung: | 1 online resource (xii, 376 pages). |
Bibliographie: | Includes bibliographical references (pages 361-372) and index. |
ISBN: | 1860948588 9781860948589 1281120677 9781281120670 9786611120672 661112067X |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn648316953 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 070709s2007 enk ob 001 0 eng d | ||
010 | |z 2007281635 | ||
040 | |a E7B |b eng |e pn |c E7B |d OCLCQ |d N$T |d YDXCP |d OSU |d IDEBK |d OCLCQ |d FVL |d OCLCQ |d MERUC |d OCLCQ |d OCLCF |d OCLCQ |d STF |d OCLCQ |d LOA |d AZK |d COCUF |d AGLDB |d MOR |d OCLCQ |d U3W |d WRM |d OCLCQ |d VTS |d INT |d VT2 |d OCLCQ |d TKN |d OCLCQ |d LEAUB |d M8D |d UKAHL |d VLY |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d SXB |d OCLCQ |d OCLCO |d OCLCQ | ||
016 | 7 | |a 013787507 |2 Uk | |
019 | |a 173819427 |a 213362460 |a 722597127 |a 728031547 |a 767137710 |a 769365750 |a 961520704 |a 962718827 |a 1055317370 |a 1162020709 |a 1241783795 |a 1290036448 |a 1300673520 | ||
020 | |a 1860948588 |q (electronic bk.) | ||
020 | |a 9781860948589 |q (electronic bk.) | ||
020 | |z 9781860947858 |q (cased) | ||
020 | |z 9781860948589 | ||
020 | |z 1860947859 |q (cased) | ||
020 | |a 1281120677 | ||
020 | |a 9781281120670 | ||
020 | |a 9786611120672 | ||
020 | |a 661112067X | ||
035 | |a (OCoLC)648316953 |z (OCoLC)173819427 |z (OCoLC)213362460 |z (OCoLC)722597127 |z (OCoLC)728031547 |z (OCoLC)767137710 |z (OCoLC)769365750 |z (OCoLC)961520704 |z (OCoLC)962718827 |z (OCoLC)1055317370 |z (OCoLC)1162020709 |z (OCoLC)1241783795 |z (OCoLC)1290036448 |z (OCoLC)1300673520 | ||
050 | 4 | |a QA671 |b .G55 2007eb | |
072 | 7 | |a MAT |x 012030 |2 bisacsh | |
082 | 7 | |a 516.362 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Gilkey, Peter B. | |
245 | 1 | 4 | |a The geometry of curvature homogeneous pseudo-Riemannian manifolds / |c Peter B. Gilkey. |
260 | |a London : |b Imperial College Press ; |a Hackensack, NJ : |b Distributed byWorld Scientific Pub., |c ©2007. | ||
300 | |a 1 online resource (xii, 376 pages). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
490 | 1 | |a ICP advanced texts in mathematics ; |v v. 2 | |
504 | |a Includes bibliographical references (pages 361-372) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a Pseudo-Riemannian geometry is an active research field not only in differential geometry but also in mathematical physics where the higher signature geometries play a role in brane theory. An essential reference tool for research mathematicians and physicists, this book also serves as a useful introduction to students entering this active and rapidly growing field. The author presents a comprehensive treatment of several aspects of pseudo-Riemannian geometry, including the spectral geometry of the curvature tensor, curvature homogeneity, and Stanilov?Tsankov?Videv theory. | ||
505 | 0 | |a The geometry of the Riemann curvature tensor -- Curvature homogeneous generalized plane wave manifolds -- Other pseudo-Riemannian manifolds -- The curvature tensor -- Complex Osserman algebraic curvature tensors -- Stanilov-Tsankov theory. | |
546 | |a English. | ||
650 | 0 | |a Riemannian manifolds. |0 http://id.loc.gov/authorities/subjects/sh85114045 | |
650 | 0 | |a Curvature. |0 http://id.loc.gov/authorities/subjects/sh85034911 | |
650 | 0 | |a Geometry, Differential. |0 http://id.loc.gov/authorities/subjects/sh85054146 | |
650 | 6 | |a Variétés de Riemann. | |
650 | 6 | |a Courbure. | |
650 | 6 | |a Géométrie différentielle. | |
650 | 7 | |a MATHEMATICS |x Geometry |x Differential. |2 bisacsh | |
650 | 7 | |a Curvature |2 fast | |
650 | 7 | |a Geometry, Differential |2 fast | |
650 | 7 | |a Riemannian manifolds |2 fast | |
776 | 0 | 8 | |i Print version: |a Gilkey, Peter B. |t Geometry of curvature homogeneous pseudo-Riemannian manifolds. |d London : Imperial College Press ; Hackensack, NJ : Distributed byWorld Scientific Pub., ©2007 |w (DLC) 2007281635 |
830 | 0 | |a Imperial College Press advanced texts in mathematics ; |v v. 2. |0 http://id.loc.gov/authorities/names/no2007087803 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203918 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH24683036 | ||
938 | |a ebrary |b EBRY |n ebr10188778 | ||
938 | |a EBSCOhost |b EBSC |n 203918 | ||
938 | |a YBP Library Services |b YANK |n 2706152 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn648316953 |
---|---|
_version_ | 1816881729705607168 |
adam_text | |
any_adam_object | |
author | Gilkey, Peter B. |
author_facet | Gilkey, Peter B. |
author_role | |
author_sort | Gilkey, Peter B. |
author_variant | p b g pb pbg |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA671 |
callnumber-raw | QA671 .G55 2007eb |
callnumber-search | QA671 .G55 2007eb |
callnumber-sort | QA 3671 G55 42007EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | The geometry of the Riemann curvature tensor -- Curvature homogeneous generalized plane wave manifolds -- Other pseudo-Riemannian manifolds -- The curvature tensor -- Complex Osserman algebraic curvature tensors -- Stanilov-Tsankov theory. |
ctrlnum | (OCoLC)648316953 |
dewey-full | 516.362 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.362 |
dewey-search | 516.362 |
