Syntactic pattern recognition for seismic oil exploration /:
The use of pattern recognition has become more and more important in seismic oil exploration. Interpreting a large volume of seismic data is a challenging problem. Seismic reflection data in the one-shot seismogram and stacked seismogram may contain some structural information from the response of t...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
River Edge, NJ :
World Scientific,
2002.
|
Schriftenreihe: | Series in machine perception and artificial intelligence ;
v. 46. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The use of pattern recognition has become more and more important in seismic oil exploration. Interpreting a large volume of seismic data is a challenging problem. Seismic reflection data in the one-shot seismogram and stacked seismogram may contain some structural information from the response of the subsurface. Syntactic/structural pattern recognition techniques can recognize the structural seismic patterns and improve seismic interpretations. The syntactic analysis methods include: (1) the error-correcting finite-state parsing, (2) the modified error-correcting Earley's parsing, (3) the par. |
Beschreibung: | 1 online resource (xiv, 133 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 123-129) and index. |
ISBN: | 9789812775740 9812775749 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn261470345 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 081010s2002 njua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d UBY |d IDEBK |d E7B |d YDXCP |d OCLCQ |d OCLCF |d OCLCQ |d NLGGC |d OCLCO |d EBLCP |d I9W |d OCLCQ |d AGLDB |d COCUF |d MOR |d PIFAG |d ZCU |d OTZ |d MERUC |d OCLCQ |d U3W |d STF |d WRM |d VTS |d NRAMU |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d JBG |d OCLCQ |d DKC |d AU@ |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d K6U |d UKCRE |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d TMA |d OCLCQ | ||
019 | |a 505147437 |a 646768133 |a 764498190 |a 868641143 |a 879074231 |a 961562056 |a 962624484 |a 988518217 |a 991993126 |a 994900127 |a 1037739903 |a 1038687777 |a 1045467440 |a 1055365870 |a 1065097862 |a 1065100775 |a 1081209331 |a 1153486368 |a 1228595250 | ||
020 | |a 9789812775740 |q (electronic bk.) | ||
020 | |a 9812775749 |q (electronic bk.) | ||
020 | |z 9810246005 | ||
020 | |z 9789810246006 | ||
035 | |a (OCoLC)261470345 |z (OCoLC)505147437 |z (OCoLC)646768133 |z (OCoLC)764498190 |z (OCoLC)868641143 |z (OCoLC)879074231 |z (OCoLC)961562056 |z (OCoLC)962624484 |z (OCoLC)988518217 |z (OCoLC)991993126 |z (OCoLC)994900127 |z (OCoLC)1037739903 |z (OCoLC)1038687777 |z (OCoLC)1045467440 |z (OCoLC)1055365870 |z (OCoLC)1065097862 |z (OCoLC)1065100775 |z (OCoLC)1081209331 |z (OCoLC)1153486368 |z (OCoLC)1228595250 | ||
050 | 4 | |a TN271.P4 |b H88 2002eb | |
072 | 7 | |a TEC |x 026000 |2 bisacsh | |
082 | 7 | |a 622/.1828/0285 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Huang, Kou-Yuan. |0 http://id.loc.gov/authorities/names/n2002155318 | |
245 | 1 | 0 | |a Syntactic pattern recognition for seismic oil exploration / |c Kou-Yuan Huang. |
260 | |a River Edge, NJ : |b World Scientific, |c 2002. | ||
300 | |a 1 online resource (xiv, 133 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Series in machine perception and artificial intelligence ; |v v. 46 | |
504 | |a Includes bibliographical references (pages 123-129) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a AUTHOR'S BIOGRAPHY; PREFACE; CONTENTS; 1 INTRODUCTION TO SYNTACTIC PATTERN RECOGNITION; 1.1. SUMMARY; 1.2. INTRODUCTION; 1.3. ORGANIZATION OF THIS BOOK; 2 INTRODUCTION TO FORMAL LANGUAGES AND AUTOMATA; 2.1. SUMMARY; 2.2. LANGUAGES AND GRAMMARS; 2.3. FINITE-STATE AUTOMATON; 2.4. EARLEY'S PARSING; 2.5. FINITE-STATE GRAMMATICAL INFERENCE; 2.6. STRING DISTANCE COMPUTATION; 3 ERROR-CORRECTING FINITE-STATE AUTOMATON FOR RECOGNITION OF RICKER WAVELETS; 3.1. SUMMARY; 3.2. INTRODUCTION; 3.3. SYNTACTIC PATTERN RECOGNITION; 3.3.1. Training and Testing Ricker Wavelets. | |
