Lattice methods for quantum chromodynamics /:
At a time of robust worldwide debates on globalization, this compact volume shows: how successful each of the East Asian economies have been in harnessing globalization by appropriate and alternative means to catch up with the advanced economies; and what implications can be drawn to assess Chinese...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hackensack, NJ :
World Scientific,
©2006.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | At a time of robust worldwide debates on globalization, this compact volume shows: how successful each of the East Asian economies have been in harnessing globalization by appropriate and alternative means to catch up with the advanced economies; and what implications can be drawn to assess Chinese economic growth in context. The essays in this book include supporting notes to review effectively the highlights of the development of East Asia, over the six decades after World War II: why the region has performed so well economically relative to the rest of the developing world; which are the most challenging limitations to be addressed; and several sensational controversies in the development economics literature to be sensibly resolved. |
Beschreibung: | 1 online resource (xv, 345 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 329-340) and index. |
ISBN: | 9789812773982 9812773983 1281919225 9781281919229 9786611919221 6611919228 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn299584998 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 090123s2006 njua ob 001 0 eng d | ||
010 | |z 2007271753 | ||
040 | |a CaPaEBR |b eng |e pn |c CUY |d OCLCQ |d N$T |d YDXCP |d IDEBK |d E7B |d OCLCQ |d STF |d OCLCQ |d AZK |d COCUF |d AGLDB |d MOR |d PIFAG |d OCLCQ |d WRM |d VTS |d NRAMU |d VT2 |d OCLCQ |d WYU |d JBG |d M8D |d UKCRE |d VLY |d CUS |d HS0 |d S2H |d OCLCO |d DST |d OCLCQ |d TNZ |d CJT |d OCLCQ |d OCLCL | ||
019 | |a 181654548 |a 647684521 |a 815749936 |a 961541732 |a 962665426 |a 988437382 |a 992074846 |a 1037753813 |a 1038582451 |a 1045446539 |a 1055341338 |a 1063995794 |a 1081251605 |a 1153514465 |a 1162185858 |a 1227636919 |a 1228548374 |a 1241950931 |a 1259255465 |a 1288251628 |a 1290106706 |a 1300631154 |a 1303367725 |a 1303431949 |a 1306546374 |a 1373465969 |a 1396078363 | ||
020 | |a 9789812773982 |q (electronic bk.) | ||
020 | |a 9812773983 |q (electronic bk.) | ||
020 | |a 1281919225 | ||
020 | |a 9781281919229 | ||
020 | |a 9786611919221 | ||
020 | |a 6611919228 | ||
020 | |z 9789812567277 | ||
020 | |z 9812567275 | ||
035 | |a (OCoLC)299584998 |z (OCoLC)181654548 |z (OCoLC)647684521 |z (OCoLC)815749936 |z (OCoLC)961541732 |z (OCoLC)962665426 |z (OCoLC)988437382 |z (OCoLC)992074846 |z (OCoLC)1037753813 |z (OCoLC)1038582451 |z (OCoLC)1045446539 |z (OCoLC)1055341338 |z (OCoLC)1063995794 |z (OCoLC)1081251605 |z (OCoLC)1153514465 |z (OCoLC)1162185858 |z (OCoLC)1227636919 |z (OCoLC)1228548374 |z (OCoLC)1241950931 |z (OCoLC)1259255465 |z (OCoLC)1288251628 |z (OCoLC)1290106706 |z (OCoLC)1300631154 |z (OCoLC)1303367725 |z (OCoLC)1303431949 |z (OCoLC)1306546374 |z (OCoLC)1373465969 |z (OCoLC)1396078363 | ||
050 | 4 | |a QC793.3.Q35 |b D44 2006eb | |
072 | 7 | |a TEC |x 028000 |2 bisacsh | |
072 | 7 | |a JFFS |2 bicssc | |
082 | 7 | |a 539.7/548 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a DeGrand, T. |q (Thomas), |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJxxdVqCGvwdqQyPWJfDv3 |0 http://id.loc.gov/authorities/names/n90610093 | |
245 | 1 | 0 | |a Lattice methods for quantum chromodynamics / |c Thomas DeGrand, Carleton DeTar. |
260 | |a Hackensack, NJ : |b World Scientific, |c ©2006. | ||
300 | |a 1 online resource (xv, 345 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 329-340) and index. | ||
