Amazing traces of a Babylonian origin in Greek mathematics /:
The sequel to "Unexpected Links Between Egyptian and Babylonian Mathematics" (World Scientific, 2005), this book is based on the author's intensive and ground breaking studies of the long history of Mesopotamian mathematics, from the late 4th to the late 1st millennium BC. It is argue...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hackensack, N.J. ; London :
World Scientific,
©2007.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The sequel to "Unexpected Links Between Egyptian and Babylonian Mathematics" (World Scientific, 2005), this book is based on the author's intensive and ground breaking studies of the long history of Mesopotamian mathematics, from the late 4th to the late 1st millennium BC. It is argued in the book that several of the most famous Greek mathematicians appear to have been familiar with various aspects of Babylonian "metric algebra," a convenient name for an elaborate combination of geometry, metrology, and quadratic equations that is known from both Babylonian and pre-Babylonian mathematical clay tablets. The book's use of "metric algebra diagrams" in the Babylonian style, where the side lengths and areas of geometric figures are explicitly indicated, instead of wholly abstract "lettered diagrams" in the Greek style, is essential for an improved understanding of many interesting propositions and constructions in Greek mathematical works. The author's comparisons with Babylonian mathematics also lead to new answers to some important open questions in the history of Greek mathematics |
Beschreibung: | Title from e-book title screen (viewed February 27, 2008). |
Beschreibung: | 1 online resource (xx, 476 pages : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9812708847 9789812708847 1281121355 9781281121356 9786611121358 6611121358 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn317384466 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 070814s2007 njua ob 001 0 eng d | ||
040 | |a UK-RwCLS |b eng |e pn |c DLC |d N$T |d YDXCP |d OCLCQ |d E7B |d IDEBK |d OCLCQ |d FVL |d OCLCQ |d UKMGB |d OCLCF |d OCLCQ |d STF |d EBLCP |d OCLCQ |d AZK |d PIFAG |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d JBG |d OCLCQ |d WRM |d VTS |d ICG |d VT2 |d AU@ |d OCLCQ |d TKN |d LEAUB |d DKC |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d QGK |d OCLCO |d OCLCL | ||
016 | 7 | |a 013709791 |2 Uk | |
019 | |a 173485462 |a 173486303 |a 648316707 |a 722596834 |a 728031387 |a 815542683 |a 961522471 |a 962622919 |a 1058102472 |a 1259223763 | ||
020 | |a 9812708847 |q (electronic bk.) | ||
020 | |a 9789812708847 |q (electronic bk.) | ||
020 | |a 1281121355 | ||
020 | |a 9781281121356 | ||
020 | |z 9812704523 |q (Cloth) | ||
020 | |z 9789812704528 |q (hbk.) | ||
020 | |a 9786611121358 | ||
020 | |a 6611121358 | ||
035 | |a (OCoLC)317384466 |z (OCoLC)173485462 |z (OCoLC)173486303 |z (OCoLC)648316707 |z (OCoLC)722596834 |z (OCoLC)728031387 |z (OCoLC)815542683 |z (OCoLC)961522471 |z (OCoLC)962622919 |z (OCoLC)1058102472 |z (OCoLC)1259223763 | ||
042 | |a lccopycat | ||
050 | 4 | |a QA22 | |
072 | 7 | |a MAT |x 015000 |2 bisacsh | |
072 | 7 | |a PBX |2 bicssc | |
082 | 7 | |a 510.938 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Friberg, Jöran. |0 http://id.loc.gov/authorities/names/n89629187 | |
245 | 1 | 0 | |a Amazing traces of a Babylonian origin in Greek mathematics / |c Jöran Friberg. |
260 | |a Hackensack, N.J. ; |a London : |b World Scientific, |c ©2007. | ||
300 | |a 1 online resource (xx, 476 pages : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
500 | |a Title from e-book title screen (viewed February 27, 2008). | ||
504 | |a Includes bibliographical references and index. | ||
520 | |a The sequel to "Unexpected Links Between Egyptian and Babylonian Mathematics" (World Scientific, 2005), this book is based on the author's intensive and ground breaking studies of the long history of Mesopotamian mathematics, from the late 4th to the late 1st millennium BC. It is argued in the book that several of the most famous Greek mathematicians appear to have been familiar with various aspects of Babylonian "metric algebra," a convenient name for an elaborate combination of geometry, metrology, and quadratic equations that is known from both Babylonian and pre-Babylonian mathematical clay tablets. The book's use of "metric algebra diagrams" in the Babylonian style, where the side lengths and areas of geometric figures are explicitly indicated, instead of wholly abstract "lettered diagrams" in the Greek style, is essential for an improved understanding of many interesting propositions and constructions in Greek mathematical works. The author's comparisons with Babylonian mathematics also lead to new answers to some important open questions in the history of Greek mathematics | ||