dewey-sort | 3516.362 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04204cam a2200709 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn648316953</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">070709s2007 enk ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2007281635</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OSU</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">FVL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">AZK</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">013787507</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">173819427</subfield><subfield code="a">213362460</subfield><subfield code="a">722597127</subfield><subfield code="a">728031547</subfield><subfield code="a">767137710</subfield><subfield code="a">769365750</subfield><subfield code="a">961520704</subfield><subfield code="a">962718827</subfield><subfield code="a">1055317370</subfield><subfield code="a">1162020709</subfield><subfield code="a">1241783795</subfield><subfield code="a">1290036448</subfield><subfield code="a">1300673520</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1860948588</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781860948589</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781860947858</subfield><subfield code="q">(cased)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781860948589</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1860947859</subfield><subfield code="q">(cased)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281120677</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281120670</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611120672</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">661112067X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)648316953</subfield><subfield code="z">(OCoLC)173819427</subfield><subfield code="z">(OCoLC)213362460</subfield><subfield code="z">(OCoLC)722597127</subfield><subfield code="z">(OCoLC)728031547</subfield><subfield code="z">(OCoLC)767137710</subfield><subfield code="z">(OCoLC)769365750</subfield><subfield code="z">(OCoLC)961520704</subfield><subfield code="z">(OCoLC)962718827</subfield><subfield code="z">(OCoLC)1055317370</subfield><subfield code="z">(OCoLC)1162020709</subfield><subfield code="z">(OCoLC)1241783795</subfield><subfield code="z">(OCoLC)1290036448</subfield><subfield code="z">(OCoLC)1300673520</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA671</subfield><subfield code="b">.G55 2007eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.362</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gilkey, Peter B.</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The geometry of curvature homogeneous pseudo-Riemannian manifolds /</subfield><subfield code="c">Peter B. Gilkey.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">London :</subfield><subfield code="b">Imperial College Press ;</subfield><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">Distributed byWorld Scientific Pub.,</subfield><subfield code="c">©2007.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 376 pages).</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">ICP advanced texts in mathematics ;</subfield><subfield code="v">v. 2</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 361-372) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pseudo-Riemannian geometry is an active research field not only in differential geometry but also in mathematical physics where the higher signature geometries play a role in brane theory. An essential reference tool for research mathematicians and physicists, this book also serves as a useful introduction to students entering this active and rapidly growing field. The author presents a comprehensive treatment of several aspects of pseudo-Riemannian geometry, including the spectral geometry of the curvature tensor, curvature homogeneity, and Stanilov?Tsankov?Videv theory.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">The geometry of the Riemann curvature tensor -- Curvature homogeneous generalized plane wave manifolds -- Other pseudo-Riemannian manifolds -- The curvature tensor -- Complex Osserman algebraic curvature tensors -- Stanilov-Tsankov theory.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Riemannian manifolds.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85114045</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Curvature.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85034911</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry, Differential.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054146</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés de Riemann.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Courbure.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie différentielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">Differential.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Curvature</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Differential</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemannian manifolds</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Gilkey, Peter B.</subfield><subfield code="t">Geometry of curvature homogeneous pseudo-Riemannian manifolds.</subfield><subfield code="d">London : Imperial College Press ; Hackensack, NJ : Distributed byWorld Scientific Pub., ©2007</subfield><subfield code="w">(DLC) 2007281635</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Imperial College Press advanced texts in mathematics ;</subfield><subfield code="v">v. 2.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2007087803</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203918</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24683036</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10188778</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">203918</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2706152</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn648316953 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:17:21Z |