505 | 0 | |a Preface -- 1. Introduction -- 2. Continuum QCD and its phenomenology. 2.1. The Lagrangian and QCD at short distance. 2.2. The nonrelativistic quark model. 2.3. Heavy quark systems. 2.4. Chiral symmetry and chiral symmetry breaking. 2.5. A technical aside: Ward identities. 2.6. The axial anomaly and instantons. 2.7. The large N[symbol] limit -- 3. Path integration. 3.1. Lattice Schwinger model. 3.2. Hamiltonian with gauge fields. 3.3. Feynman path integral. 3.4. Free fermions. 3.5. The interacting theory -- 4. Renormalization and the renormalization group. 4.1. Blocking transformations. 4.2. Renormalization group equations. 4.3. Renormalization group equations for the scalar field. 4.4. Effective field theories -- 5. Yang-Mills theory on the lattice. 5.1. Gauge invariance on the lattice. 5.2. Yang-Mills actions. 5.3. Gauge fixing. 5.4. Strong coupling -- 6. Fermions on the lattice. 6.1. Naive fermions. 6.2. Wilson-type fermions. 6.3. Staggered fermions. 6.4. Lattice fermions with exact chiral symmetry. 6.5. Exact chiral symmetry from five dimensions. 6.6. Heavy quarks -- 7. Numerical methods for bosons. 7.1. Importance sampling. 7.2. Special methods for the Yang-Mills action -- 8. Numerical methods for fermions. 8.1. Taming the fermion determinant: the [symbol] algorithm. 8.2. Taming the fermion determinant: the R algorithm. 8.3. The fourth root approximation. 8.4. An exact algorithm for the fourth root: rational hybrid Monte Carlo. 8.5. Refinements. 8.6. Special considerations for overlap fermions. 8.7. Monte Carlo methods for fermions. 8.8. Conjugate gradient and its relatives -- 9. Data analysis for lattice simulations. 9.1. Correlations in simulation time. 9.2. Correlations among observables. 9.3. Fitting strategies -- 10. Designing lattice actions. 10.1. Motivation. 10.2. Symanzik improvement. 10.3. Tadpole improvement. 10.4. Renormalization-group inspired improvement. 10.5. "Fat link" actions -- 11. Spectroscopy. 11.1. Computing propagators and correlation functions. 11.2. Sewing propagators together. 11.3. Glueballs. 11.4. The string tension -- 12. Lattice perturbation theory. 12.1. Motivation. 12.2. Technology. 12.3. The scale of the coupling constant -- 13. Operators with anomalous dimension. 13.1. Perturbative techniques for operator matching. 13.2. Nonperturbative techniques for operator matching -- 14. Chiral symmetry and lattice simulations. 14.1. Minimal introduction to chiral perturbation theory. 14.2. Quenching, partial quenching, and unquenching. 14.3. Chiral perturbation theory for staggered fermions. 14.4. Computing topological charge -- 15. Finite volume effects. 15.1. Finite volume effects in chiral perturbation theory. 15.2. The [symbol]-regime. 15.3. Finite volume, more generally. 15.4. Miscellaneous comments -- 16. Testing the standard model with lattice calculations. 16.1. Overview. 16.2. Strong renormalization of weak operators. 16.3. Lattice discrete symmetries. 16.4. Some simple examples. 16.5. Evading a no-go theorem -- 17. QCD at high temperature and density. 17.1. Simulating high temperature. 17.2. Introducing a chemical potential. 17.3. High quark mass limit and chiral limit. 17.4. Locating and characterizing the phase transition. 17.5. Simulating in a nearby ensemble. 17.6. Dimensional reduction and nonperturbative behavior. 17.7. Miscellaneous observables. 17.8. Nonzero density. 17.9. Spectral functions and maximum entropy. | |
588 | 0 | |a Print version record. | |
520 | |a At a time of robust worldwide debates on globalization, this compact volume shows: how successful each of the East Asian economies have been in harnessing globalization by appropriate and alternative means to catch up with the advanced economies; and what implications can be drawn to assess Chinese economic growth in context. The essays in this book include supporting notes to review effectively the highlights of the development of East Asia, over the six decades after World War II: why the region has performed so well economically relative to the rest of the developing world; which are the most challenging limitations to be addressed; and several sensational controversies in the development economics literature to be sensibly resolved. | ||
546 | |a English. | ||
650 | 0 | |a Lattice gauge theories |x Mathematical models. | |
650 | 0 | |a Quantum chromodynamics |x Mathematical models. | |
650 | 6 | |a Théories de jauge sur réseau |x Modèles mathématiques. | |
650 | 6 | |a Chromodynamique quantique |x Modèles mathématiques. | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Power Resources |x Nuclear. |2 bisacsh | |
