Differential geometry and lie groups for physicists /:
Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
2006.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate courses in physics, mathematics and engineering. |
Beschreibung: | 1 online resource (xv, 697 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 685-686)-and indexes. |
ISBN: | 9780511648656 0511648650 0511245211 9780511245213 0511244460 9780511244469 0511242964 9780511242960 1107164052 9781107164055 0511567677 9780511567674 0511755597 9780511755590 9780521187961 0521187966 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn607562056 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 100416s2006 enka ob 001 0 eng d | ||
010 | |z 2006299989 | ||
040 | |a N$T |b eng |e pn |c N$T |d EBLCP |d YDXCP |d AZU |d TEFOD |d OCLNG |d E7B |d NRU |d OCLCQ |d IDEBK |d OCLCQ |d REDDC |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCF |d OCLCQ |d AU@ |d TEFOD |d OCLCQ |d COO |d OCLCQ |d MERUC |d UAB |d OCLCQ |d OL$ |d OCLCQ |d VLY |d LUN |d MM9 |d UKAHL |d OCLCO |d QGK |d OCLCQ |d OCLCO |d OCLCQ |d INARC |d OCLCL |d SFB |d OCLCQ |d SXB | ||
015 | |a GBA647833 |2 bnb | ||
016 | 7 | |z 013470049 |2 Uk | |
019 | |a 124067053 |a 171124811 |a 180878189 |a 647613898 |a 741249176 |a 776973400 |a 780998925 |a 1162010753 |a 1170868393 |a 1171074862 |a 1171410600 |a 1241915392 |a 1259236099 |a 1413368723 | ||
020 | |a 9780511648656 |q (electronic bk.) | ||
020 | |a 0511648650 |q (electronic bk.) | ||
020 | |a 0511245211 |q (electronic bk. ; |q Adobe Reader) | ||
020 | |a 9780511245213 |q (electronic bk. ; |q Adobe Reader) | ||
020 | |a 0511244460 | ||
020 | |a 9780511244469 | ||
020 | |a 0511242964 |q (electronic bk. ; |q Adobe Reader) | ||
020 | |a 9780511242960 |q (electronic bk. ; |q Adobe Reader) | ||
020 | |z 0521845076 | ||
020 | |z 9780521845076 | ||
020 | |a 1107164052 | ||
020 | |a 9781107164055 | ||
020 | |a 0511567677 | ||
020 | |a 9780511567674 | ||
020 | |a 0511755597 | ||
020 | |a 9780511755590 | ||
020 | |a 9780521187961 |q (paperback) | ||
020 | |a 0521187966 | ||
035 | |a (OCoLC)607562056 |z (OCoLC)124067053 |z (OCoLC)171124811 |z (OCoLC)180878189 |z (OCoLC)647613898 |z (OCoLC)741249176 |z (OCoLC)776973400 |z (OCoLC)780998925 |z (OCoLC)1162010753 |z (OCoLC)1170868393 |z (OCoLC)1171074862 |z (OCoLC)1171410600 |z (OCoLC)1241915392 |z (OCoLC)1259236099 |z (OCoLC)1413368723 | ||
037 | |a 4A9098F5-C365-43D1-BBE8-C0435A618079 |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a QC20.7.D52 |b F43 2006eb | |
072 | 7 | |a SCI |x 040000 |2 bisacsh | |
072 | 7 | |a K |2 bicssc | |
082 | 7 | |a 530.15636 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Fecko, Marián. |0 http://id.loc.gov/authorities/names/nb2006025502 | |
245 | 1 | 0 | |a Differential geometry and lie groups for physicists / |c Marián Fecko. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 2006. | ||
300 | |a 1 online resource (xv, 697 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 685-686)-and indexes. | ||
505 | 0 | |a Cover -- Title -- Copyright -- Contents -- Preface -- Introduction -- Chapter 1 The concept of a manifold -- 1.1 Topology and continuous maps -- 1.2 Classes of smoothness of maps of Cartesian spaces -- 1.3 Smooth structure, smooth manifold -- 1.4 Smooth maps of manifolds -- 1.5 A technical description of smooth surfaces in R -- Summary of Chapter 1 -- Chapter 2 Vector and tensor fields -- 2.1 Curves and functions on M -- 2.2 Tangent space, vectors and vector fields -- 2.3 Integral curves of a vector field -- 2.4 Linear algebra of tensors (multilinear algebra) -- 2.5 Tensor fields on M -- 2.6 Metric tensor on a manifold -- Summary of Chapter 2 -- Chapter 3 Mappings of tensors induced by mappings of manifolds -- 3.1 Mappings of tensors and tensor fields -- 3.2 Induced metric tensor -- Summary of Chapter 3 -- Chapter 4 Lie derivative -- 4.1 Local flow of a vector field -- 4.2 Lie transport and Lie derivative -- 4.3 Properties of the Lie derivative -- 4.4 Exponent of the Lie derivative -- 4.5 Geometrical interpretation of the commutator [V, W], non-holonomic frames -- 4.6 Isometries and conformal transformations, Killing equations -- Summary of Chapter 4 -- Chapter 5 Exterior algebra -- 5.1 Motivation: volumes of parallelepipeds -- 5.2 p-forms and exterior product -- 5.3 Exterior algebra Lambda L -- 5.4 Interior product iv -- 5.5 Orientation in L -- 5.6 Determinant and generalized Kronecker symbols -- 5.7 The metric volume form -- 5.8 Hodge (duality) operator -- Summary of Chapter 5 -- Chapter 6 Differential calculus of forms -- 6.1 Forms on a manifold -- 6.2 Exterior derivative -- 6.3 Orientability, Hodge operator and volume form on M -- 6.4 V-valued forms -- Summary of Chapter 6 -- Chapter 7 Integral calculus of forms -- 7.1 Quantities under the integral sign regarded as differential forms -- 7.2 Euclidean simplices and chains -- 7.3 Simplices and chains on a manifold -- 7.4 Integral of a form over a chain on a manifold -- 7.5 Stokes' theorem -- 7.6 Integral over a domain on an orientable manifold -- 7.7 Integral over a domain on an orientable Riemannian manifold -- 7.8 Integral and maps of manifolds -- Summary of Chapter 7 -- Chapter 8 Particular cases and applications of Stokes' theorem -- 8.1 Elementary situations -- 8.2 Divergence of a vector field and Gauss' theorem -- 8.3 Codifferential and Laplace-deRham operator -- 8.4 Green identities -- 8.5 Vector analysis in E -- 8.6 Functions of complex variables -- Summary of Chapter 8 -- Chapter 9 Poincaré lemma and cohomologies -- 9.1 Simple examples of closed non-exact forms -- 9.2 Construction of a potential on contractible manifolds -- 9.3 Cohomologies and deRham complex -- Summary of Chapter 9 -- Chapter 10 Lie groups: basic facts -- 10.1 Automorphisms of various structures and groups -- 10.2 Lie groups: basic concepts -- Summary of Chapter 10 -- Chapter 11 Differential geometry on Lie groups -- 11.1 Left-invariant tensor fields on a Lie group -- 11.2 Lie algebra G of a group G -- 11.3 One-parameter subgroups -- 11.4 Exponential map -- 11.5 Derived homomorphism of Lie algebras -- 11.6 Invariant integral on G -- 11.7 Matrix Lie groups: enjoy simplifications -- Summary of Chapter 11 -- Chapter 12 Representations of Lie groups and Lie algebras -- 12.1 Basic concept. | |
520 | |a Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate courses in physics, mathematics and engineering. | ||
588 | 0 | |a Print version record. | |
546 | |a English. | ||
650 | 0 | |a Geometry, Differential. |0 http://id.loc.gov/authorities/subjects/sh85054146 | |
650 | 0 | |a Lie groups. |0 http://id.loc.gov/authorities/subjects/sh85076786 | |
650 | 0 | |a Mathematical physics. |0 http://id.loc.gov/authorities/subjects/sh85082129 | |
650 | 6 | |a Géométrie différentielle. | |
650 | 6 | |a Groupes de Lie. | |
650 | 6 | |a Physique mathématique. | |
650 | 7 | |a SCIENCE |x Physics |x Mathematical & Computational. |2 bisacsh | |
650 | 7 | |a Geometry, Differential |2 fast | |
650 | 7 | |a Lie groups |2 fast | |
650 | 7 | |a Mathematical physics |2 fast | |
655 | 4 | |a Electronic book. | |
758 | |i has work: |a Differential geometry and lie groups for physicists (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGQHp64wYCqHBX97ddP8yb |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Fecko, Marián. |t Differential geometry and lie groups for physicists. |d Cambridge ; New York : Cambridge University Press, 2006 |z 9780521845076 |w (DLC) 2006299989 |w (OCoLC)69022184 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=304524 |3 Volltext |
887 | |a ProductForm=DG |2 onix | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH13431632 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL274842 | ||
938 | |a ebrary |b EBRY |n ebr10150279 | ||
938 | |a EBSCOhost |b EBSC |n 304524 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 183647 | ||
938 | |a YBP Library Services |b YANK |n 2619927 | ||
938 | |a YBP Library Services |b YANK |n 3289329 | ||
938 | |a YBP Library Services |b YANK |n 2592481 | ||
938 | |a Internet Archive |b INAR |n differentialgeom0000feck | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn607562056 |
