Dataset shift in machine learning /:
This work is an overview of recent efforts in the machine learning community to deal with dataset and covariate shift which occurs when test and training inputs and outputs have different distributions.
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, Mass. :
MIT Press,
©2009.
|
Schriftenreihe: | Neural information processing series.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This work is an overview of recent efforts in the machine learning community to deal with dataset and covariate shift which occurs when test and training inputs and outputs have different distributions. |
Beschreibung: | 1 online resource (xv, 229 pages) : illustrations |
Format: | Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |
Bibliographie: | Includes bibliographical references (pages 207-218) and index. |
ISBN: | 9780262255103 0262255103 1282240382 9781282240384 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn310915974 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090226s2009 maua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OCLCQ |d IDEBK |d OCLCQ |d TUU |d OCLCQ |d OSU |d DLC |d IG# |d CDX |d OCLCE |d E7B |d OCLCQ |d DEBSZ |d TEF |d IEEEE |d OCLCF |d OCLCQ |d OTZ |d NLGGC |d HUH |d OCLCQ |d EBLCP |d OCLCQ |d LOA |d JBG |d STBDS |d MOR |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d WY@ |d LUE |d VTS |d MERER |d OCLCQ |d ICG |d CUY |d OCLCQ |d VT2 |d OCLCQ |d MITPR |d WYU |d STF |d LEAUB |d DKC |d AU@ |d OCLCQ |d K6U |d OCLCQ |d SFB |d AJS |d VLB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
015 | |a GBA8E1076 |2 bnb | ||
016 | 7 | |a 014857515 |2 Uk | |
019 | |a 316329315 |a 609925477 |a 628375064 |a 646788347 |a 663422124 |a 743199120 |a 764508014 |a 816316194 |a 966260623 |a 967267169 |a 988428383 |a 991914433 |a 1055360825 |a 1066538357 |a 1081202360 |a 1125488943 |a 1150153849 |a 1162484125 |a 1163724727 | ||
020 | |a 9780262255103 |q (electronic bk.) | ||
020 | |a 0262255103 |q (electronic bk.) | ||
020 | |a 1282240382 | ||
020 | |a 9781282240384 | ||
020 | |z 9780262170055 | ||
020 | |z 0262170051 | ||
024 | 8 | |a 9786612240386 | |
035 | |a (OCoLC)310915974 |z (OCoLC)316329315 |z (OCoLC)609925477 |z (OCoLC)628375064 |z (OCoLC)646788347 |z (OCoLC)663422124 |z (OCoLC)743199120 |z (OCoLC)764508014 |z (OCoLC)816316194 |z (OCoLC)966260623 |z (OCoLC)967267169 |z (OCoLC)988428383 |z (OCoLC)991914433 |z (OCoLC)1055360825 |z (OCoLC)1066538357 |z (OCoLC)1081202360 |z (OCoLC)1125488943 |z (OCoLC)1150153849 |z (OCoLC)1162484125 |z (OCoLC)1163724727 | ||
037 | |a 224038 |b MIL | ||
037 | |a 7921 |b MIT Press | ||
037 | |a 9780262255103 |b MIT Press | ||
042 | |a dlr | ||
050 | 4 | |a Q325.5 |b .D37 2009eb | |
072 | 7 | |a COM |x 005030 |2 bisacsh | |
072 | 7 | |a COM |x 004000 |2 bisacsh | |
082 | 7 | |a 006.3/1 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Dataset shift in machine learning / |c [edited by] Joaquin Quiñonero-Candela [and others]. |
260 | |a Cambridge, Mass. : |b MIT Press, |c ©2009. | ||
300 | |a 1 online resource (xv, 229 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Neural information processing series | |
504 | |a Includes bibliographical references (pages 207-218) and index. | ||
588 | 0 | |a Print version record. | |
506 | |3 Use copy |f Restrictions unspecified |2 star |5 MiAaHDL | ||
533 | |a Electronic reproduction. |b [Place of publication not identified] : |c HathiTrust Digital Library, |d 2010. |5 MiAaHDL | ||
538 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |u http://purl.oclc.org/DLF/benchrepro0212 |5 MiAaHDL | ||
583 | 1 | |a digitized |c 2010 |h HathiTrust Digital Library |l committed to preserve |2 pda |5 MiAaHDL | |
520 | 8 | |a This work is an overview of recent efforts in the machine learning community to deal with dataset and covariate shift which occurs when test and training inputs and outputs have different distributions. | |
505 | 0 | 0 | |g I. |t Introduction to dataset shift -- |g 1. |t When training and test sets are different: characterizing learning transfer / |r Amos Storkey -- |g 2. |t Projection and projectability / |r David Corfield -- |g II. |t Theoretical views on dataset and covariate shift -- |g 3. |t Binary classification under sample selection bias / |r Matthias Hein -- |g 4. |t On Bayesian transduction: implications for the covariate shift problem / |r Lars Kai Hansen -- |g 5. |t On the training/test distributions gap: a data representation learning framework / |r Shai Ben-David -- |g III. |t Algorithms for covariate shift -- |g 6. |t Geometry of covariate shift with applications to active learning / |r Takafumi Kanamori and Hidetoshi Shimodaira -- |g 7. |t A conditional expectation approach to model selection and active learning under covariate shift / |r Masashi Sugiyama, Neil Rubens and Klaus-Robert Muller -- |g 8. |t Covariate shift by kernel mean matching / |r Arthur Grellon, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten Borgwardt and Bernhard Scholkopf -- |g 9. |t Discriminative learning under covariate shift with a single optimization problem / |r Steffen Bickel, Michael Bruckner and Tobias Scheffer -- |g 10. |t An adversarial view of covariate shift and a minimax approach / |r Amir Globerson, Choon Hui Teo, Alex Smola and Sam Roweis -- |g IV. |t Discussion -- |g 11. |t Author comments / |r Hidetoshi Shimodaira, Masashi Sugiyama, Amos Storkey, Arthur Gretton and Shai-Ben David. |