700 | 1 | |a DeTar, Carleton, |e author. |0 http://id.loc.gov/authorities/names/n85007937 | |
776 | 0 | 8 | |i Print version: |a DeGrand, T. (Thomas). |t Lattice methods for quantum chromodynamics. |d Hackensack, NJ : World Scientific, ©2006 |w (DLC) 2007271753 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210788 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a EBSCOhost |b EBSC |n 210788 | ||
938 | |a YBP Library Services |b YANK |n 2736113 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn299584998 |
---|---|
_version_ | 1816881684887371776 |
adam_text | |
any_adam_object | |
author | DeGrand, T. (Thomas) DeTar, Carleton |
author_GND | http://id.loc.gov/authorities/names/n90610093 http://id.loc.gov/authorities/names/n85007937 |
author_facet | DeGrand, T. (Thomas) DeTar, Carleton |
author_role | aut aut |
author_sort | DeGrand, T. |
author_variant | t d td c d cd |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC793 |
callnumber-raw | QC793.3.Q35 D44 2006eb |
callnumber-search | QC793.3.Q35 D44 2006eb |
callnumber-sort | QC 3793.3 Q35 D44 42006EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Preface -- 1. Introduction -- 2. Continuum QCD and its phenomenology. 2.1. The Lagrangian and QCD at short distance. 2.2. The nonrelativistic quark model. 2.3. Heavy quark systems. 2.4. Chiral symmetry and chiral symmetry breaking. 2.5. A technical aside: Ward identities. 2.6. The axial anomaly and instantons. 2.7. The large N[symbol] limit -- 3. Path integration. 3.1. Lattice Schwinger model. 3.2. Hamiltonian with gauge fields. 3.3. Feynman path integral. 3.4. Free fermions. 3.5. The interacting theory -- 4. Renormalization and the renormalization group. 4.1. Blocking transformations. 4.2. Renormalization group equations. 4.3. Renormalization group equations for the scalar field. 4.4. Effective field theories -- 5. Yang-Mills theory on the lattice. 5.1. Gauge invariance on the lattice. 5.2. Yang-Mills actions. 5.3. Gauge fixing. 5.4. Strong coupling -- 6. Fermions on the lattice. 6.1. Naive fermions. 6.2. Wilson-type fermions. 6.3. Staggered fermions. 6.4. Lattice fermions with exact chiral symmetry. 6.5. Exact chiral symmetry from five dimensions. 6.6. Heavy quarks -- 7. Numerical methods for bosons. 7.1. Importance sampling. 7.2. Special methods for the Yang-Mills action -- 8. Numerical methods for fermions. 8.1. Taming the fermion determinant: the [symbol] algorithm. 8.2. Taming the fermion determinant: the R algorithm. 8.3. The fourth root approximation. 8.4. An exact algorithm for the fourth root: rational hybrid Monte Carlo. 8.5. Refinements. 8.6. Special considerations for overlap fermions. 8.7. Monte Carlo methods for fermions. 8.8. Conjugate gradient and its relatives -- 9. Data analysis for lattice simulations. 9.1. Correlations in simulation time. 9.2. Correlations among observables. 9.3. Fitting strategies -- 10. Designing lattice actions. 10.1. Motivation. 10.2. Symanzik improvement. 10.3. Tadpole improvement. 10.4. Renormalization-group inspired improvement. 10.5. "Fat link" actions -- 11. Spectroscopy. 11.1. Computing propagators and correlation functions. 11.2. Sewing propagators together. 11.3. Glueballs. 11.4. The string tension -- 12. Lattice perturbation theory. 12.1. Motivation. 12.2. Technology. 12.3. The scale of the coupling constant -- 13. Operators with anomalous dimension. 13.1. Perturbative techniques for operator matching. 13.2. Nonperturbative techniques for operator matching -- 14. Chiral symmetry and lattice simulations. 14.1. Minimal introduction to chiral perturbation theory. 14.2. Quenching, partial quenching, and unquenching. 14.3. Chiral perturbation theory for staggered fermions. 14.4. Computing topological charge -- 15. Finite volume effects. 15.1. Finite volume effects in chiral perturbation theory. 15.2. The [symbol]-regime. 15.3. Finite volume, more generally. 15.4. Miscellaneous comments -- 16. Testing the standard model with lattice calculations. 16.1. Overview. 16.2. Strong renormalization of weak operators. 16.3. Lattice discrete symmetries. 16.4. Some simple examples. 16.5. Evading a no-go theorem -- 17. QCD at high temperature and density. 17.1. Simulating high temperature. 17.2. Introducing a chemical potential. 17.3. High quark mass limit and chiral limit. 17.4. Locating and characterizing the phase transition. 17.5. Simulating in a nearby ensemble. 17.6. Dimensional reduction and nonperturbative behavior. 17.7. Miscellaneous observables. 17.8. Nonzero density. 17.9. Spectral functions and maximum entropy. |