505 | 0 | |a Elements II and Babylonian metric algebra -- El. I.47 and the old Babylonian diagonal rule -- Lemma El. X.28/29 1a, Plimpton 322, and Babylonian igi-igi.bi problems -- Lemma El. X.32/33 and an old Babylonian geometric progression -- Elements X and Babylonian metric algebra -- Elements IV and old Babylonian figures within figures -- El. VI. 30, XIII. 1-12, and regular polygons in Babylonian mathematics -- El. XIII. 13-18 and regular polyhedrons in Babylonian mathematics -- Elements XII and pyramids and cones in Babylonian mathematics -- El. I.43-44, El. VI. 24-29, Data 57-59, 84-86, and metric algebra -- Euclid's lost book on divisions and Babylonian striped figures -- Hippocrates' lunes and Babylonian figures with curved boundaries -- Traces of Babylonian metric algebra in the Arithmetica of Diophantus -- Heron's, Ptolemy's, and Brahmagupta's area and diagonal rules -- Theon of Smyrna's side and diagonal numbers and ascending infinite chains of birectangles -- Greek and Babylonian square side approximations -- Theodorus of Cyrene's irrationality proof and descending infinite chains of birectangles -- The pseudo-Heronic geometrica. | |
546 | |a English. | ||
650 | 0 | |a Mathematics, Greek. |0 http://id.loc.gov/authorities/subjects/sh85082177 | |
650 | 0 | |a Mathematics, Babylonian. |0 http://id.loc.gov/authorities/subjects/sh85082173 | |
650 | 6 | |a Mathématiques grecques. | |
650 | 6 | |a Mathématiques babyloniennes. | |
650 | 7 | |a MATHEMATICS |x History & Philosophy. |2 bisacsh | |
650 | 7 | |a Mathematics, Babylonian |2 fast | |
650 | 7 | |a Mathematics, Greek |2 fast | |
758 | |i has work: |a Amazing traces of a Babylonian origin in Greek mathematics (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFRCGkM7Jb9wkbT4P8VWfy |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Friberg, Jöran. |t Amazing traces of a Babylonian origin in Greek mathematics. |d Hackensack, NJ : World Scientific, ©2007 |z 9789812704528 |z 9812704523 |w (OCoLC)123114822 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203912 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL312341 | ||
938 | |a EBSCOhost |b EBSC |n 203912 | ||
938 | |a YBP Library Services |b YANK |n 2706217 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn317384466 |
---|---|
_version_ | 1816881689754861568 |
adam_text | |
any_adam_object | |
author | Friberg, Jöran |
author_GND | http://id.loc.gov/authorities/names/n89629187 |
author_facet | Friberg, Jöran |
author_role | |
author_sort | Friberg, Jöran |
author_variant | j f jf |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA22 |
callnumber-raw | QA22 |
callnumber-search | QA22 |
callnumber-sort | QA 222 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Elements II and Babylonian metric algebra -- El. I.47 and the old Babylonian diagonal rule -- Lemma El. X.28/29 1a, Plimpton 322, and Babylonian igi-igi.bi problems -- Lemma El. X.32/33 and an old Babylonian geometric progression -- Elements X and Babylonian metric algebra -- Elements IV and old Babylonian figures within figures -- El. VI. 30, XIII. 1-12, and regular polygons in Babylonian mathematics -- El. XIII. 13-18 and regular polyhedrons in Babylonian mathematics -- Elements XII and pyramids and cones in Babylonian mathematics -- El. I.43-44, El. VI. 24-29, Data 57-59, 84-86, and metric algebra -- Euclid's lost book on divisions and Babylonian striped figures -- Hippocrates' lunes and Babylonian figures with curved boundaries -- Traces of Babylonian metric algebra in the Arithmetica of Diophantus -- Heron's, Ptolemy's, and Brahmagupta's area and diagonal rules -- Theon of Smyrna's side and diagonal numbers and ascending infinite chains of birectangles -- Greek and Babylonian square side approximations -- Theodorus of Cyrene's irrationality proof and descending infinite chains of birectangles -- The pseudo-Heronic geometrica. |
ctrlnum | (OCoLC)317384466 |
dewey-full | 510.938 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510.938 |
dewey-search | 510.938 |