505 | 8 | |a 3.3.2. Location of Waveforms and Pattern Representation3.4. EXPANDED GRAMMARS; 3.4.1. General Expanded Finite-State Grammar; 3.4.2. Restricted Expanded Finite-State Grammar; 3.5. MINIMUM-DISTANCE ERROR-CORRECTING FINITE-STATE PARSING; 3.6. CLASSIFICATION OF RICKER WAVELETS; 3.7. DISCUSSION AND CONCLUSIONS; 4 ATTRIBUTED GRAMMAR AND ERROR-CORRECTING EARLEY'S PARSING; 4.1. SUMMARY; 4.2. INTRODUCTION; 4.3. ATTRIBUTED PRIMITIVES AND STRING; 4.4. DEFINITION OF ERROR TRANSFORMATIONS FOR ATTRIBUTED STRINGS; 4.5. INFERENCE OF ATTRIBUTED GRAMMAR. | |
505 | 8 | |a 4.6. MINIMUM-DISTANCE ERROR-CORRECTING EARLEY'S PARSING FOR ATTRIBUTED STRING4.7. EXPERIMENT; 5 ATTRIBUTED GRAMMAR AND MATCH PRIMITIVE MEASURE (MPM) FOR RECOGNITION OF SEISMIC WAVELETS; 5.1. SUMMARY; 5.2. SIMILARITY MEASURE OF ATTRIBUTED STRING MATCHING; 5.3. INFERENCE OF ATTRIBUTED GRAMMAR; 5.4. TOP-DOWN PARSING USING MPM; 5.5. EXPERIMENTS OF SEISMIC PATTERN RECOGNITION; 5.5.1. Recognition of Seismic Ricker Wavelets; 5.5.2. Recognition of Wavelets in Real Seismogram; 5.6. CONCLUSIONS; 6 STRING DISTANCE AND LIKELIHOOD RATIO TEST FOR DETECTION OF CANDIDATE BRIGHT SPOT; 6.1. SUMMARY. | |
505 | 8 | |a 6.2. INTRODUCTION6.3. OPTIMAL QUANTIZATION ENCODING; 6.4. LIKELIHOOD RATIO TEST (LRT); 6.5. LEVENSHTEIN DISTANCE AND ERROR PROBABILITY; 6.6. EXPERIMENT AT MISSISSIPPI CANYON; 6.6.1. Likelihood Ratio Test (LRT); 6.6.2. Threshold for Global Detection; 6.6.3. Threshold for the Detection of Candidate Bright Spot; 6.7. EXPERIMENT AT HIGH ISLAND; 7 TREE GRAMMAR AND AUTOMATON FOR SEISMIC PATTERN RECOGNITION; 7.1. SUMMARY; 7.2. INTRODUCTION; 7.3. TREE GRAMMAR AND LANGUAGE; 7.4. TREE AUTOMATON; 7.5. TREE REPRESENTATIONS OF PATTERNS; 7.6. INFERENCE OF EXPANSIVE TREE GRAMMAR. | |
505 | 8 | |a 7.7. WEIGHTED MINIMUM-DISTANCE SPECTA7.8. MODIFIED MAXIMUM-LIKELIHOOD SPECTA; 7.9. MINIMUM DISTANCE GECTA; 7.10. EXPERIMENTS ON INPUT TESTING SEISMOGRAMS; 7.11. DISCUSSION AND CONCLUSIONS; 8 A HIERARCHICAL RECOGNITION SYSTEM OF SEISMIC PATTERNS AND FUTURE STUDY; 8.1. SUMMARY; 8.2. INTRODUCTION; 8.3. SYNTACTIC PATTERN RECOGNITION; 8.3.1. Linking Processing and Segmentation; 8.3.2. Primitive Recognition; 8.3.3. Training Patterns; 8.3.4. Grammatical Inference; 8.3.5. Finite-state Error Correcting Parsing; 8.4. COMMON-SOURCE SIMULATED SEISMOGRAM RESULTS; 8.5. STACKED SIMULATED SEISMOGRAM RESULTS. | |
520 | |a The use of pattern recognition has become more and more important in seismic oil exploration. Interpreting a large volume of seismic data is a challenging problem. Seismic reflection data in the one-shot seismogram and stacked seismogram may contain some structural information from the response of the subsurface. Syntactic/structural pattern recognition techniques can recognize the structural seismic patterns and improve seismic interpretations. The syntactic analysis methods include: (1) the error-correcting finite-state parsing, (2) the modified error-correcting Earley's parsing, (3) the par. | ||
650 | 0 | |a Petroleum |x Prospecting |x Data processing. | |
650 | 0 | |a Pattern recognition systems. |0 http://id.loc.gov/authorities/subjects/sh85098791 | |
650 | 0 | |a Seismic reflection method |x Data processing. |0 http://id.loc.gov/authorities/subjects/sh85119626 | |
650 | 6 | |a Pétrole |x Prospection |x Informatique. | |
650 | 6 | |a Reconnaissance des formes (Informatique) | |
650 | 6 | |a Méthode sismique-réflexion |x Informatique. | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Mining. |2 bisacsh | |
650 | 7 | |a Pattern recognition systems |2 fast | |
650 | 7 | |a Petroleum |x Prospecting |x Data processing |2 fast | |
650 | 7 | |a Seismic reflection method |x Data processing |2 fast | |
776 | 0 | 8 | |i Print version: |a Huang, Kou-Yuan. |t Syntactic pattern recognition for seismic oil exploration. |d River Edge, NJ : World Scientific, 2002 |z 9810246005 |z 9789810246006 |w (DLC) 2002514235 |w (OCoLC)50134555 |