ctrlnum | (OCoLC)299584998 |
dewey-full | 539.7/548 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 539 - Modern physics |
dewey-raw | 539.7/548 |
dewey-search | 539.7/548 |
dewey-sort | 3539.7 3548 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07453cam a2200589 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn299584998</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">090123s2006 njua ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2007271753</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CaPaEBR</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CUY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">JBG</subfield><subfield code="d">M8D</subfield><subfield code="d">UKCRE</subfield><subfield code="d">VLY</subfield><subfield code="d">CUS</subfield><subfield code="d">HS0</subfield><subfield code="d">S2H</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DST</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TNZ</subfield><subfield code="d">CJT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">181654548</subfield><subfield code="a">647684521</subfield><subfield code="a">815749936</subfield><subfield code="a">961541732</subfield><subfield code="a">962665426</subfield><subfield code="a">988437382</subfield><subfield code="a">992074846</subfield><subfield code="a">1037753813</subfield><subfield code="a">1038582451</subfield><subfield code="a">1045446539</subfield><subfield code="a">1055341338</subfield><subfield code="a">1063995794</subfield><subfield code="a">1081251605</subfield><subfield code="a">1153514465</subfield><subfield code="a">1162185858</subfield><subfield code="a">1227636919</subfield><subfield code="a">1228548374</subfield><subfield code="a">1241950931</subfield><subfield code="a">1259255465</subfield><subfield code="a">1288251628</subfield><subfield code="a">1290106706</subfield><subfield code="a">1300631154</subfield><subfield code="a">1303367725</subfield><subfield code="a">1303431949</subfield><subfield code="a">1306546374</subfield><subfield code="a">1373465969</subfield><subfield code="a">1396078363</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812773982</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812773983</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281919225</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281919229</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611919221</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611919228</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812567277</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812567275</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)299584998</subfield><subfield code="z">(OCoLC)181654548</subfield><subfield code="z">(OCoLC)647684521</subfield><subfield code="z">(OCoLC)815749936</subfield><subfield code="z">(OCoLC)961541732</subfield><subfield code="z">(OCoLC)962665426</subfield><subfield code="z">(OCoLC)988437382</subfield><subfield code="z">(OCoLC)992074846</subfield><subfield code="z">(OCoLC)1037753813</subfield><subfield code="z">(OCoLC)1038582451</subfield><subfield code="z">(OCoLC)1045446539</subfield><subfield code="z">(OCoLC)1055341338</subfield><subfield code="z">(OCoLC)1063995794</subfield><subfield code="z">(OCoLC)1081251605</subfield><subfield code="z">(OCoLC)1153514465</subfield><subfield code="z">(OCoLC)1162185858</subfield><subfield code="z">(OCoLC)1227636919</subfield><subfield code="z">(OCoLC)1228548374</subfield><subfield code="z">(OCoLC)1241950931</subfield><subfield code="z">(OCoLC)1259255465</subfield><subfield code="z">(OCoLC)1288251628</subfield><subfield code="z">(OCoLC)1290106706</subfield><subfield code="z">(OCoLC)1300631154</subfield><subfield code="z">(OCoLC)1303367725</subfield><subfield code="z">(OCoLC)1303431949</subfield><subfield code="z">(OCoLC)1306546374</subfield><subfield code="z">(OCoLC)1373465969</subfield><subfield code="z">(OCoLC)1396078363</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC793.3.Q35</subfield><subfield code="b">D44 2006eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">028000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">JFFS</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">539.7/548</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">DeGrand, T.