dewey-sort | 3510.938 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05288cam a2200637 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn317384466</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">070814s2007 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UK-RwCLS</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">DLC</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">E7B</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">FVL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TKN</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">013709791</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">173485462</subfield><subfield code="a">173486303</subfield><subfield code="a">648316707</subfield><subfield code="a">722596834</subfield><subfield code="a">728031387</subfield><subfield code="a">815542683</subfield><subfield code="a">961522471</subfield><subfield code="a">962622919</subfield><subfield code="a">1058102472</subfield><subfield code="a">1259223763</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812708847</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812708847</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281121355</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281121356</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812704523</subfield><subfield code="q">(Cloth)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812704528</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611121358</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611121358</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)317384466</subfield><subfield code="z">(OCoLC)173485462</subfield><subfield code="z">(OCoLC)173486303</subfield><subfield code="z">(OCoLC)648316707</subfield><subfield code="z">(OCoLC)722596834</subfield><subfield code="z">(OCoLC)728031387</subfield><subfield code="z">(OCoLC)815542683</subfield><subfield code="z">(OCoLC)961522471</subfield><subfield code="z">(OCoLC)962622919</subfield><subfield code="z">(OCoLC)1058102472</subfield><subfield code="z">(OCoLC)1259223763</subfield></datafield><datafield tag="042" ind1=" " ind2=" "><subfield code="a">lccopycat</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA22</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">015000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBX</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">510.938</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Friberg, Jöran.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n89629187</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Amazing traces of a Babylonian origin in Greek mathematics /</subfield><subfield code="c">Jöran Friberg.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Hackensack, N.J. ;</subfield><subfield code="a">London :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2007.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xx, 476 pages :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from e-book title screen (viewed February 27, 2008).</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The sequel to "Unexpected Links Between Egyptian and Babylonian Mathematics" (World Scientific, 2005), this book is based on the author's intensive and ground breaking studies of the long history of Mesopotamian mathematics, from the late 4th to the late 1st millennium BC. It is argued in the book that several of the most famous Greek mathematicians appear to have been familiar with various aspects of Babylonian "metric algebra," a convenient name for an elaborate combination of geometry, metrology, and quadratic equations that is known from both Babylonian and pre-Babylonian mathematical clay tablets. The book's use of "metric algebra diagrams" in the Babylonian style, where the side lengths and areas of geometric figures are explicitly indicated, instead of wholly abstract "lettered diagrams" in the Greek style, is essential for an improved understanding of many interesting propositions and constructions in Greek mathematical works. The author's comparisons with Babylonian mathematics also lead to new answers to some important open questions in the history of Greek mathematics</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Elements II and Babylonian metric algebra -- El. I.47 and the old Babylonian diagonal rule -- Lemma El. X.28/29 1a, Plimpton 322, and Babylonian igi-igi.bi problems -- Lemma El. X.32/33 and an old Babylonian geometric progression -- Elements X and Babylonian metric algebra -- Elements IV and old Babylonian figures within figures -- El. VI. 