---|---|
_version_ | 1816881716208336897 |
adam_text | |
any_adam_object | |
author | Fecko, Marián |
author_GND | http://id.loc.gov/authorities/names/nb2006025502 |
author_facet | Fecko, Marián |
author_role | |
author_sort | Fecko, Marián |
author_variant | m f mf |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20.7.D52 F43 2006eb |
callnumber-search | QC20.7.D52 F43 2006eb |
callnumber-sort | QC 220.7 D52 F43 42006EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Cover -- Title -- Copyright -- Contents -- Preface -- Introduction -- Chapter 1 The concept of a manifold -- 1.1 Topology and continuous maps -- 1.2 Classes of smoothness of maps of Cartesian spaces -- 1.3 Smooth structure, smooth manifold -- 1.4 Smooth maps of manifolds -- 1.5 A technical description of smooth surfaces in R -- Summary of Chapter 1 -- Chapter 2 Vector and tensor fields -- 2.1 Curves and functions on M -- 2.2 Tangent space, vectors and vector fields -- 2.3 Integral curves of a vector field -- 2.4 Linear algebra of tensors (multilinear algebra) -- 2.5 Tensor fields on M -- 2.6 Metric tensor on a manifold -- Summary of Chapter 2 -- Chapter 3 Mappings of tensors induced by mappings of manifolds -- 3.1 Mappings of tensors and tensor fields -- 3.2 Induced metric tensor -- Summary of Chapter 3 -- Chapter 4 Lie derivative -- 4.1 Local flow of a vector field -- 4.2 Lie transport and Lie derivative -- 4.3 Properties of the Lie derivative -- 4.4 Exponent of the Lie derivative -- 4.5 Geometrical interpretation of the commutator [V, W], non-holonomic frames -- 4.6 Isometries and conformal transformations, Killing equations -- Summary of Chapter 4 -- Chapter 5 Exterior algebra -- 5.1 Motivation: volumes of parallelepipeds -- 5.2 p-forms and exterior product -- 5.3 Exterior algebra Lambda L -- 5.4 Interior product iv -- 5.5 Orientation in L -- 5.6 Determinant and generalized Kronecker symbols -- 5.7 The metric volume form -- 5.8 Hodge (duality) operator -- Summary of Chapter 5 -- Chapter 6 Differential calculus of forms -- 6.1 Forms on a manifold -- 6.2 Exterior derivative -- 6.3 Orientability, Hodge operator and volume form on M -- 6.4 V-valued forms -- Summary of Chapter 6 -- Chapter 7 Integral calculus of forms -- 7.1 Quantities under the integral sign regarded as differential forms -- 7.2 Euclidean simplices and chains -- 7.3 Simplices and chains on a manifold -- 7.4 Integral of a form over a chain on a manifold -- 7.5 Stokes' theorem -- 7.6 Integral over a domain on an orientable manifold -- 7.7 Integral over a domain on an orientable Riemannian manifold -- 7.8 Integral and maps of manifolds -- Summary of Chapter 7 -- Chapter 8 Particular cases and applications of Stokes' theorem -- 8.1 Elementary situations -- 8.2 Divergence of a vector field and Gauss' theorem -- 8.3 Codifferential and Laplace-deRham operator -- 8.4 Green identities -- 8.5 Vector analysis in E -- 8.6 Functions of complex variables -- Summary of Chapter 8 -- Chapter 9 Poincaré lemma and cohomologies -- 9.1 Simple examples of closed non-exact forms -- 9.2 Construction of a potential on contractible manifolds -- 9.3 Cohomologies and deRham complex -- Summary of Chapter 9 -- Chapter 10 Lie groups: basic facts -- 10.1 Automorphisms of various structures and groups -- 10.2 Lie groups: basic concepts -- Summary of Chapter 10 -- Chapter 11 Differential geometry on Lie groups -- 11.1 Left-invariant tensor fields on a Lie group -- 11.2 Lie algebra G of a group G -- 11.3 One-parameter subgroups -- 11.4 Exponential map -- 11.5 Derived homomorphism of Lie algebras -- 11.6 Invariant integral on G -- 11.7 Matrix Lie groups: enjoy simplifications -- Summary of Chapter 11 -- Chapter 12 Representations of Lie groups and Lie algebras -- 12.1 Basic concept. |
ctrlnum | (OCoLC)607562056 |
dewey-full | 530.15636 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15636 |
dewey-search | 530.15636 |