</subfield><subfield code="q">(Thomas),</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJxxdVqCGvwdqQyPWJfDv3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90610093</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lattice methods for quantum chromodynamics /</subfield><subfield code="c">Thomas DeGrand, Carleton DeTar.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2006.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 345 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 329-340) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface -- 1. Introduction -- 2. Continuum QCD and its phenomenology. 2.1. The Lagrangian and QCD at short distance. 2.2. The nonrelativistic quark model. 2.3. Heavy quark systems. 2.4. Chiral symmetry and chiral symmetry breaking. 2.5. A technical aside: Ward identities. 2.6. The axial anomaly and instantons. 2.7. The large N[symbol] limit -- 3. Path integration. 3.1. Lattice Schwinger model. 3.2. Hamiltonian with gauge fields. 3.3. Feynman path integral. 3.4. Free fermions. 3.5. The interacting theory -- 4. Renormalization and the renormalization group. 4.1. Blocking transformations. 4.2. Renormalization group equations. 4.3. Renormalization group equations for the scalar field. 4.4. Effective field theories -- 5. Yang-Mills theory on the lattice. 5.1. Gauge invariance on the lattice. 5.2. Yang-Mills actions. 5.3. Gauge fixing. 5.4. Strong coupling -- 6. Fermions on the lattice. 6.1. Naive fermions. 6.2. Wilson-type fermions. 6.3. Staggered fermions. 6.4. Lattice fermions with exact chiral symmetry. 6.5. Exact chiral symmetry from five dimensions. 6.6. Heavy quarks -- 7. Numerical methods for bosons. 7.1. Importance sampling. 7.2. Special methods for the Yang-Mills action -- 8. Numerical methods for fermions. 8.1. Taming the fermion determinant: the [symbol] algorithm. 8.2. Taming the fermion determinant: the R algorithm. 8.3. The fourth root approximation. 8.4. An exact algorithm for the fourth root: rational hybrid Monte Carlo. 8.5. Refinements. 8.6. Special considerations for overlap fermions. 8.7. Monte Carlo methods for fermions. 8.8. Conjugate gradient and its relatives -- 9. Data analysis for lattice simulations. 9.1. Correlations in simulation time. 9.2. Correlations among observables. 9.3. Fitting strategies -- 10. Designing lattice actions. 10.1. Motivation. 10.2. Symanzik improvement. 10.3. Tadpole improvement. 10.4. Renormalization-group inspired improvement. 10.5. "Fat link" actions -- 11. Spectroscopy. 11.1. Computing propagators and correlation functions. 11.2. Sewing propagators together. 11.3. Glueballs. 11.4. The string tension -- 12. Lattice perturbation theory. 12.1. Motivation. 12.2. Technology. 12.3. The scale of the coupling constant -- 13. Operators with anomalous dimension. 13.1. Perturbative techniques for operator matching. 13.2. Nonperturbative techniques for operator matching -- 14. Chiral symmetry and lattice simulations. 14.1. Minimal introduction to chiral perturbation theory. 14.2. Quenching, partial quenching, and unquenching. 14.3. Chiral perturbation theory for staggered fermions. 14.4. Computing topological charge -- 15. Finite volume effects. 15.1. Finite volume effects in chiral perturbation theory. 15.2. The [symbol]-regime. 15.3. Finite volume, more generally. 15.4. Miscellaneous comments -- 16. Testing the standard model with lattice calculations. 16.1. Overview. 16.2. Strong renormalization of weak operators. 16.3. Lattice discrete symmetries. 16.4. Some simple examples. 16.5. Evading a no-go theorem -- 17. QCD at high temperature and density. 17.1. Simulating high temperature. 17.2. Introducing a chemical potential. 17.3. High quark mass limit and chiral limit. 17.4. Locating and characterizing the phase transition. 