30, XIII. 1-12, and regular polygons in Babylonian mathematics -- El. XIII. 13-18 and regular polyhedrons in Babylonian mathematics -- Elements XII and pyramids and cones in Babylonian mathematics -- El. I.43-44, El. VI. 24-29, Data 57-59, 84-86, and metric algebra -- Euclid's lost book on divisions and Babylonian striped figures -- Hippocrates' lunes and Babylonian figures with curved boundaries -- Traces of Babylonian metric algebra in the Arithmetica of Diophantus -- Heron's, Ptolemy's, and Brahmagupta's area and diagonal rules -- Theon of Smyrna's side and diagonal numbers and ascending infinite chains of birectangles -- Greek and Babylonian square side approximations -- Theodorus of Cyrene's irrationality proof and descending infinite chains of birectangles -- The pseudo-Heronic geometrica.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematics, Greek.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082177</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematics, Babylonian.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082173</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mathématiques grecques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mathématiques babyloniennes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">History & Philosophy.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics, Babylonian</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics, Greek</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Amazing traces of a Babylonian origin in Greek mathematics (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFRCGkM7Jb9wkbT4P8VWfy</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Friberg, Jöran.</subfield><subfield code="t">Amazing traces of a Babylonian origin in Greek mathematics.</subfield><subfield code="d">Hackensack, NJ : World Scientific, ©2007</subfield><subfield code="z">9789812704528</subfield><subfield code="z">9812704523</subfield><subfield code="w">(OCoLC)123114822</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203912</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL312341</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">203912</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2706217</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn317384466 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:43Z |
institution | BVB |
isbn | 9812708847 9789812708847 1281121355 9781281121356 9786611121358 6611121358 |
language | English |
oclc_num | 317384466 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xx, 476 pages : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | World Scientific, |
record_format | marc |
spelling | Friberg, Jöran. http://id.loc.gov/authorities/names/n89629187 Amazing traces of a Babylonian origin in Greek mathematics / Jöran Friberg. Hackensack, N.J. ; London : World Scientific, ©2007. 1 online resource (xx, 476 pages : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Title from e-book title screen (viewed February 27, 2008). Includes bibliographical references and index. The sequel to "Unexpected Links Between Egyptian and Babylonian Mathematics" (World Scientific, 2005), this book is based on the author's intensive and ground breaking studies of the long history of Mesopotamian mathematics, from the late 4th to the late 1st millennium BC. It is argued in the book that several of the most famous Greek mathematicians appear to have been familiar with various aspects of Babylonian "metric algebra," a convenient name for an elaborate combination of geometry, metrology, and quadratic equations that is known from both Babylonian and pre-Babylonian mathematical clay tablets. The book's use of "metric algebra diagrams" in the Babylonian style, where the side lengths and areas of geometric figures are explicitly indicated, instead of wholly abstract "lettered diagrams" in the Greek style, is essential for an improved understanding of many interesting propositions and constructions in Greek mathematical works. The author's comparisons with Babylonian mathematics also lead to new answers to some important open questions in the history of Greek mathematics Elements II and Babylonian metric algebra -- El. I.47 and the old Babylonian diagonal rule -- Lemma El. X.28/29 1a, Plimpton 322, and Babylonian igi-igi.bi problems -- Lemma El. X.32/33 and an old Babylonian geometric progression -- Elements X and Babylonian metric algebra -- Elements IV and old Babylonian figures within figures -- El. VI. 