dewey-sort | 3530.15636 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07915cam a2200901 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn607562056</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">100416s2006 enka ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2006299989</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">YDXCP</subfield><subfield code="d">AZU</subfield><subfield code="d">TEFOD</subfield><subfield code="d">OCLNG</subfield><subfield code="d">E7B</subfield><subfield code="d">NRU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">TEFOD</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OL$</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VLY</subfield><subfield code="d">LUN</subfield><subfield code="d">MM9</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SXB</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA647833</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="z">013470049</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">124067053</subfield><subfield code="a">171124811</subfield><subfield code="a">180878189</subfield><subfield code="a">647613898</subfield><subfield code="a">741249176</subfield><subfield code="a">776973400</subfield><subfield code="a">780998925</subfield><subfield code="a">1162010753</subfield><subfield code="a">1170868393</subfield><subfield code="a">1171074862</subfield><subfield code="a">1171410600</subfield><subfield code="a">1241915392</subfield><subfield code="a">1259236099</subfield><subfield code="a">1413368723</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511648656</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511648650</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511245211</subfield><subfield code="q">(electronic bk. ;</subfield><subfield code="q">Adobe Reader)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511245213</subfield><subfield code="q">(electronic bk. ;</subfield><subfield code="q">Adobe Reader)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511244460</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511244469</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511242964</subfield><subfield code="q">(electronic bk. ;</subfield><subfield code="q">Adobe Reader)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511242960</subfield><subfield code="q">(electronic bk. ;</subfield><subfield code="q">Adobe Reader)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521845076</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521845076</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107164052</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107164055</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511567677</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511567674</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511755597</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511755590</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521187961</subfield><subfield code="q">(paperback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521187966</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)607562056</subfield><subfield code="z">(OCoLC)124067053</subfield><subfield code="z">(OCoLC)171124811</subfield><subfield code="z">(OCoLC)180878189</subfield><subfield code="z">(OCoLC)647613898</subfield><subfield code="z">(OCoLC)741249176</subfield><subfield code="z">(OCoLC)776973400</subfield><subfield code="z">(OCoLC)780998925</subfield><subfield code="z">(OCoLC)1162010753</subfield><subfield code="z">(OCoLC)1170868393</subfield><subfield code="z">(OCoLC)1171074862</subfield><subfield code="z">(OCoLC)1171410600</subfield><subfield code="z">(OCoLC)1241915392</subfield><subfield code="z">(OCoLC)1259236099</subfield><subfield code="z">(OCoLC)1413368723</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">4A9098F5-C365-43D1-BBE8-C0435A618079</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC20.7.D52</subfield><subfield code="b">F43 2006eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">K</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.15636</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fecko, Marián.