830 | 0 | |a Series in machine perception and artificial intelligence ; |v v. 46. |0 http://id.loc.gov/authorities/names/n91107585 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235838 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24684607 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1679492 | ||
938 | |a ebrary |b EBRY |n ebr10255381 | ||
938 | |a EBSCOhost |b EBSC |n 235838 | ||
938 | |a YBP Library Services |b YANK |n 2889229 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn261470345 |
---|---|
_version_ | 1816881678868545536 |
adam_text | |
any_adam_object | |
author | Huang, Kou-Yuan |
author_GND | http://id.loc.gov/authorities/names/n2002155318 |
author_facet | Huang, Kou-Yuan |
author_role | |
author_sort | Huang, Kou-Yuan |
author_variant | k y h kyh |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TN271 |
callnumber-raw | TN271.P4 H88 2002eb |
callnumber-search | TN271.P4 H88 2002eb |
callnumber-sort | TN 3271 P4 H88 42002EB |
callnumber-subject | TN - Mining Engineering and Metallurgy |
collection | ZDB-4-EBA |
contents | AUTHOR'S BIOGRAPHY; PREFACE; CONTENTS; 1 INTRODUCTION TO SYNTACTIC PATTERN RECOGNITION; 1.1. SUMMARY; 1.2. INTRODUCTION; 1.3. ORGANIZATION OF THIS BOOK; 2 INTRODUCTION TO FORMAL LANGUAGES AND AUTOMATA; 2.1. SUMMARY; 2.2. LANGUAGES AND GRAMMARS; 2.3. FINITE-STATE AUTOMATON; 2.4. EARLEY'S PARSING; 2.5. FINITE-STATE GRAMMATICAL INFERENCE; 2.6. STRING DISTANCE COMPUTATION; 3 ERROR-CORRECTING FINITE-STATE AUTOMATON FOR RECOGNITION OF RICKER WAVELETS; 3.1. SUMMARY; 3.2. INTRODUCTION; 3.3. SYNTACTIC PATTERN RECOGNITION; 3.3.1. Training and Testing Ricker Wavelets. 3.3.2. Location of Waveforms and Pattern Representation3.4. EXPANDED GRAMMARS; 3.4.1. General Expanded Finite-State Grammar; 3.4.2. Restricted Expanded Finite-State Grammar; 3.5. MINIMUM-DISTANCE ERROR-CORRECTING FINITE-STATE PARSING; 3.6. CLASSIFICATION OF RICKER WAVELETS; 3.7. DISCUSSION AND CONCLUSIONS; 4 ATTRIBUTED GRAMMAR AND ERROR-CORRECTING EARLEY'S PARSING; 4.1. SUMMARY; 4.2. INTRODUCTION; 4.3. ATTRIBUTED PRIMITIVES AND STRING; 4.4. DEFINITION OF ERROR TRANSFORMATIONS FOR ATTRIBUTED STRINGS; 4.5. INFERENCE OF ATTRIBUTED GRAMMAR. 4.6. MINIMUM-DISTANCE ERROR-CORRECTING EARLEY'S PARSING FOR ATTRIBUTED STRING4.7. EXPERIMENT; 5 ATTRIBUTED GRAMMAR AND MATCH PRIMITIVE MEASURE (MPM) FOR RECOGNITION OF SEISMIC WAVELETS; 5.1. SUMMARY; 5.2. SIMILARITY MEASURE OF ATTRIBUTED STRING MATCHING; 5.3. INFERENCE OF ATTRIBUTED GRAMMAR; 5.4. TOP-DOWN PARSING USING MPM; 5.5. EXPERIMENTS OF SEISMIC PATTERN RECOGNITION; 5.5.1. Recognition of Seismic Ricker Wavelets; 5.5.2. Recognition of Wavelets in Real Seismogram; 5.6. CONCLUSIONS; 6 STRING DISTANCE AND LIKELIHOOD RATIO TEST FOR DETECTION OF CANDIDATE BRIGHT SPOT; 6.1. SUMMARY. 6.2. INTRODUCTION6.3. OPTIMAL QUANTIZATION ENCODING; 6.4. LIKELIHOOD RATIO TEST (LRT); 6.5. LEVENSHTEIN DISTANCE AND ERROR PROBABILITY; 6.6. EXPERIMENT AT MISSISSIPPI CANYON; 6.6.1. Likelihood Ratio Test (LRT); 6.6.2. Threshold for Global Detection; 6.6.3. Threshold for the Detection of Candidate Bright Spot; 6.7. EXPERIMENT AT HIGH ISLAND; 7 TREE GRAMMAR AND AUTOMATON FOR SEISMIC PATTERN RECOGNITION; 7.1. SUMMARY; 7.2. INTRODUCTION; 7.3. TREE GRAMMAR AND LANGUAGE; 7.4. TREE AUTOMATON; 7.5. TREE REPRESENTATIONS OF PATTERNS; 7.6. INFERENCE OF EXPANSIVE TREE GRAMMAR. 7.7. WEIGHTED MINIMUM-DISTANCE SPECTA7.8. MODIFIED MAXIMUM-LIKELIHOOD SPECTA; 7.9. MINIMUM DISTANCE GECTA; 7.10. EXPERIMENTS ON INPUT TESTING SEISMOGRAMS; 7.11. DISCUSSION AND CONCLUSIONS; 8 A HIERARCHICAL RECOGNITION SYSTEM OF SEISMIC PATTERNS AND FUTURE STUDY; 8.1. SUMMARY; 8.2. INTRODUCTION; 8.3. SYNTACTIC PATTERN RECOGNITION; 8.3.1. Linking Processing and Segmentation; 8.3.2. Primitive Recognition; 8.3.3. Training Patterns; 8.3.4. Grammatical Inference; 8.3.5. Finite-state Error Correcting Parsing; 8.4. COMMON-SOURCE SIMULATED SEISMOGRAM RESULTS; 8.5. STACKED SIMULATED SEISMOGRAM RESULTS. |
ctrlnum | (OCoLC)261470345 |
dewey-full | 622/.1828/0285 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 622 - Mining and related operations |
dewey-raw | 622/.1828/0285 |