30, XIII. 1-12, and regular polygons in Babylonian mathematics -- El. XIII. 13-18 and regular polyhedrons in Babylonian mathematics -- Elements XII and pyramids and cones in Babylonian mathematics -- El. I.43-44, El. VI. 24-29, Data 57-59, 84-86, and metric algebra -- Euclid's lost book on divisions and Babylonian striped figures -- Hippocrates' lunes and Babylonian figures with curved boundaries -- Traces of Babylonian metric algebra in the Arithmetica of Diophantus -- Heron's, Ptolemy's, and Brahmagupta's area and diagonal rules -- Theon of Smyrna's side and diagonal numbers and ascending infinite chains of birectangles -- Greek and Babylonian square side approximations -- Theodorus of Cyrene's irrationality proof and descending infinite chains of birectangles -- The pseudo-Heronic geometrica. English. Mathematics, Greek. http://id.loc.gov/authorities/subjects/sh85082177 Mathematics, Babylonian. http://id.loc.gov/authorities/subjects/sh85082173 Mathématiques grecques. Mathématiques babyloniennes. MATHEMATICS History & Philosophy. bisacsh Mathematics, Babylonian fast Mathematics, Greek fast has work: Amazing traces of a Babylonian origin in Greek mathematics (Text) https://id.oclc.org/worldcat/entity/E39PCFRCGkM7Jb9wkbT4P8VWfy https://id.oclc.org/worldcat/ontology/hasWork Print version: Friberg, Jöran. Amazing traces of a Babylonian origin in Greek mathematics. Hackensack, NJ : World Scientific, ©2007 9789812704528 9812704523 (OCoLC)123114822 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203912 Volltext |
spellingShingle | Friberg, Jöran Amazing traces of a Babylonian origin in Greek mathematics / Elements II and Babylonian metric algebra -- El. I.47 and the old Babylonian diagonal rule -- Lemma El. X.28/29 1a, Plimpton 322, and Babylonian igi-igi.bi problems -- Lemma El. X.32/33 and an old Babylonian geometric progression -- Elements X and Babylonian metric algebra -- Elements IV and old Babylonian figures within figures -- El. VI. 30, XIII. 1-12, and regular polygons in Babylonian mathematics -- El. XIII. 13-18 and regular polyhedrons in Babylonian mathematics -- Elements XII and pyramids and cones in Babylonian mathematics -- El. I.43-44, El. VI. 24-29, Data 57-59, 84-86, and metric algebra -- Euclid's lost book on divisions and Babylonian striped figures -- Hippocrates' lunes and Babylonian figures with curved boundaries -- Traces of Babylonian metric algebra in the Arithmetica of Diophantus -- Heron's, Ptolemy's, and Brahmagupta's area and diagonal rules -- Theon of Smyrna's side and diagonal numbers and ascending infinite chains of birectangles -- Greek and Babylonian square side approximations -- Theodorus of Cyrene's irrationality proof and descending infinite chains of birectangles -- The pseudo-Heronic geometrica. Mathematics, Greek. http://id.loc.gov/authorities/subjects/sh85082177 Mathematics, Babylonian. http://id.loc.gov/authorities/subjects/sh85082173 Mathématiques grecques. Mathématiques babyloniennes. MATHEMATICS History & Philosophy. bisacsh Mathematics, Babylonian fast Mathematics, Greek fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082177 http://id.loc.gov/authorities/subjects/sh85082173 |
title | Amazing traces of a Babylonian origin in Greek mathematics / |
title_auth | Amazing traces of a Babylonian origin in Greek mathematics / |
title_exact_search | Amazing traces of a Babylonian origin in Greek mathematics / |
title_full | Amazing traces of a Babylonian origin in Greek mathematics / Jöran Friberg. |
title_fullStr | Amazing traces of a Babylonian origin in Greek mathematics / Jöran Friberg. |
title_full_unstemmed | Amazing traces of a Babylonian origin in Greek mathematics / Jöran Friberg. |
title_short | Amazing traces of a Babylonian origin in Greek mathematics / |
title_sort | amazing traces of a babylonian origin in greek mathematics |
topic | Mathematics, Greek. http://id.loc.gov/authorities/subjects/sh85082177 Mathematics, Babylonian. http://id.loc.gov/authorities/subjects/sh85082173 Mathématiques grecques. Mathématiques babyloniennes. MATHEMATICS History & Philosophy. bisacsh Mathematics, Babylonian fast Mathematics, Greek fast |
topic_facet | Mathematics, Greek. Mathematics, Babylonian. Mathématiques grecques. Mathématiques babyloniennes. MATHEMATICS History & Philosophy. Mathematics, Babylonian Mathematics, Greek |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203912 |
work_keys_str_mv | AT fribergjoran amazingtracesofababylonianoriginingreekmathematics |