Recent progress in conformal geometry /:
This book presents a new front of research in conformal geometry, on sign-changing Yamabe-type problems and contact form geometry in particular. New ground is broken with the establishment of a Morse lemma at infinity for sign-changing Yamabe-type problems. This family of problems, thought to be out...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London :
Imperial College Press,
©2007.
|
Schriftenreihe: | Imperial College Press advanced texts in mathematics ;
v. 1. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book presents a new front of research in conformal geometry, on sign-changing Yamabe-type problems and contact form geometry in particular. New ground is broken with the establishment of a Morse lemma at infinity for sign-changing Yamabe-type problems. This family of problems, thought to be out of reach a few years ago, becomes a family of problems which can be studied: the book lays the foundation for a program of research in this direction. In contact form geometry, a cousin of symplectic geometry, the authors prove a fundamental result of compactness in a variational problem on Legrend. |
Beschreibung: | 1 online resource (xii, 507 pages :) |
Bibliographie: | Includes bibliographical references (page 199, 509). |
ISBN: | 9781860948602 186094860X 1281120650 9781281120656 9786611120658 6611120653 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn648316864 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 080109s2007 enka ob 000 0 eng d | ||
010 | |z 2008353423 | ||
040 | |a E7B |b eng |e pn |c E7B |d OCLCQ |d N$T |d YDXCP |d BTCTA |d IDEBK |d OCLCQ |d MERUC |d OCLCQ |d OCLCF |d OCLCQ |d OCLCO |d OCLCQ |d AZK |d COCUF |d AGLDB |d MOR |d PIFAG |d OCLCQ |d U3W |d STF |d WRM |d OCLCQ |d VTS |d INT |d VT2 |d OCLCQ |d WYU |d OCLCQ |d UKAHL |d HS0 |d UKCRE |d VLY |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
015 | |a GBA754697. |2 bnb | ||
015 | |a GBA754697 |2 bnb | ||
016 | 7 | |z 013787304 |2 Uk | |
016 | 7 | |z 013787304. |2 Uk | |
019 | |a 173485436 |a 173819182 |a 179792059 |a 961531683 |a 962603898 |a 988512885 |a 992087600 |a 1037797157 |a 1038618518 |a 1055392827 |a 1064106167 |a 1081297562 |a 1153504231 |a 1162008964 |a 1241782116 |a 1290037257 |a 1300683190 | ||
020 | |a 9781860948602 |q (electronic bk.) | ||
020 | |a 186094860X |q (electronic bk.) | ||
020 | |z 9781860947728 | ||
020 | |z 1860947727 | ||
020 | |a 1281120650 | ||
020 | |a 9781281120656 | ||
020 | |a 9786611120658 | ||
020 | |a 6611120653 | ||
035 | |a (OCoLC)648316864 |z (OCoLC)173485436 |z (OCoLC)173819182 |z (OCoLC)179792059 |z (OCoLC)961531683 |z (OCoLC)962603898 |z (OCoLC)988512885 |z (OCoLC)992087600 |z (OCoLC)1037797157 |z (OCoLC)1038618518 |z (OCoLC)1055392827 |z (OCoLC)1064106167 |z (OCoLC)1081297562 |z (OCoLC)1153504231 |z (OCoLC)1162008964 |z (OCoLC)1241782116 |z (OCoLC)1290037257 |z (OCoLC)1300683190 | ||
050 | 4 | |a QA609 |b .B34 2007eb | |
072 | 7 | |a MAT |x 012030 |2 bisacsh | |
082 | 7 | |a 516.36 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Bahri, Abbas. |0 http://id.loc.gov/authorities/names/nr98015565 | |
245 | 1 | 0 | |a Recent progress in conformal geometry / |c Abbas Bahri, Yongzhong Xu. |
260 | |a London : |b Imperial College Press, |c ©2007. | ||
300 | |a 1 online resource (xii, 507 pages :) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
490 | 1 | |a Imperial College Press advanced texts in mathematics ; |v vol. 1 | |
504 | |a Includes bibliographical references (page 199, 509). | ||
588 | 0 | |a Print version record. | |
520 | |a This book presents a new front of research in conformal geometry, on sign-changing Yamabe-type problems and contact form geometry in particular. New ground is broken with the establishment of a Morse lemma at infinity for sign-changing Yamabe-type problems. This family of problems, thought to be out of reach a few years ago, becomes a family of problems which can be studied: the book lays the foundation for a program of research in this direction. In contact form geometry, a cousin of symplectic geometry, the authors prove a fundamental result of compactness in a variational problem on Legrend. | ||