546 | |a English. | ||
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 6 | |a Apprentissage automatique. | |
650 | 7 | |a COMPUTERS |x Enterprise Applications |x Business Intelligence Tools. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Intelligence (AI) & Semantics. |2 bisacsh | |
650 | 7 | |a Machine learning |2 fast | |
653 | |a COMPUTER SCIENCE/Machine Learning & Neural Networks | ||
700 | 1 | |a Quiñonero-Candela, Joaquin. | |
758 | |i has work: |a Dataset shift in machine learning (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGjJCq9gcWkW7tg6gB3TXm |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Dataset shift in machine learning. |d Cambridge, Mass. : MIT Press, ©2009 |z 9780262170055 |z 0262170051 |w (DLC) 2008020394 |w (OCoLC)227205909 |
830 | 0 | |a Neural information processing series. |0 http://id.loc.gov/authorities/names/n00009051 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=259275 |3 Volltext |
938 | |a Coutts Information Services |b COUT |n 10560471 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL3338975 | ||
938 | |a ebrary |b EBRY |n ebr10269466 | ||
938 | |a EBSCOhost |b EBSC |n 259275 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 224038 | ||
938 | |a Ingram |b INGR |n 9780262170055 | ||
938 | |a Oxford University Press USA |b OUPR |n EDZ0000130720 | ||
938 | |a YBP Library Services |b YANK |n 2935451 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn310915974 |
---|---|
_version_ | 1816881687418634240 |
adam_text | |
any_adam_object | |
author2 | Quiñonero-Candela, Joaquin |
author2_role | |
author2_variant | j q c jqc |
author_additional | Amos Storkey -- David Corfield -- Matthias Hein -- Lars Kai Hansen -- Shai Ben-David -- Takafumi Kanamori and Hidetoshi Shimodaira -- Masashi Sugiyama, Neil Rubens and Klaus-Robert Muller -- Arthur Grellon, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten Borgwardt and Bernhard Scholkopf -- Steffen Bickel, Michael Bruckner and Tobias Scheffer -- Amir Globerson, Choon Hui Teo, Alex Smola and Sam Roweis -- Hidetoshi Shimodaira, Masashi Sugiyama, Amos Storkey, Arthur Gretton and Shai-Ben David. |
author_facet | Quiñonero-Candela, Joaquin |
author_sort | Quiñonero-Candela, Joaquin |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 .D37 2009eb |
callnumber-search | Q325.5 .D37 2009eb |
callnumber-sort | Q 3325.5 D37 42009EB |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
contents | Introduction to dataset shift -- When training and test sets are different: characterizing learning transfer / Projection and projectability / Theoretical views on dataset and covariate shift -- Binary classification under sample selection bias / On Bayesian transduction: implications for the covariate shift problem / On the training/test distributions gap: a data representation learning framework / Algorithms for covariate shift -- Geometry of covariate shift with applications to active learning / A conditional expectation approach to model selection and active learning under covariate shift / Covariate shift by kernel mean matching / Discriminative learning under covariate shift with a single optimization problem / An adversarial view of covariate shift and a minimax approach / Discussion -- Author comments / |
ctrlnum | (OCoLC)310915974 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05969cam a2200781 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn310915974</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">090226s2009 maua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TUU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OSU</subfield><subfield code="d">DLC</subfield><subfield code="d">IG#</subfield><subfield code="d">CDX</subfield><subfield code="d">OCLCE</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">TEF</subfield><subfield code="d">IEEEE</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OTZ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">HUH</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">JBG</subfield><subfield code="d">STBDS</subfield><subfield code="d">MOR</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WY@</subfield><subfield code="d">LUE</subfield><subfield code="d">VTS</subfield><subfield code="d">MERER</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ICG</subfield><subfield code="d">CUY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MITPR</subfield><subfield code="d">WYU</subfield><subfield code="d">STF</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">AJS</subfield><subfield code="d">VLB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA8E1076</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">014857515</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">316329315</subfield><subfield