dewey-search | 622/.1828/0285 |
dewey-sort | 3622 41828 3285 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Bergbau / Hüttenwesen |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07019cam a2200649 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn261470345</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">081010s2002 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UBY</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">EBLCP</subfield><subfield code="d">I9W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">COCUF</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OTZ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">UKCRE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">TMA</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">505147437</subfield><subfield code="a">646768133</subfield><subfield code="a">764498190</subfield><subfield code="a">868641143</subfield><subfield code="a">879074231</subfield><subfield code="a">961562056</subfield><subfield code="a">962624484</subfield><subfield code="a">988518217</subfield><subfield code="a">991993126</subfield><subfield code="a">994900127</subfield><subfield code="a">1037739903</subfield><subfield code="a">1038687777</subfield><subfield code="a">1045467440</subfield><subfield code="a">1055365870</subfield><subfield code="a">1065097862</subfield><subfield code="a">1065100775</subfield><subfield code="a">1081209331</subfield><subfield code="a">1153486368</subfield><subfield code="a">1228595250</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812775740</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812775749</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9810246005</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789810246006</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)261470345</subfield><subfield code="z">(OCoLC)505147437</subfield><subfield code="z">(OCoLC)646768133</subfield><subfield code="z">(OCoLC)764498190</subfield><subfield code="z">(OCoLC)868641143</subfield><subfield code="z">(OCoLC)879074231</subfield><subfield code="z">(OCoLC)961562056</subfield><subfield code="z">(OCoLC)962624484</subfield><subfield code="z">(OCoLC)988518217</subfield><subfield code="z">(OCoLC)991993126</subfield><subfield code="z">(OCoLC)994900127</subfield><subfield code="z">(OCoLC)1037739903</subfield><subfield code="z">(OCoLC)1038687777</subfield><subfield code="z">(OCoLC)1045467440</subfield><subfield code="z">(OCoLC)1055365870</subfield><subfield code="z">(OCoLC)1065097862</subfield><subfield code="z">(OCoLC)1065100775</subfield><subfield code="z">(OCoLC)1081209331</subfield><subfield code="z">(OCoLC)1153486368</subfield><subfield code="z">(OCoLC)1228595250</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TN271.P4</subfield><subfield code="b">H88 2002eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">026000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">622/.1828/0285</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Kou-Yuan.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2002155318</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Syntactic pattern recognition for seismic oil exploration /</subfield><subfield code="c">Kou-Yuan Huang.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">River Edge, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">2002.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 133 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series in machine perception and artificial intelligence ;</subfield><subfield code="v">v. 46</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 123-129) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">AUTHOR'S BIOGRAPHY; PREFACE; CONTENTS; 1 INTRODUCTION TO SYNTACTIC PATTERN RECOGNITION; 1.1. SUMMARY; 1.2. INTRODUCTION; 1.3. ORGANIZATION OF THIS BOOK; 2 INTRODUCTION TO FORMAL LANGUAGES AND AUTOMATA; 2.1. SUMMARY; 2.2. LANGUAGES AND GRAMMARS; 2.3. FINITE-STATE AUTOMATON; 2.4. EARLEY'S PARSING; 2.5. FINITE-STATE GRAMMATICAL INFERENCE; 2.6. STRING DISTANCE COMPUTATION; 3 ERROR-CORRECTING FINITE-STATE AUTOMATON FOR RECOGNITION OF RICKER WAVELETS; 3.1. SUMMARY; 3.2. INTRODUCTION; 3.3. SYNTACTIC PATTERN RECOGNITION; 3.3.1. Training and Testing Ricker Wavelets.