505 | 0 | |a Preface A. Bahri and Y. Xu; Contents; 1. Sign-Changing Yamabe-Type Problems; 1.1 General Introduction; 1.2 Results and Conditions; 1.3 Conjecture 2 and Sketch of the Proof of Theorem 1; Outline; 1.4 The Difference of Topology; 1.5 Open Problems; 1.6 Preliminary Estimates and Expansions, the Principal Terms; 1.7 Preliminary Estimates; 1.8 Proof of the Morse Lemma at Infinity When the Concentrations are Comparable; 1.9 Redirecting the Estimates, Estimates on -- ̄vi-H1; Bibliography; 2. Contact Form Geometry; 2.1 General Introduction | |
505 | 8 | |a 2.2 On the Dynamics of a Contact Structure along a Vector Field of its Kernel2.3 Appendix 1; 2.4 The Normal Form of (a, v) Near an Attractive Periodic Orbit of v; 2.5 Compactness; 2.6 Transmutations; 2.7 On the Morse Index of a Functional Arising in Contact Form Geometry; 2.8 Calculation of ?2J (x ).u2.u2; 2.9 Calculation of ?2J (x ).u2.u4; 2.10 Other Second Order Derivatives; 2.11Appendix; Bibliography | |
546 | |a English. | ||
650 | 0 | |a Conformal geometry. |0 http://id.loc.gov/authorities/subjects/sh89002613 | |
650 | 6 | |a Géométrie conforme. | |
650 | 7 | |a MATHEMATICS |x Geometry |x Differential. |2 bisacsh | |
650 | 7 | |a Conformal geometry |2 fast | |
700 | 1 | |a Xu, Yongzhong. |0 http://id.loc.gov/authorities/names/no2007030863 | |
758 | |i has work: |a Recent progress in conformal geometry (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFQW4qM64Y4hRVDqY3kQ4q |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Bahri, Abbas. |t Recent progress in conformal geometry. |d London : Imperial College Press, ©2007 |w (DLC) 2008353423 |
830 | 0 | |a Imperial College Press advanced texts in mathematics ; |v v. 1. |0 http://id.loc.gov/authorities/names/no2007087803 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203917 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203917 |3 Volltext | |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH24683038 | ||
938 | |a Baker and Taylor |b BTCP |n BK0007491610 | ||
938 | |a ebrary |b EBRY |n ebr10188752 | ||
938 | |a EBSCOhost |b EBSC |n 203917 | ||
938 | |a YBP Library Services |b YANK |n 2706154 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn648316864 |
---|---|
_version_ | 1813903373826523136 |
adam_text | |
any_adam_object | |
author | Bahri, Abbas |
author2 | Xu, Yongzhong |
author2_role | |
author2_variant | y x yx |
author_GND | http://id.loc.gov/authorities/names/nr98015565 http://id.loc.gov/authorities/names/no2007030863 |
author_facet | Bahri, Abbas Xu, Yongzhong |
author_role | |
author_sort | Bahri, Abbas |
author_variant | a b ab |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA609 |
callnumber-raw | QA609 .B34 2007eb |
callnumber-search | QA609 .B34 2007eb |
callnumber-sort | QA 3609 B34 42007EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preface A. Bahri and Y. Xu; Contents; 1. Sign-Changing Yamabe-Type Problems; 1.1 General Introduction; 1.2 Results and Conditions; 1.3 Conjecture 2 and Sketch of the Proof of Theorem 1; Outline; 1.4 The Difference of Topology; 1.5 Open Problems; 1.6 Preliminary Estimates and Expansions, the Principal Terms; 1.7 Preliminary Estimates; 1.8 Proof of the Morse Lemma at Infinity When the Concentrations are Comparable; 1.9 Redirecting the Estimates, Estimates on -- ̄vi-H1; Bibliography; 2. Contact Form Geometry; 2.1 General Introduction 2.2 On the Dynamics of a Contact Structure along a Vector Field of its Kernel2.3 Appendix 1; 2.4 The Normal Form of (a, v) Near an Attractive Periodic Orbit of v; 2.5 Compactness; 2.6 Transmutations; 2.7 On the Morse Index of a Functional Arising in Contact Form Geometry; 2.8 Calculation of ?2J (x ).u2.u2; 2.9 Calculation of ?2J (x ).u2.u4; 2.10 Other Second Order Derivatives; 2.11Appendix; Bibliography |