17.5. Simulating in a nearby ensemble. 17.6. Dimensional reduction and nonperturbative behavior. 17.7. Miscellaneous observables. 17.8. Nonzero density. 17.9. Spectral functions and maximum entropy.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">At a time of robust worldwide debates on globalization, this compact volume shows: how successful each of the East Asian economies have been in harnessing globalization by appropriate and alternative means to catch up with the advanced economies; and what implications can be drawn to assess Chinese economic growth in context. The essays in this book include supporting notes to review effectively the highlights of the development of East Asia, over the six decades after World War II: why the region has performed so well economically relative to the rest of the developing world; which are the most challenging limitations to be addressed; and several sensational controversies in the development economics literature to be sensibly resolved.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lattice gauge theories</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantum chromodynamics</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théories de jauge sur réseau</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Chromodynamique quantique</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Power Resources</subfield><subfield code="x">Nuclear.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">DeTar, Carleton,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n85007937</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">DeGrand, T. (Thomas).</subfield><subfield code="t">Lattice methods for quantum chromodynamics.</subfield><subfield code="d">Hackensack, NJ : World Scientific, ©2006</subfield><subfield code="w">(DLC) 2007271753</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210788</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">210788</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2736113</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn299584998 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:38Z |
institution | BVB |
isbn | 9789812773982 9812773983 1281919225 9781281919229 9786611919221 6611919228 |
language | English |
oclc_num | 299584998 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xv, 345 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | World Scientific, |
record_format | marc |
spelling | DeGrand, T. (Thomas), author. https://id.oclc.org/worldcat/entity/E39PBJxxdVqCGvwdqQyPWJfDv3 http://id.loc.gov/authorities/names/n90610093 Lattice methods for quantum chromodynamics / Thomas DeGrand, Carleton DeTar. Hackensack, NJ : World Scientific, ©2006. 1 online resource (xv, 345 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 329-340) and index. Preface -- 1. Introduction -- 2. Continuum QCD and its phenomenology. 2.1. The Lagrangian and QCD at short distance. 2.2. The nonrelativistic quark model. 2.3. Heavy quark systems. 2.4. Chiral symmetry and chiral symmetry breaking. 2.5. A technical aside: Ward identities. 2.6. The axial anomaly and instantons. 2.7. The large N[symbol] limit -- 3. Path integration. 3.1. Lattice Schwinger model. 3.2. Hamiltonian with gauge fields. 3.3. Feynman path integral. 3.4. Free fermions. 3.5. The interacting theory -- 4. Renormalization and the renormalization group. 4.1. Blocking transformations. 4.2. Renormalization group equations. 4.3. Renormalization group equations for the scalar field. 4.4. Effective field theories -- 5. Yang-Mills theory on the lattice. 5.1. Gauge invariance on the lattice. 5.2. Yang-Mills actions. 5.3. Gauge fixing. 5.4. Strong coupling -- 6. Fermions on the lattice. 6.1. Naive fermions. 6.2. Wilson-type fermions. 6.3. Staggered fermions. 6.4. Lattice fermions with exact chiral symmetry. 6.5. Exact chiral symmetry from five dimensions. 6.6. Heavy quarks -- 7. Numerical methods for bosons. 7.1. Importance sampling. 7.2. Special methods for the Yang-Mills action -- 8. Numerical methods for fermions. 8.1. Taming the fermion determinant: the [symbol] algorithm. 8.2. Taming the fermion determinant: the R algorithm. 8.3. The fourth root approximation. 