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3.2. Location of Waveforms and Pattern Representation3.4. EXPANDED GRAMMARS; 3.4.1. General Expanded Finite-State Grammar; 3.4.2. Restricted Expanded Finite-State Grammar; 3.5. MINIMUM-DISTANCE ERROR-CORRECTING FINITE-STATE PARSING; 3.6. CLASSIFICATION OF RICKER WAVELETS; 3.7. DISCUSSION AND CONCLUSIONS; 4 ATTRIBUTED GRAMMAR AND ERROR-CORRECTING EARLEY'S PARSING; 4.1. SUMMARY; 4.2. INTRODUCTION; 4.3. ATTRIBUTED PRIMITIVES AND STRING; 4.4. DEFINITION OF ERROR TRANSFORMATIONS FOR ATTRIBUTED STRINGS; 4.5. INFERENCE OF ATTRIBUTED GRAMMAR.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.6. MINIMUM-DISTANCE ERROR-CORRECTING EARLEY'S PARSING FOR ATTRIBUTED STRING4.7. EXPERIMENT; 5 ATTRIBUTED GRAMMAR AND MATCH PRIMITIVE MEASURE (MPM) FOR RECOGNITION OF SEISMIC WAVELETS; 5.1. SUMMARY; 5.2. SIMILARITY MEASURE OF ATTRIBUTED STRING MATCHING; 5.3. INFERENCE OF ATTRIBUTED GRAMMAR; 5.4. TOP-DOWN PARSING USING MPM; 5.5. EXPERIMENTS OF SEISMIC PATTERN RECOGNITION; 5.5.1. Recognition of Seismic Ricker Wavelets; 5.5.2. Recognition of Wavelets in Real Seismogram; 5.6. CONCLUSIONS; 6 STRING DISTANCE AND LIKELIHOOD RATIO TEST FOR DETECTION OF CANDIDATE BRIGHT SPOT; 6.1. SUMMARY.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2. INTRODUCTION6.3. OPTIMAL QUANTIZATION ENCODING; 6.4. LIKELIHOOD RATIO TEST (LRT); 6.5. LEVENSHTEIN DISTANCE AND ERROR PROBABILITY; 6.6. EXPERIMENT AT MISSISSIPPI CANYON; 6.6.1. Likelihood Ratio Test (LRT); 6.6.2. Threshold for Global Detection; 6.6.3. Threshold for the Detection of Candidate Bright Spot; 6.7. EXPERIMENT AT HIGH ISLAND; 7 TREE GRAMMAR AND AUTOMATON FOR SEISMIC PATTERN RECOGNITION; 7.1. SUMMARY; 7.2. INTRODUCTION; 7.3. TREE GRAMMAR AND LANGUAGE; 7.4. TREE AUTOMATON; 7.5. TREE REPRESENTATIONS OF PATTERNS; 7.6. INFERENCE OF EXPANSIVE TREE GRAMMAR.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.7. WEIGHTED MINIMUM-DISTANCE SPECTA7.8. MODIFIED MAXIMUM-LIKELIHOOD SPECTA; 7.9. MINIMUM DISTANCE GECTA; 7.10. EXPERIMENTS ON INPUT TESTING SEISMOGRAMS; 7.11. DISCUSSION AND CONCLUSIONS; 8 A HIERARCHICAL RECOGNITION SYSTEM OF SEISMIC PATTERNS AND FUTURE STUDY; 8.1. SUMMARY; 8.2. INTRODUCTION; 8.3. SYNTACTIC PATTERN RECOGNITION; 8.3.1. Linking Processing and Segmentation; 8.3.2. Primitive Recognition; 8.3.3. Training Patterns; 8.3.4. Grammatical Inference; 8.3.5. Finite-state Error Correcting Parsing; 8.4. COMMON-SOURCE SIMULATED SEISMOGRAM RESULTS; 8.5. STACKED SIMULATED SEISMOGRAM RESULTS.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The use of pattern recognition has become more and more important in seismic oil exploration. Interpreting a large volume of seismic data is a challenging problem. Seismic reflection data in the one-shot seismogram and stacked seismogram may contain some structural information from the response of the subsurface. Syntactic/structural pattern recognition techniques can recognize the structural seismic patterns and improve seismic interpretations. The syntactic analysis methods include: (1) the error-correcting finite-state parsing, (2) the modified error-correcting Earley's parsing, (3) the par.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Petroleum</subfield><subfield code="x">Prospecting</subfield><subfield code="x">Data processing.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Pattern recognition systems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85098791</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Seismic reflection method</subfield><subfield code="x">Data processing.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85119626</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Pétrole</subfield><subfield code="x">Prospection</subfield><subfield code="x">Informatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Reconnaissance des formes (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Méthode sismique-réflexion</subfield><subfield code="x">Informatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Mining.