code="a">609925477</subfield><subfield code="a">628375064</subfield><subfield code="a">646788347</subfield><subfield code="a">663422124</subfield><subfield code="a">743199120</subfield><subfield code="a">764508014</subfield><subfield code="a">816316194</subfield><subfield code="a">966260623</subfield><subfield code="a">967267169</subfield><subfield code="a">988428383</subfield><subfield code="a">991914433</subfield><subfield code="a">1055360825</subfield><subfield code="a">1066538357</subfield><subfield code="a">1081202360</subfield><subfield code="a">1125488943</subfield><subfield code="a">1150153849</subfield><subfield code="a">1162484125</subfield><subfield code="a">1163724727</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262255103</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262255103</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1282240382</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781282240384</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780262170055</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0262170051</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786612240386</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)310915974</subfield><subfield code="z">(OCoLC)316329315</subfield><subfield code="z">(OCoLC)609925477</subfield><subfield code="z">(OCoLC)628375064</subfield><subfield code="z">(OCoLC)646788347</subfield><subfield code="z">(OCoLC)663422124</subfield><subfield code="z">(OCoLC)743199120</subfield><subfield code="z">(OCoLC)764508014</subfield><subfield code="z">(OCoLC)816316194</subfield><subfield code="z">(OCoLC)966260623</subfield><subfield code="z">(OCoLC)967267169</subfield><subfield code="z">(OCoLC)988428383</subfield><subfield code="z">(OCoLC)991914433</subfield><subfield code="z">(OCoLC)1055360825</subfield><subfield code="z">(OCoLC)1066538357</subfield><subfield code="z">(OCoLC)1081202360</subfield><subfield code="z">(OCoLC)1125488943</subfield><subfield code="z">(OCoLC)1150153849</subfield><subfield code="z">(OCoLC)1162484125</subfield><subfield code="z">(OCoLC)1163724727</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">224038</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">7921</subfield><subfield code="b">MIT Press</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9780262255103</subfield><subfield code="b">MIT Press</subfield></datafield><datafield tag="042" ind1=" " ind2=" "><subfield code="a">dlr</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.5</subfield><subfield code="b">.D37 2009eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">005030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Dataset shift in machine learning /</subfield><subfield code="c">[edited by] Joaquin Quiñonero-Candela [and others].</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, Mass. :</subfield><subfield code="b">MIT Press,</subfield><subfield code="c">©2009.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 229 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Neural information processing series</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 207-218) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="506" ind1=" " ind2=" "><subfield code="3">Use copy</subfield><subfield code="f">Restrictions unspecified</subfield><subfield code="2">star</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="a">Electronic reproduction.</subfield><subfield code="b">[Place of publication not identified] :</subfield><subfield code="c">HathiTrust Digital Library,</subfield><subfield code="d">2010.</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="538" ind1=" " ind2=" "><subfield code="a">Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.</subfield><subfield code="u">http://purl.oclc.org/DLF/benchrepro0212</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">digitized</subfield><subfield code="c">2010</subfield><subfield code="h">HathiTrust Digital Library</subfield><subfield code="l">committed to preserve</subfield><subfield code="2">pda</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">This work is an overview of recent efforts in the machine learning community to deal with dataset and covariate shift which occurs when test and training inputs and outputs have different distributions.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">I.</subfield><subfield code="t">Introduction to dataset shift --</subfield><subfield code="g">1.</subfield><subfield code="t">When training and test sets are different: characterizing learning transfer /</subfield><subfield code="r">Amos Storkey --</subfield><subfield code="g">2.</subfield><subfield code="t">Projection and projectability /</subfield><subfield code="r">David Corfield --</subfield><subfield code="g">II.</subfield><subfield code="t">Theoretical views on dataset and covariate shift --</subfield><subfield code="g">3.</subfield><subfield code="t">Binary classification under sample selection bias /</subfield><subfield code="r">Matthias Hein --</subfield><subfield code="g">4.