ctrlnum | (OCoLC)648316864 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04984cam a2200709 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn648316864</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">080109s2007 enka ob 000 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2008353423</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">BTCTA</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">HS0</subfield><subfield code="d">UKCRE</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA754697.</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA754697</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="z">013787304</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="z">013787304.</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">173485436</subfield><subfield code="a">173819182</subfield><subfield code="a">179792059</subfield><subfield code="a">961531683</subfield><subfield code="a">962603898</subfield><subfield code="a">988512885</subfield><subfield code="a">992087600</subfield><subfield code="a">1037797157</subfield><subfield code="a">1038618518</subfield><subfield code="a">1055392827</subfield><subfield code="a">1064106167</subfield><subfield code="a">1081297562</subfield><subfield code="a">1153504231</subfield><subfield code="a">1162008964</subfield><subfield code="a">1241782116</subfield><subfield code="a">1290037257</subfield><subfield code="a">1300683190</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781860948602</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">186094860X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781860947728</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1860947727</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281120650</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281120656</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611120658</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611120653</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)648316864</subfield><subfield code="z">(OCoLC)173485436</subfield><subfield code="z">(OCoLC)173819182</subfield><subfield code="z">(OCoLC)179792059</subfield><subfield code="z">(OCoLC)961531683</subfield><subfield code="z">(OCoLC)962603898</subfield><subfield code="z">(OCoLC)988512885</subfield><subfield code="z">(OCoLC)992087600</subfield><subfield code="z">(OCoLC)1037797157</subfield><subfield code="z">(OCoLC)1038618518</subfield><subfield code="z">(OCoLC)1055392827</subfield><subfield code="z">(OCoLC)1064106167</subfield><subfield code="z">(OCoLC)1081297562</subfield><subfield code="z">(OCoLC)1153504231</subfield><subfield code="z">(OCoLC)1162008964</subfield><subfield code="z">(OCoLC)1241782116</subfield><subfield code="z">(OCoLC)1290037257</subfield><subfield code="z">(OCoLC)1300683190</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA609</subfield><subfield code="b">.B34 2007eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bahri, Abbas.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nr98015565</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Recent progress in conformal geometry /</subfield><subfield code="c">Abbas Bahri, Yongzhong Xu.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">London :</subfield><subfield code="b">Imperial College Press,</subfield><subfield code="c">©2007.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 507 pages :)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Imperial College Press advanced texts in mathematics ;</subfield><subfield code="v">vol. 1</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (page 199, 509).</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents a new front of research in conformal geometry, on sign-changing Yamabe-type problems and contact form geometry in particular. New ground is broken with the establishment of a Morse lemma at infinity for sign-changing Yamabe-type problems. This family of problems, thought to be out of reach a few years ago, becomes a family of problems which can be studied: the book lays the foundation for a program of research in this direction. In contact form geometry, a cousin of symplectic geometry, the authors prove a fundamental result of compactness in a variational problem on Legrend.