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pattern recognition systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Petroleum</subfield><subfield code="x">Prospecting</subfield><subfield code="x">Data processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Seismic reflection method</subfield><subfield code="x">Data processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Huang, Kou-Yuan.</subfield><subfield code="t">Syntactic pattern recognition for seismic oil exploration.</subfield><subfield code="d">River Edge, NJ : World Scientific, 2002</subfield><subfield code="z">9810246005</subfield><subfield code="z">9789810246006</subfield><subfield code="w">(DLC) 2002514235</subfield><subfield code="w">(OCoLC)50134555</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series in machine perception and artificial intelligence ;</subfield><subfield code="v">v. 46.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n91107585</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235838</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684607</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1679492</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10255381</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">235838</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2889229</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn261470345 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:32Z |
institution | BVB |
isbn | 9789812775740 9812775749 |
language | English |
oclc_num | 261470345 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 133 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | World Scientific, |
record_format | marc |
series | Series in machine perception and artificial intelligence ; |
series2 | Series in machine perception and artificial intelligence ; |
spelling | Huang, Kou-Yuan. http://id.loc.gov/authorities/names/n2002155318 Syntactic pattern recognition for seismic oil exploration / Kou-Yuan Huang. River Edge, NJ : World Scientific, 2002. 1 online resource (xiv, 133 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Series in machine perception and artificial intelligence ; v. 46 Includes bibliographical references (pages 123-129) and index. Print version record. AUTHOR'S BIOGRAPHY; PREFACE; CONTENTS; 1 INTRODUCTION TO SYNTACTIC PATTERN RECOGNITION; 1.1. SUMMARY; 1.2. INTRODUCTION; 1.3. ORGANIZATION OF THIS BOOK; 2 INTRODUCTION TO FORMAL LANGUAGES AND AUTOMATA; 2.1. SUMMARY; 2.2. LANGUAGES AND GRAMMARS; 2.3. FINITE-STATE AUTOMATON; 2.4. EARLEY'S PARSING; 2.5. FINITE-STATE GRAMMATICAL INFERENCE; 2.6. STRING DISTANCE COMPUTATION; 3 ERROR-CORRECTING FINITE-STATE AUTOMATON FOR RECOGNITION OF RICKER WAVELETS; 3.1. SUMMARY; 3.2. INTRODUCTION; 3.3. SYNTACTIC PATTERN RECOGNITION; 3.3.1. Training and Testing Ricker Wavelets. 3.3.2. Location of Waveforms and Pattern Representation3.4. EXPANDED GRAMMARS; 3.4.1. General Expanded Finite-State Grammar; 3.4.2. Restricted Expanded Finite-State Grammar; 3.5. MINIMUM-DISTANCE ERROR-CORRECTING FINITE-STATE PARSING; 3.6. CLASSIFICATION OF RICKER WAVELETS; 3.7. DISCUSSION AND CONCLUSIONS; 4 ATTRIBUTED GRAMMAR AND ERROR-CORRECTING EARLEY'S PARSING; 4.1. SUMMARY; 4.2. INTRODUCTION; 4.3. ATTRIBUTED PRIMITIVES AND STRING; 4.4. DEFINITION OF ERROR TRANSFORMATIONS FOR ATTRIBUTED STRINGS; 4.5. INFERENCE OF ATTRIBUTED GRAMMAR. 4.6. MINIMUM-DISTANCE ERROR-CORRECTING EARLEY'S PARSING FOR ATTRIBUTED STRING4.7. EXPERIMENT; 5 ATTRIBUTED GRAMMAR AND MATCH PRIMITIVE MEASURE (MPM) FOR RECOGNITION OF SEISMIC WAVELETS; 5.1. SUMMARY; 5.2. SIMILARITY MEASURE OF ATTRIBUTED STRING MATCHING; 5.3. INFERENCE OF ATTRIBUTED GRAMMAR; 5.4. TOP-DOWN PARSING USING MPM; 5.5. EXPERIMENTS OF SEISMIC PATTERN RECOGNITION; 5.5.1. Recognition of Seismic Ricker Wavelets; 5.5.2. Recognition of Wavelets in Real Seismogram; 5.6. CONCLUSIONS; 6 STRING DISTANCE AND LIKELIHOOD RATIO TEST FOR DETECTION OF CANDIDATE BRIGHT SPOT; 6.1. SUMMARY. 