8.4. An exact algorithm for the fourth root: rational hybrid Monte Carlo. 8.5. Refinements. 8.6. Special considerations for overlap fermions. 8.7. Monte Carlo methods for fermions. 8.8. Conjugate gradient and its relatives -- 9. Data analysis for lattice simulations. 9.1. Correlations in simulation time. 9.2. Correlations among observables. 9.3. Fitting strategies -- 10. Designing lattice actions. 10.1. Motivation. 10.2. Symanzik improvement. 10.3. Tadpole improvement. 10.4. Renormalization-group inspired improvement. 10.5. "Fat link" actions -- 11. Spectroscopy. 11.1. Computing propagators and correlation functions. 11.2. Sewing propagators together. 11.3. Glueballs. 11.4. The string tension -- 12. Lattice perturbation theory. 12.1. Motivation. 12.2. Technology. 12.3. The scale of the coupling constant -- 13. Operators with anomalous dimension. 13.1. Perturbative techniques for operator matching. 13.2. Nonperturbative techniques for operator matching -- 14. Chiral symmetry and lattice simulations. 14.1. Minimal introduction to chiral perturbation theory. 14.2. Quenching, partial quenching, and unquenching. 14.3. Chiral perturbation theory for staggered fermions. 14.4. Computing topological charge -- 15. Finite volume effects. 15.1. Finite volume effects in chiral perturbation theory. 15.2. The [symbol]-regime. 15.3. Finite volume, more generally. 15.4. Miscellaneous comments -- 16. Testing the standard model with lattice calculations. 16.1. Overview. 16.2. Strong renormalization of weak operators. 16.3. Lattice discrete symmetries. 16.4. Some simple examples. 16.5. Evading a no-go theorem -- 17. QCD at high temperature and density. 17.1. Simulating high temperature. 17.2. Introducing a chemical potential. 17.3. High quark mass limit and chiral limit. 17.4. Locating and characterizing the phase transition. 17.5. Simulating in a nearby ensemble. 17.6. Dimensional reduction and nonperturbative behavior. 17.7. Miscellaneous observables. 17.8. Nonzero density. 17.9. Spectral functions and maximum entropy. Print version record. At a time of robust worldwide debates on globalization, this compact volume shows: how successful each of the East Asian economies have been in harnessing globalization by appropriate and alternative means to catch up with the advanced economies; and what implications can be drawn to assess Chinese economic growth in context. The essays in this book include supporting notes to review effectively the highlights of the development of East Asia, over the six decades after World War II: why the region has performed so well economically relative to the rest of the developing world; which are the most challenging limitations to be addressed; and several sensational controversies in the development economics literature to be sensibly resolved. English. Lattice gauge theories Mathematical models. Quantum chromodynamics Mathematical models. Théories de jauge sur réseau Modèles mathématiques. Chromodynamique quantique Modèles mathématiques. TECHNOLOGY & ENGINEERING Power Resources Nuclear. bisacsh DeTar, Carleton, author. http://id.loc.gov/authorities/names/n85007937 Print version: DeGrand, T. (Thomas). Lattice methods for quantum chromodynamics. Hackensack, NJ : World Scientific, ©2006 (DLC) 2007271753 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210788 Volltext |
spellingShingle | DeGrand, T. (Thomas) DeTar, Carleton Lattice methods for quantum chromodynamics / Preface -- 1. Introduction -- 2. Continuum QCD and its phenomenology. 2.1. The Lagrangian and QCD at short distance. 2.2. The nonrelativistic quark model. 2.3. Heavy quark systems. 2.4. Chiral symmetry and chiral symmetry breaking. 2.5. A technical aside: Ward identities. 2.6. The axial anomaly and instantons. 2.7. The large N[symbol] limit -- 3. Path integration. 3.1. Lattice Schwinger model. 3.2. Hamiltonian with gauge fields. 3.3. Feynman path integral. 3.4. Free fermions. 3.5. The interacting theory -- 4. Renormalization and the renormalization group. 4.1. Blocking transformations. 4.2. Renormalization group equations. 4.3. Renormalization group equations for the scalar field. 4.4. Effective field theories -- 5. Yang-Mills theory on the lattice. 