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2006025502</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential geometry and lie groups for physicists /</subfield><subfield code="c">Marián Fecko.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2006.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 697 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 685-686)-and indexes.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Title -- Copyright -- Contents -- Preface -- Introduction -- Chapter 1 The concept of a manifold -- 1.1 Topology and continuous maps -- 1.2 Classes of smoothness of maps of Cartesian spaces -- 1.3 Smooth structure, smooth manifold -- 1.4 Smooth maps of manifolds -- 1.5 A technical description of smooth surfaces in R -- Summary of Chapter 1 -- Chapter 2 Vector and tensor fields -- 2.1 Curves and functions on M -- 2.2 Tangent space, vectors and vector fields -- 2.3 Integral curves of a vector field -- 2.4 Linear algebra of tensors (multilinear algebra) -- 2.5 Tensor fields on M -- 2.6 Metric tensor on a manifold -- Summary of Chapter 2 -- Chapter 3 Mappings of tensors induced by mappings of manifolds -- 3.1 Mappings of tensors and tensor fields -- 3.2 Induced metric tensor -- Summary of Chapter 3 -- Chapter 4 Lie derivative -- 4.1 Local flow of a vector field -- 4.2 Lie transport and Lie derivative -- 4.3 Properties of the Lie derivative -- 4.4 Exponent of the Lie derivative -- 4.5 Geometrical interpretation of the commutator [V, W], non-holonomic frames -- 4.6 Isometries and conformal transformations, Killing equations -- Summary of Chapter 4 -- Chapter 5 Exterior algebra -- 5.1 Motivation: volumes of parallelepipeds -- 5.2 p-forms and exterior product -- 5.3 Exterior algebra Lambda L -- 5.4 Interior product iv -- 5.5 Orientation in L -- 5.6 Determinant and generalized Kronecker symbols -- 5.7 The metric volume form -- 5.8 Hodge (duality) operator -- Summary of Chapter 5 -- Chapter 6 Differential calculus of forms -- 6.1 Forms on a manifold -- 6.2 Exterior derivative -- 6.3 Orientability, Hodge operator and volume form on M -- 6.4 V-valued forms -- Summary of Chapter 6 -- Chapter 7 Integral calculus of forms -- 7.1 Quantities under the integral sign regarded as differential forms -- 7.2 Euclidean simplices and chains -- 7.3 Simplices and chains on a manifold -- 7.4 Integral of a form over a chain on a manifold -- 7.5 Stokes' theorem -- 7.6 Integral over a domain on an orientable manifold -- 7.7 Integral over a domain on an orientable Riemannian manifold -- 7.8 Integral and maps of manifolds -- Summary of Chapter 7 -- Chapter 8 Particular cases and applications of Stokes' theorem -- 8.1 Elementary situations -- 8.2 Divergence of a vector field and Gauss' theorem -- 8.3 Codifferential and Laplace-deRham operator -- 8.4 Green identities -- 8.5 Vector analysis in E -- 8.6 Functions of complex variables -- Summary of Chapter 8 -- Chapter 9 Poincaré lemma and cohomologies -- 9.1 Simple examples of closed non-exact forms -- 9.2 Construction of a potential on contractible manifolds -- 9.3 Cohomologies and deRham complex -- Summary of Chapter 9 -- Chapter 10 Lie groups: basic facts -- 10.1 Automorphisms of various structures and groups -- 10.2 Lie groups: basic concepts -- Summary of Chapter 10 -- Chapter 11 Differential geometry on Lie groups -- 11.1 Left-invariant tensor fields on a Lie group -- 11.2 Lie algebra G of a group G -- 11.3 One-parameter subgroups -- 11.4 Exponential map -- 11.5 Derived homomorphism of Lie algebras -- 11.6 Invariant integral on G -- 11.7 Matrix Lie groups: enjoy simplifications -- Summary of Chapter 11 -- Chapter 12 Representations of Lie groups and Lie algebras -- 12.1 Basic concept.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate courses in physics, mathematics and engineering.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry, Differential.