6.2. INTRODUCTION6.3. OPTIMAL QUANTIZATION ENCODING; 6.4. LIKELIHOOD RATIO TEST (LRT); 6.5. LEVENSHTEIN DISTANCE AND ERROR PROBABILITY; 6.6. EXPERIMENT AT MISSISSIPPI CANYON; 6.6.1. Likelihood Ratio Test (LRT); 6.6.2. Threshold for Global Detection; 6.6.3. Threshold for the Detection of Candidate Bright Spot; 6.7. EXPERIMENT AT HIGH ISLAND; 7 TREE GRAMMAR AND AUTOMATON FOR SEISMIC PATTERN RECOGNITION; 7.1. SUMMARY; 7.2. INTRODUCTION; 7.3. TREE GRAMMAR AND LANGUAGE; 7.4. TREE AUTOMATON; 7.5. TREE REPRESENTATIONS OF PATTERNS; 7.6. INFERENCE OF EXPANSIVE TREE GRAMMAR. 7.7. WEIGHTED MINIMUM-DISTANCE SPECTA7.8. MODIFIED MAXIMUM-LIKELIHOOD SPECTA; 7.9. MINIMUM DISTANCE GECTA; 7.10. EXPERIMENTS ON INPUT TESTING SEISMOGRAMS; 7.11. DISCUSSION AND CONCLUSIONS; 8 A HIERARCHICAL RECOGNITION SYSTEM OF SEISMIC PATTERNS AND FUTURE STUDY; 8.1. SUMMARY; 8.2. INTRODUCTION; 8.3. SYNTACTIC PATTERN RECOGNITION; 8.3.1. Linking Processing and Segmentation; 8.3.2. Primitive Recognition; 8.3.3. Training Patterns; 8.3.4. Grammatical Inference; 8.3.5. Finite-state Error Correcting Parsing; 8.4. COMMON-SOURCE SIMULATED SEISMOGRAM RESULTS; 8.5. STACKED SIMULATED SEISMOGRAM RESULTS. The use of pattern recognition has become more and more important in seismic oil exploration. Interpreting a large volume of seismic data is a challenging problem. Seismic reflection data in the one-shot seismogram and stacked seismogram may contain some structural information from the response of the subsurface. Syntactic/structural pattern recognition techniques can recognize the structural seismic patterns and improve seismic interpretations. The syntactic analysis methods include: (1) the error-correcting finite-state parsing, (2) the modified error-correcting Earley's parsing, (3) the par. Petroleum Prospecting Data processing. Pattern recognition systems. http://id.loc.gov/authorities/subjects/sh85098791 Seismic reflection method Data processing. http://id.loc.gov/authorities/subjects/sh85119626 Pétrole Prospection Informatique. Reconnaissance des formes (Informatique) Méthode sismique-réflexion Informatique. TECHNOLOGY & ENGINEERING Mining. bisacsh Pattern recognition systems fast Petroleum Prospecting Data processing fast Seismic reflection method Data processing fast Print version: Huang, Kou-Yuan. Syntactic pattern recognition for seismic oil exploration. River Edge, NJ : World Scientific, 2002 9810246005 9789810246006 (DLC) 2002514235 (OCoLC)50134555 Series in machine perception and artificial intelligence ; v. 46. http://id.loc.gov/authorities/names/n91107585 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235838 Volltext |
spellingShingle | Huang, Kou-Yuan Syntactic pattern recognition for seismic oil exploration / Series in machine perception and artificial intelligence ; AUTHOR'S BIOGRAPHY; PREFACE; CONTENTS; 1 INTRODUCTION TO SYNTACTIC PATTERN RECOGNITION; 1.1. SUMMARY; 1.2. INTRODUCTION; 1.3. ORGANIZATION OF THIS BOOK; 2 INTRODUCTION TO FORMAL LANGUAGES AND AUTOMATA; 2.1. SUMMARY; 2.2. LANGUAGES AND GRAMMARS; 2.3. FINITE-STATE AUTOMATON; 2.4. EARLEY'S PARSING; 2.5. FINITE-STATE GRAMMATICAL INFERENCE; 2.6. STRING DISTANCE COMPUTATION; 3 ERROR-CORRECTING FINITE-STATE AUTOMATON FOR RECOGNITION OF RICKER WAVELETS; 3.1. SUMMARY; 3.2. INTRODUCTION; 3.3. SYNTACTIC PATTERN RECOGNITION; 3.3.1. Training and Testing Ricker Wavelets. 3.3.2. Location of Waveforms and Pattern Representation3.4. EXPANDED GRAMMARS; 3.4.1. General Expanded Finite-State Grammar; 3.4.2. Restricted Expanded Finite-State Grammar; 3.5. MINIMUM-DISTANCE ERROR-CORRECTING FINITE-STATE PARSING; 3.6. CLASSIFICATION OF RICKER WAVELETS; 3.7. DISCUSSION AND CONCLUSIONS; 4 ATTRIBUTED GRAMMAR AND ERROR-CORRECTING EARLEY'S PARSING; 4.1. SUMMARY; 4.2. INTRODUCTION; 4.3. ATTRIBUTED PRIMITIVES AND STRING; 4.4. DEFINITION OF ERROR TRANSFORMATIONS FOR ATTRIBUTED STRINGS; 4.5. INFERENCE OF ATTRIBUTED GRAMMAR. 