5.1. Gauge invariance on the lattice. 5.2. Yang-Mills actions. 5.3. Gauge fixing. 5.4. Strong coupling -- 6. Fermions on the lattice. 6.1. Naive fermions. 6.2. Wilson-type fermions. 6.3. Staggered fermions. 6.4. Lattice fermions with exact chiral symmetry. 6.5. Exact chiral symmetry from five dimensions. 6.6. Heavy quarks -- 7. Numerical methods for bosons. 7.1. Importance sampling. 7.2. Special methods for the Yang-Mills action -- 8. Numerical methods for fermions. 8.1. Taming the fermion determinant: the [symbol] algorithm. 8.2. Taming the fermion determinant: the R algorithm. 8.3. The fourth root approximation. 8.4. An exact algorithm for the fourth root: rational hybrid Monte Carlo. 8.5. Refinements. 8.6. Special considerations for overlap fermions. 8.7. Monte Carlo methods for fermions. 8.8. Conjugate gradient and its relatives -- 9. Data analysis for lattice simulations. 9.1. Correlations in simulation time. 9.2. Correlations among observables. 9.3. Fitting strategies -- 10. Designing lattice actions. 10.1. Motivation. 10.2. Symanzik improvement. 10.3. Tadpole improvement. 10.4. Renormalization-group inspired improvement. 10.5. "Fat link" actions -- 11. Spectroscopy. 11.1. Computing propagators and correlation functions. 11.2. Sewing propagators together. 11.3. Glueballs. 11.4. The string tension -- 12. Lattice perturbation theory. 12.1. Motivation. 12.2. Technology. 12.3. The scale of the coupling constant -- 13. Operators with anomalous dimension. 13.1. Perturbative techniques for operator matching. 13.2. Nonperturbative techniques for operator matching -- 14. Chiral symmetry and lattice simulations. 14.1. Minimal introduction to chiral perturbation theory. 14.2. Quenching, partial quenching, and unquenching. 14.3. Chiral perturbation theory for staggered fermions. 14.4. Computing topological charge -- 15. Finite volume effects. 15.1. Finite volume effects in chiral perturbation theory. 15.2. The [symbol]-regime. 15.3. Finite volume, more generally. 15.4. Miscellaneous comments -- 16. Testing the standard model with lattice calculations. 16.1. Overview. 16.2. Strong renormalization of weak operators. 16.3. Lattice discrete symmetries. 16.4. Some simple examples. 16.5. Evading a no-go theorem -- 17. QCD at high temperature and density. 17.1. Simulating high temperature. 17.2. Introducing a chemical potential. 17.3. High quark mass limit and chiral limit. 17.4. Locating and characterizing the phase transition. 17.5. Simulating in a nearby ensemble. 17.6. Dimensional reduction and nonperturbative behavior. 17.7. Miscellaneous observables. 17.8. Nonzero density. 17.9. Spectral functions and maximum entropy. Lattice gauge theories Mathematical models. Quantum chromodynamics Mathematical models. Théories de jauge sur réseau Modèles mathématiques. Chromodynamique quantique Modèles mathématiques. TECHNOLOGY & ENGINEERING Power Resources Nuclear. bisacsh |
title | Lattice methods for quantum chromodynamics / |
title_auth | Lattice methods for quantum chromodynamics / |
title_exact_search | Lattice methods for quantum chromodynamics / |
title_full | Lattice methods for quantum chromodynamics / Thomas DeGrand, Carleton DeTar. |
title_fullStr | Lattice methods for quantum chromodynamics / Thomas DeGrand, Carleton DeTar. |
title_full_unstemmed | Lattice methods for quantum chromodynamics / Thomas DeGrand, Carleton DeTar. |
title_short | Lattice methods for quantum chromodynamics / |
title_sort | lattice methods for quantum chromodynamics |
topic | Lattice gauge theories Mathematical models. Quantum chromodynamics Mathematical models. Théories de jauge sur réseau Modèles mathématiques. Chromodynamique quantique Modèles mathématiques. TECHNOLOGY & ENGINEERING Power Resources Nuclear. bisacsh |
topic_facet | Lattice gauge theories Mathematical models. Quantum chromodynamics Mathematical models. Théories de jauge sur réseau Modèles mathématiques. Chromodynamique quantique Modèles mathématiques. TECHNOLOGY & ENGINEERING Power Resources Nuclear. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210788 |
work_keys_str_mv | AT degrandt latticemethodsforquantumchromodynamics AT detarcarleton latticemethodsforquantumchromodynamics |