</subfield><subfield code="t">On Bayesian transduction: implications for the covariate shift problem /</subfield><subfield code="r">Lars Kai Hansen --</subfield><subfield code="g">5.</subfield><subfield code="t">On the training/test distributions gap: a data representation learning framework /</subfield><subfield code="r">Shai Ben-David --</subfield><subfield code="g">III.</subfield><subfield code="t">Algorithms for covariate shift --</subfield><subfield code="g">6.</subfield><subfield code="t">Geometry of covariate shift with applications to active learning /</subfield><subfield code="r">Takafumi Kanamori and Hidetoshi Shimodaira --</subfield><subfield code="g">7.</subfield><subfield code="t">A conditional expectation approach to model selection and active learning under covariate shift /</subfield><subfield code="r">Masashi Sugiyama, Neil Rubens and Klaus-Robert Muller --</subfield><subfield code="g">8.</subfield><subfield code="t">Covariate shift by kernel mean matching /</subfield><subfield code="r">Arthur Grellon, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten Borgwardt and Bernhard Scholkopf --</subfield><subfield code="g">9.</subfield><subfield code="t">Discriminative learning under covariate shift with a single optimization problem /</subfield><subfield code="r">Steffen Bickel, Michael Bruckner and Tobias Scheffer --</subfield><subfield code="g">10.</subfield><subfield code="t">An adversarial view of covariate shift and a minimax approach /</subfield><subfield code="r">Amir Globerson, Choon Hui Teo, Alex Smola and Sam Roweis --</subfield><subfield code="g">IV.</subfield><subfield code="t">Discussion --</subfield><subfield code="g">11.</subfield><subfield code="t">Author comments /</subfield><subfield code="r">Hidetoshi Shimodaira, Masashi Sugiyama, Amos Storkey, Arthur Gretton and Shai-Ben David.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Enterprise Applications</subfield><subfield code="x">Business Intelligence Tools.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Intelligence (AI) & Semantics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">COMPUTER SCIENCE/Machine Learning & Neural Networks</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Quiñonero-Candela, Joaquin.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Dataset shift in machine learning (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGjJCq9gcWkW7tg6gB3TXm</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Dataset shift in machine learning.</subfield><subfield code="d">Cambridge, Mass. : MIT Press, ©2009</subfield><subfield code="z">9780262170055</subfield><subfield code="z">0262170051</subfield><subfield code="w">(DLC) 2008020394</subfield><subfield code="w">(OCoLC)227205909</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Neural information processing series.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n00009051</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=259275</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">10560471</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3338975</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10269466</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">259275</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">224038</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Ingram</subfield><subfield code="b">INGR</subfield><subfield code="n">9780262170055</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Oxford University Press USA</subfield><subfield code="b">OUPR</subfield><subfield code="n">EDZ0000130720</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2935451</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn310915974 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:41Z |
institution | BVB |
isbn | 9780262255103 0262255103 1282240382 9781282240384 |
language | English |
oclc_num | 310915974 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xv, 229 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | MIT Press, |
record_format | marc |
series | Neural information processing series. |
series2 | Neural information processing series |
spelling | Dataset shift in machine learning / [edited by] Joaquin Quiñonero-Candela [and others]. Cambridge, Mass. : MIT Press, ©2009. 1 online resource (xv, 229 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Neural information processing series Includes bibliographical references (pages 207-218) and index. Print version record. Use copy Restrictions unspecified star MiAaHDL Electronic reproduction. [Place of publication not identified] : HathiTrust Digital Library, 2010. MiAaHDL Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. http://purl.oclc.org/DLF/benchrepro0212 MiAaHDL digitized 2010 HathiTrust Digital Library committed to preserve pda MiAaHDL This work is an overview of recent efforts in the machine learning community to deal with dataset and covariate shift which occurs when test and training inputs and outputs have different distributions. I. Introduction to dataset shift -- 1. When