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054146</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lie groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85076786</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical physics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082129</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie différentielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes de Lie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Physique mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Mathematical & Computational.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Differential</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic book.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Differential geometry and lie groups for physicists (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGQHp64wYCqHBX97ddP8yb</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Fecko, Marián.</subfield><subfield code="t">Differential geometry and lie groups for physicists.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 2006</subfield><subfield code="z">9780521845076</subfield><subfield code="w">(DLC) 2006299989</subfield><subfield code="w">(OCoLC)69022184</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=304524</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="887" ind1=" " ind2=" "><subfield code="a">ProductForm=DG</subfield><subfield code="2">onix</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH13431632</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL274842</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10150279</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">304524</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">183647</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2619927</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3289329</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2592481</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">differentialgeom0000feck</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic book. |
genre_facet | Electronic book. |
id | ZDB-4-EBA-ocn607562056 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:07Z |
institution | BVB |
isbn | 9780511648656 0511648650 0511245211 9780511245213 0511244460 9780511244469 0511242964 9780511242960 1107164052 9781107164055 0511567677 9780511567674 0511755597 9780511755590 9780521187961 0521187966 |
language | English |
oclc_num | 607562056 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xv, 697 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Cambridge University Press, |
record_format | marc |
spelling | Fecko, Marián. http://id.loc.gov/authorities/names/nb2006025502 Differential geometry and lie groups for physicists / Marián Fecko. Cambridge ; New York : Cambridge University Press, 2006. 1 online resource (xv, 697 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 685-686)-and indexes. Cover -- Title -- Copyright -- Contents -- Preface -- Introduction -- Chapter 1 The concept of a manifold -- 1.1 Topology and continuous maps -- 1.2 Classes of smoothness of maps of Cartesian spaces -- 1.3 Smooth structure, smooth manifold -- 1.4 Smooth maps of manifolds -- 1.5 A technical description of smooth surfaces in R -- Summary of Chapter 1 -- Chapter 2 Vector and tensor fields -- 2.1 Curves and functions on M -- 2.2 Tangent space, vectors and vector fields -- 2.3 Integral curves of a vector field -- 2.4 Linear algebra of tensors (multilinear algebra) -- 2.5 Tensor fields on M -- 2.6 Metric tensor on a manifold -- Summary of Chapter 2 -- Chapter 3 Mappings of tensors induced by mappings of manifolds -- 3.1 Mappings of tensors and tensor fields -- 3.2 Induced metric tensor -- Summary of Chapter 3 -- Chapter 4 Lie derivative -- 4.1 Local flow of a vector field -- 4.2 Lie transport and Lie derivative -- 4.3 Properties of the Lie derivative -- 4.4 Exponent of the Lie derivative -- 4.5 Geometrical interpretation of the commutator [V, W], non-holonomic frames -- 4.6 Isometries and conformal transformations, Killing equations -- Summary of Chapter 4 -- Chapter 5 Exterior algebra -- 5.1 Motivation: volumes of parallelepipeds -- 5.2 p-forms and exterior product -- 5.3 Exterior algebra Lambda L -- 5.4 Interior product iv -- 5.5 Orientation in L -- 5.6 Determinant and generalized Kronecker symbols -- 5.7 The metric volume form -- 5.8 Hodge (duality) operator -- Summary of Chapter 5 -- Chapter 6 Differential calculus of forms -- 6.1 Forms on a manifold -- 6.2 Exterior derivative -- 6.3 Orientability, Hodge operator and volume form on M -- 6.4 V-valued forms -- Summary of Chapter 6 -- Chapter 7 Integral calculus of forms -- 7.1 Quantities under the integral sign regarded as differential forms -- 7.2 Euclidean simplices and chains -- 7.3 Simplices and chains on a manifold -- 7.4 Integral of a form over a chain on a manifold -- 7.5 Stokes' theorem -- 7.6 Integral over a domain on an orientable manifold -- 7.7 Integral over a domain on an orientable Riemannian manifold -- 7.8 Integral and maps of manifolds -- Summary of Chapter 7 -- Chapter 8 Particular cases and applications of Stokes' theorem -- 8.1 Elementary situations -- 8.2 Divergence of a vector field and Gauss' theorem -- 8.3 Codifferential and Laplace-deRham operator -- 8.4 Green identities -- 8.5 Vector analysis in E -- 8.6 Functions of complex variables -- Summary of Chapter 8 -- Chapter 9 Poincaré lemma and cohomologies -- 9.1 Simple examples of closed non-exact forms -- 9.2 Construction of a potential on contractible manifolds -- 9.3 Cohomologies and deRham complex -- Summary of Chapter 9 -- Chapter 10 Lie groups: basic facts -- 10.1 Automorphisms of various structures and groups -- 10.2 Lie groups: basic concepts -- Summary of Chapter 10 -- Chapter 11 Differential geometry on Lie groups -- 11.1 Left-invariant tensor fields on a Lie group -- 11.2 Lie algebra G of a group G -- 11.3 One-parameter subgroups -- 11.4 Exponential map -- 11.5 Derived homomorphism of Lie algebras -- 11.6 Invariant integral on G -- 11.7 Matrix Lie groups: enjoy simplifications -- Summary of Chapter 11 -- Chapter 12 Representations of Lie groups and Lie algebras -- 12.1 Basic concept. Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate courses in physics, mathematics and engineering. Print version record. English. Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Lie groups. http://id.loc.gov/authorities/subjects/sh85076786 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Géométrie différentielle. Groupes de Lie. Physique mathématique. SCIENCE Physics Mathematical & Computational. bisacsh Geometry, Differential fast Lie groups fast Mathematical physics fast Electronic book. has work: Differential geometry and lie groups for physicists (Text) https://id.oclc.org/worldcat/entity/E39PCGQHp64wYCqHBX97ddP8yb https://id.oclc.org/worldcat/ontology/hasWork Print version: Fecko, Marián. Differential geometry and lie groups for physicists. Cambridge ; New York : Cambridge University Press, 2006 9780521845076 (DLC) 2006299989 (OCoLC)69022184 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=304524 Volltext ProductForm=DG onix |
spellingShingle | Fecko, Marián Differential geometry and lie groups for physicists / Cover -- Title -- Copyright -- Contents -- Preface -- Introduction -- Chapter 1 The concept of a manifold -- 1.1 Topology and continuous maps -- 1.2 Classes of smoothness of maps of Cartesian spaces -- 1.3 Smooth structure, smooth manifold -- 1.4 Smooth maps of manifolds -- 1.5 A technical description of smooth surfaces in R -- Summary of Chapter 1 -- Chapter 2 Vector and tensor fields -- 2.1 Curves and functions on M -- 2.2 Tangent space, vectors and vector fields -- 2.3 Integral curves of a vector field -- 2.4 Linear algebra of tensors (multilinear algebra) -- 2.5 Tensor fields on M -- 2.6 Metric tensor on a manifold -- Summary of Chapter 2 -- Chapter 3 Mappings of tensors induced by mappings of manifolds -- 3.1 Mappings of tensors and tensor fields -- 3.2 Induced metric tensor -- Summary of Chapter 3 -- Chapter 4 Lie derivative -- 4.1 Local flow of a vector field -- 4.2 Lie transport and Lie derivative -- 4.3 Properties of the Lie derivative -- 4.4 Exponent of the Lie derivative -- 4.5 Geometrical interpretation of the commutator [V, W], non-holonomic frames -- 4.6 