institution | BVB |
isbn | 1860948588 9781860948589 1281120677 9781281120670 9786611120672 661112067X |
language | English |
oclc_num | 648316953 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 376 pages). |
psigel | ZDB-4-EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Imperial College Press ; Distributed byWorld Scientific Pub., |
record_format | marc |
series | Imperial College Press advanced texts in mathematics ; |
series2 | ICP advanced texts in mathematics ; |
spelling | Gilkey, Peter B. The geometry of curvature homogeneous pseudo-Riemannian manifolds / Peter B. Gilkey. London : Imperial College Press ; Hackensack, NJ : Distributed byWorld Scientific Pub., ©2007. 1 online resource (xii, 376 pages). text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda ICP advanced texts in mathematics ; v. 2 Includes bibliographical references (pages 361-372) and index. Print version record. Pseudo-Riemannian geometry is an active research field not only in differential geometry but also in mathematical physics where the higher signature geometries play a role in brane theory. An essential reference tool for research mathematicians and physicists, this book also serves as a useful introduction to students entering this active and rapidly growing field. The author presents a comprehensive treatment of several aspects of pseudo-Riemannian geometry, including the spectral geometry of the curvature tensor, curvature homogeneity, and Stanilov?Tsankov?Videv theory. The geometry of the Riemann curvature tensor -- Curvature homogeneous generalized plane wave manifolds -- Other pseudo-Riemannian manifolds -- The curvature tensor -- Complex Osserman algebraic curvature tensors -- Stanilov-Tsankov theory. English. Riemannian manifolds. http://id.loc.gov/authorities/subjects/sh85114045 Curvature. http://id.loc.gov/authorities/subjects/sh85034911 Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Variétés de Riemann. Courbure. Géométrie différentielle. MATHEMATICS Geometry Differential. bisacsh Curvature fast Geometry, Differential fast Riemannian manifolds fast Print version: Gilkey, Peter B. Geometry of curvature homogeneous pseudo-Riemannian manifolds. London : Imperial College Press ; Hackensack, NJ : Distributed byWorld Scientific Pub., ©2007 (DLC) 2007281635 Imperial College Press advanced texts in mathematics ; v. 2. http://id.loc.gov/authorities/names/no2007087803 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203918 Volltext |
spellingShingle | Gilkey, Peter B. The geometry of curvature homogeneous pseudo-Riemannian manifolds / Imperial College Press advanced texts in mathematics ; The geometry of the Riemann curvature tensor -- Curvature homogeneous generalized plane wave manifolds -- Other pseudo-Riemannian manifolds -- The curvature tensor -- Complex Osserman algebraic curvature tensors -- Stanilov-Tsankov theory. Riemannian manifolds. http://id.loc.gov/authorities/subjects/sh85114045 Curvature. http://id.loc.gov/authorities/subjects/sh85034911 Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Variétés de Riemann. Courbure. Géométrie différentielle. MATHEMATICS Geometry Differential. bisacsh Curvature fast Geometry, Differential fast Riemannian manifolds fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85114045 http://id.loc.gov/authorities/subjects/sh85034911 http://id.loc.gov/authorities/subjects/sh85054146 |
title | The geometry of curvature homogeneous pseudo-Riemannian manifolds / |
title_auth | The geometry of curvature homogeneous pseudo-Riemannian manifolds / |
title_exact_search | The geometry of curvature homogeneous pseudo-Riemannian manifolds / |
title_full | The geometry of curvature homogeneous pseudo-Riemannian manifolds / Peter B. Gilkey. |
title_fullStr | The geometry of curvature homogeneous pseudo-Riemannian manifolds / Peter B. Gilkey. |
title_full_unstemmed | The geometry of curvature homogeneous pseudo-Riemannian manifolds / Peter B. Gilkey. |
title_short | The geometry of curvature homogeneous pseudo-Riemannian manifolds / |
title_sort | geometry of curvature homogeneous pseudo riemannian manifolds |
topic | Riemannian manifolds. http://id.loc.gov/authorities/subjects/sh85114045 Curvature. http://id.loc.gov/authorities/subjects/sh85034911 Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Variétés de Riemann. Courbure. Géométrie différentielle. MATHEMATICS Geometry Differential. bisacsh Curvature fast Geometry, Differential fast Riemannian manifolds fast |
topic_facet | Riemannian manifolds. Curvature. Geometry, Differential. Variétés de Riemann. Courbure. Géométrie différentielle. MATHEMATICS Geometry Differential. Curvature Geometry, Differential Riemannian manifolds |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203918 |
work_keys_str_mv | AT gilkeypeterb thegeometryofcurvaturehomogeneouspseudoriemannianmanifolds AT gilkeypeterb geometryofcurvaturehomogeneouspseudoriemannianmanifolds |