training and test sets are different: characterizing learning transfer / Amos Storkey -- 2. Projection and projectability / David Corfield -- II. Theoretical views on dataset and covariate shift -- 3. Binary classification under sample selection bias / Matthias Hein -- 4. On Bayesian transduction: implications for the covariate shift problem / Lars Kai Hansen -- 5. On the training/test distributions gap: a data representation learning framework / Shai Ben-David -- III. Algorithms for covariate shift -- 6. Geometry of covariate shift with applications to active learning / Takafumi Kanamori and Hidetoshi Shimodaira -- 7. A conditional expectation approach to model selection and active learning under covariate shift / Masashi Sugiyama, Neil Rubens and Klaus-Robert Muller -- 8. Covariate shift by kernel mean matching / Arthur Grellon, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten Borgwardt and Bernhard Scholkopf -- 9. Discriminative learning under covariate shift with a single optimization problem / Steffen Bickel, Michael Bruckner and Tobias Scheffer -- 10. An adversarial view of covariate shift and a minimax approach / Amir Globerson, Choon Hui Teo, Alex Smola and Sam Roweis -- IV. Discussion -- 11. Author comments / Hidetoshi Shimodaira, Masashi Sugiyama, Amos Storkey, Arthur Gretton and Shai-Ben David. English. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Apprentissage automatique. COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Machine learning fast COMPUTER SCIENCE/Machine Learning & Neural Networks Quiñonero-Candela, Joaquin. has work: Dataset shift in machine learning (Text) https://id.oclc.org/worldcat/entity/E39PCGjJCq9gcWkW7tg6gB3TXm https://id.oclc.org/worldcat/ontology/hasWork Print version: Dataset shift in machine learning. Cambridge, Mass. : MIT Press, ©2009 9780262170055 0262170051 (DLC) 2008020394 (OCoLC)227205909 Neural information processing series. http://id.loc.gov/authorities/names/n00009051 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=259275 Volltext |
spellingShingle | Dataset shift in machine learning / Neural information processing series. Introduction to dataset shift -- When training and test sets are different: characterizing learning transfer / Projection and projectability / Theoretical views on dataset and covariate shift -- Binary classification under sample selection bias / On Bayesian transduction: implications for the covariate shift problem / On the training/test distributions gap: a data representation learning framework / Algorithms for covariate shift -- Geometry of covariate shift with applications to active learning / A conditional expectation approach to model selection and active learning under covariate shift / Covariate shift by kernel mean matching / Discriminative learning under covariate shift with a single optimization problem / An adversarial view of covariate shift and a minimax approach / Discussion -- Author comments / Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Apprentissage automatique. COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Machine learning fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85079324 |
title | Dataset shift in machine learning / |
title_alt | Introduction to dataset shift -- When training and test sets are different: characterizing learning transfer / Projection and projectability / Theoretical views on dataset and covariate shift -- Binary classification under sample selection bias / On Bayesian transduction: implications for the covariate shift problem / On the training/test distributions gap: a data representation learning framework / Algorithms for covariate shift -- Geometry of covariate shift with applications to active learning / A conditional expectation approach to model selection and active learning under covariate shift / Covariate shift by kernel mean matching / Discriminative learning under covariate shift with a single optimization problem / An adversarial view of covariate shift and a minimax approach / Discussion -- Author comments / |
title_auth | Dataset shift in machine learning / |
title_exact_search | Dataset shift in machine learning / |
title_full | Dataset shift in machine learning / [edited by] Joaquin Quiñonero-Candela [and others]. |
title_fullStr | Dataset shift in machine learning / [edited by] Joaquin Quiñonero-Candela [and others]. |
title_full_unstemmed | Dataset shift in machine learning / [edited by] Joaquin Quiñonero-Candela [and others]. |
title_short | Dataset shift in machine learning / |
title_sort | dataset shift in machine learning |
topic | Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Apprentissage automatique. COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Machine learning fast |
topic_facet | Machine learning. Apprentissage automatique. COMPUTERS Enterprise Applications Business Intelligence Tools. COMPUTERS Intelligence (AI) & Semantics. Machine learning |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=259275 |
work_keys_str_mv | AT quinonerocandelajoaquin datasetshiftinmachinelearning |