Isometries and conformal transformations, Killing equations -- Summary of Chapter 4 -- Chapter 5 Exterior algebra -- 5.1 Motivation: volumes of parallelepipeds -- 5.2 p-forms and exterior product -- 5.3 Exterior algebra Lambda L -- 5.4 Interior product iv -- 5.5 Orientation in L -- 5.6 Determinant and generalized Kronecker symbols -- 5.7 The metric volume form -- 5.8 Hodge (duality) operator -- Summary of Chapter 5 -- Chapter 6 Differential calculus of forms -- 6.1 Forms on a manifold -- 6.2 Exterior derivative -- 6.3 Orientability, Hodge operator and volume form on M -- 6.4 V-valued forms -- Summary of Chapter 6 -- Chapter 7 Integral calculus of forms -- 7.1 Quantities under the integral sign regarded as differential forms -- 7.2 Euclidean simplices and chains -- 7.3 Simplices and chains on a manifold -- 7.4 Integral of a form over a chain on a manifold -- 7.5 Stokes' theorem -- 7.6 Integral over a domain on an orientable manifold -- 7.7 Integral over a domain on an orientable Riemannian manifold -- 7.8 Integral and maps of manifolds -- Summary of Chapter 7 -- Chapter 8 Particular cases and applications of Stokes' theorem -- 8.1 Elementary situations -- 8.2 Divergence of a vector field and Gauss' theorem -- 8.3 Codifferential and Laplace-deRham operator -- 8.4 Green identities -- 8.5 Vector analysis in E -- 8.6 Functions of complex variables -- Summary of Chapter 8 -- Chapter 9 Poincaré lemma and cohomologies -- 9.1 Simple examples of closed non-exact forms -- 9.2 Construction of a potential on contractible manifolds -- 9.3 Cohomologies and deRham complex -- Summary of Chapter 9 -- Chapter 10 Lie groups: basic facts -- 10.1 Automorphisms of various structures and groups -- 10.2 Lie groups: basic concepts -- Summary of Chapter 10 -- Chapter 11 Differential geometry on Lie groups -- 11.1 Left-invariant tensor fields on a Lie group -- 11.2 Lie algebra G of a group G -- 11.3 One-parameter subgroups -- 11.4 Exponential map -- 11.5 Derived homomorphism of Lie algebras -- 11.6 Invariant integral on G -- 11.7 Matrix Lie groups: enjoy simplifications -- Summary of Chapter 11 -- Chapter 12 Representations of Lie groups and Lie algebras -- 12.1 Basic concept. Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Lie groups. http://id.loc.gov/authorities/subjects/sh85076786 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Géométrie différentielle. Groupes de Lie. Physique mathématique. SCIENCE Physics Mathematical & Computational. bisacsh Geometry, Differential fast Lie groups fast Mathematical physics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85054146 http://id.loc.gov/authorities/subjects/sh85076786 http://id.loc.gov/authorities/subjects/sh85082129 |
title | Differential geometry and lie groups for physicists / |
title_auth | Differential geometry and lie groups for physicists / |
title_exact_search | Differential geometry and lie groups for physicists / |
title_full | Differential geometry and lie groups for physicists / Marián Fecko. |
title_fullStr | Differential geometry and lie groups for physicists / Marián Fecko. |
title_full_unstemmed | Differential geometry and lie groups for physicists / Marián Fecko. |
title_short | Differential geometry and lie groups for physicists / |
title_sort | differential geometry and lie groups for physicists |
topic | Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Lie groups. http://id.loc.gov/authorities/subjects/sh85076786 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Géométrie différentielle. Groupes de Lie. Physique mathématique. SCIENCE Physics Mathematical & Computational. bisacsh Geometry, Differential fast Lie groups fast Mathematical physics fast |
topic_facet | Geometry, Differential. Lie groups. Mathematical physics. Géométrie différentielle. Groupes de Lie. Physique mathématique. SCIENCE Physics Mathematical & Computational. Geometry, Differential Lie groups Mathematical physics Electronic book. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=304524 |
work_keys_str_mv | AT feckomarian differentialgeometryandliegroupsforphysicists |