4.6. MINIMUM-DISTANCE ERROR-CORRECTING EARLEY'S PARSING FOR ATTRIBUTED STRING4.7. EXPERIMENT; 5 ATTRIBUTED GRAMMAR AND MATCH PRIMITIVE MEASURE (MPM) FOR RECOGNITION OF SEISMIC WAVELETS; 5.1. SUMMARY; 5.2. SIMILARITY MEASURE OF ATTRIBUTED STRING MATCHING; 5.3. INFERENCE OF ATTRIBUTED GRAMMAR; 5.4. TOP-DOWN PARSING USING MPM; 5.5. EXPERIMENTS OF SEISMIC PATTERN RECOGNITION; 5.5.1. Recognition of Seismic Ricker Wavelets; 5.5.2. Recognition of Wavelets in Real Seismogram; 5.6. CONCLUSIONS; 6 STRING DISTANCE AND LIKELIHOOD RATIO TEST FOR DETECTION OF CANDIDATE BRIGHT SPOT; 6.1. SUMMARY. 6.2. INTRODUCTION6.3. OPTIMAL QUANTIZATION ENCODING; 6.4. LIKELIHOOD RATIO TEST (LRT); 6.5. LEVENSHTEIN DISTANCE AND ERROR PROBABILITY; 6.6. EXPERIMENT AT MISSISSIPPI CANYON; 6.6.1. Likelihood Ratio Test (LRT); 6.6.2. Threshold for Global Detection; 6.6.3. Threshold for the Detection of Candidate Bright Spot; 6.7. EXPERIMENT AT HIGH ISLAND; 7 TREE GRAMMAR AND AUTOMATON FOR SEISMIC PATTERN RECOGNITION; 7.1. SUMMARY; 7.2. INTRODUCTION; 7.3. TREE GRAMMAR AND LANGUAGE; 7.4. TREE AUTOMATON; 7.5. TREE REPRESENTATIONS OF PATTERNS; 7.6. INFERENCE OF EXPANSIVE TREE GRAMMAR. 7.7. WEIGHTED MINIMUM-DISTANCE SPECTA7.8. MODIFIED MAXIMUM-LIKELIHOOD SPECTA; 7.9. MINIMUM DISTANCE GECTA; 7.10. EXPERIMENTS ON INPUT TESTING SEISMOGRAMS; 7.11. DISCUSSION AND CONCLUSIONS; 8 A HIERARCHICAL RECOGNITION SYSTEM OF SEISMIC PATTERNS AND FUTURE STUDY; 8.1. SUMMARY; 8.2. INTRODUCTION; 8.3. SYNTACTIC PATTERN RECOGNITION; 8.3.1. Linking Processing and Segmentation; 8.3.2. Primitive Recognition; 8.3.3. Training Patterns; 8.3.4. Grammatical Inference; 8.3.5. Finite-state Error Correcting Parsing; 8.4. COMMON-SOURCE SIMULATED SEISMOGRAM RESULTS; 8.5. STACKED SIMULATED SEISMOGRAM RESULTS. Petroleum Prospecting Data processing. Pattern recognition systems. http://id.loc.gov/authorities/subjects/sh85098791 Seismic reflection method Data processing. http://id.loc.gov/authorities/subjects/sh85119626 Pétrole Prospection Informatique. Reconnaissance des formes (Informatique) Méthode sismique-réflexion Informatique. TECHNOLOGY & ENGINEERING Mining. bisacsh Pattern recognition systems fast Petroleum Prospecting Data processing fast Seismic reflection method Data processing fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85098791 http://id.loc.gov/authorities/subjects/sh85119626 |
title | Syntactic pattern recognition for seismic oil exploration / |
title_auth | Syntactic pattern recognition for seismic oil exploration / |
title_exact_search | Syntactic pattern recognition for seismic oil exploration / |
title_full | Syntactic pattern recognition for seismic oil exploration / Kou-Yuan Huang. |
title_fullStr | Syntactic pattern recognition for seismic oil exploration / Kou-Yuan Huang. |
title_full_unstemmed | Syntactic pattern recognition for seismic oil exploration / Kou-Yuan Huang. |
title_short | Syntactic pattern recognition for seismic oil exploration / |
title_sort | syntactic pattern recognition for seismic oil exploration |
topic | Petroleum Prospecting Data processing. Pattern recognition systems. http://id.loc.gov/authorities/subjects/sh85098791 Seismic reflection method Data processing. http://id.loc.gov/authorities/subjects/sh85119626 Pétrole Prospection Informatique. Reconnaissance des formes (Informatique) Méthode sismique-réflexion Informatique. TECHNOLOGY & ENGINEERING Mining. bisacsh Pattern recognition systems fast Petroleum Prospecting Data processing fast Seismic reflection method Data processing fast |
topic_facet | Petroleum Prospecting Data processing. Pattern recognition systems. Seismic reflection method Data processing. Pétrole Prospection Informatique. Reconnaissance des formes (Informatique) Méthode sismique-réflexion Informatique. TECHNOLOGY & ENGINEERING Mining. Pattern recognition systems Petroleum Prospecting Data processing Seismic reflection method Data processing |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235838 |
work_keys_str_mv | AT huangkouyuan syntacticpatternrecognitionforseismicoilexploration |