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface A. Bahri and Y. Xu; Contents; 1. Sign-Changing Yamabe-Type Problems; 1.1 General Introduction; 1.2 Results and Conditions; 1.3 Conjecture 2 and Sketch of the Proof of Theorem 1; Outline; 1.4 The Difference of Topology; 1.5 Open Problems; 1.6 Preliminary Estimates and Expansions, the Principal Terms; 1.7 Preliminary Estimates; 1.8 Proof of the Morse Lemma at Infinity When the Concentrations are Comparable; 1.9 Redirecting the Estimates, Estimates on -- ̄vi-H1; Bibliography; 2. Contact Form Geometry; 2.1 General Introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.2 On the Dynamics of a Contact Structure along a Vector Field of its Kernel2.3 Appendix 1; 2.4 The Normal Form of (a, v) Near an Attractive Periodic Orbit of v; 2.5 Compactness; 2.6 Transmutations; 2.7 On the Morse Index of a Functional Arising in Contact Form Geometry; 2.8 Calculation of ?2J (x ).u2.u2; 2.9 Calculation of ?2J (x ).u2.u4; 2.10 Other Second Order Derivatives; 2.11Appendix; Bibliography</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Conformal geometry.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh89002613</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie conforme.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">Differential.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Conformal geometry</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Yongzhong.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2007030863</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Recent progress in conformal geometry (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFQW4qM64Y4hRVDqY3kQ4q</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Bahri, Abbas.</subfield><subfield code="t">Recent progress in conformal geometry.</subfield><subfield code="d">London : Imperial College Press, ©2007</subfield><subfield code="w">(DLC) 2008353423</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Imperial College Press advanced texts in mathematics ;</subfield><subfield code="v">v. 1.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2007087803</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203917</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203917</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24683038</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Baker and Taylor</subfield><subfield code="b">BTCP</subfield><subfield code="n">BK0007491610</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10188752</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">203917</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2706154</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn648316864 |
illustrated | Illustrated |
indexdate | 2024-10-25T16:17:39Z |
institution | BVB |
isbn | 9781860948602 186094860X 1281120650 9781281120656 9786611120658 6611120653 |
language | English |
oclc_num | 648316864 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (xii, 507 pages :) |
psigel | ZDB-4-EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Imperial College Press, |
record_format | marc |
series | Imperial College Press advanced texts in mathematics ; |
series2 | Imperial College Press advanced texts in mathematics ; |
spelling | Bahri, Abbas. http://id.loc.gov/authorities/names/nr98015565 Recent progress in conformal geometry / Abbas Bahri, Yongzhong Xu. London : Imperial College Press, ©2007. 1 online resource (xii, 507 pages :) text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda Imperial College Press advanced texts in mathematics ; vol. 1 Includes bibliographical references (page 199, 509). Print version record. This book presents a new front of research in conformal geometry, on sign-changing Yamabe-type problems and contact form geometry in particular. New ground is broken with the establishment of a Morse lemma at infinity for sign-changing Yamabe-type problems. This family of problems, thought to be out of reach a few years ago, becomes a family of problems which can be studied: the book lays the foundation for a program of research in this direction. In contact form geometry, a cousin of symplectic geometry, the authors prove a fundamental result of compactness in a variational problem on Legrend. Preface A. Bahri and Y. Xu; Contents; 1. Sign-Changing Yamabe-Type Problems; 1.1 General Introduction; 1.2 Results and Conditions; 1.3 Conjecture 2 and Sketch of the Proof of Theorem 1; Outline; 1.4 The Difference of Topology; 1.5 Open Problems; 1.6 Preliminary Estimates and Expansions, the Principal Terms; 1.7 Preliminary Estimates; 1.8 Proof of the Morse Lemma at Infinity When the Concentrations are Comparable; 1.9 Redirecting the Estimates, Estimates on -- ̄vi-H1; Bibliography; 2. Contact Form Geometry; 2.1 General Introduction 2.2 On the Dynamics of a Contact Structure along a Vector Field of its Kernel2.3 Appendix 1; 2.4 The Normal Form of (a, v) Near an Attractive Periodic Orbit of v; 2.5 Compactness; 2.6 Transmutations; 2.7 On the Morse Index of a Functional Arising in Contact Form Geometry; 2.8 Calculation of ?2J (x ).u2.u2; 2.9 Calculation of ?2J (x ).u2.u4; 2.10 Other Second Order Derivatives; 2.11Appendix; Bibliography English. Conformal geometry. http://id.loc.gov/authorities/subjects/sh89002613 Géométrie conforme. MATHEMATICS Geometry Differential. bisacsh Conformal geometry fast Xu, Yongzhong. http://id.loc.gov/authorities/names/no2007030863 has work: Recent progress in conformal geometry (Text) https://id.oclc.org/worldcat/entity/E39PCFQW4qM64Y4hRVDqY3kQ4q https://id.oclc.org/worldcat/ontology/hasWork Print version: Bahri, Abbas. Recent progress in conformal geometry. London : Imperial College Press, ©2007 (DLC) 2008353423 Imperial College Press advanced texts in mathematics ; v. 1. http://id.loc.gov/authorities/names/no2007087803 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203917 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203917 Volltext |
spellingShingle | Bahri, Abbas Recent progress in conformal geometry / Imperial College Press advanced texts in mathematics ; Preface A. Bahri and Y. Xu; Contents; 1. Sign-Changing Yamabe-Type Problems; 1.1 General Introduction; 1.2 Results and Conditions; 1.3 Conjecture 2 and Sketch of the Proof of Theorem 1; Outline; 1.4 The Difference of Topology; 1.5 Open Problems; 1.6 Preliminary Estimates and Expansions, the Principal Terms; 1.7 Preliminary Estimates; 1.8 Proof of the Morse Lemma at Infinity When the Concentrations are Comparable; 1.9 Redirecting the Estimates, Estimates on -- ̄vi-H1; Bibliography; 2. Contact Form Geometry; 2.1 General Introduction 2.2 On the Dynamics of a Contact Structure along a Vector Field of its Kernel2.3 Appendix 1; 2.4 The Normal Form of (a, v) Near an Attractive Periodic Orbit of v; 2.5 Compactness; 2.6 Transmutations; 2.7 On the Morse Index of a Functional Arising in Contact Form Geometry; 2.8 Calculation of ?2J (x ).u2.u2; 2.9 Calculation of ?2J (x ).u2.u4; 2.10 Other Second Order Derivatives; 2.11Appendix; Bibliography Conformal geometry. http://id.loc.gov/authorities/subjects/sh89002613 Géométrie conforme. MATHEMATICS Geometry Differential. bisacsh Conformal geometry fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh89002613 |
title | Recent progress in conformal geometry / |
title_auth | Recent progress in conformal geometry / |
title_exact_search | Recent progress in conformal geometry / |
title_full | Recent progress in conformal geometry / Abbas Bahri, Yongzhong Xu. |
title_fullStr | Recent progress in conformal geometry / Abbas Bahri, Yongzhong Xu. |
title_full_unstemmed | Recent progress in conformal geometry / Abbas Bahri, Yongzhong Xu. |
title_short | Recent progress in conformal geometry / |
title_sort | recent progress in conformal geometry |
topic | Conformal geometry. http://id.loc.gov/authorities/subjects/sh89002613 Géométrie conforme. MATHEMATICS Geometry Differential. bisacsh Conformal geometry fast |
topic_facet | Conformal geometry. Géométrie conforme. MATHEMATICS Geometry Differential. Conformal geometry |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203917 |
work_keys_str_mv | AT bahriabbas recentprogressinconformalgeometry AT xuyongzhong recentprogressinconformalgeometry |