Pattern recognition /:
A classic -- offering comprehensive and unified coverage with a balance between theory and practice! Pattern recognition is integral to a wide spectrum of scientific disciplines and technologies including image analysis, speech recognition, audio classification, communications, computer-aided diagno...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam ; Boston :
Elsevier/Academic Press,
©2006.
|
Ausgabe: | 3rd ed. |
Schriftenreihe: | Pattern Recognition.
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Zusammenfassung: | A classic -- offering comprehensive and unified coverage with a balance between theory and practice! Pattern recognition is integral to a wide spectrum of scientific disciplines and technologies including image analysis, speech recognition, audio classification, communications, computer-aided diagnosis, and data mining. The authors, leading experts in the field of pattern recognition, have once again provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. Each chapter is designed to begin with basics of theory progressing to advanced topics and then discusses cutting-edge techniques. Problems and exercises are present at the end of each chapter with a solutions manual provided via a companion website where a number of demonstrations are also available to aid the reader in gaining practical experience with the theories and associated algorithms. This edition includes discussion of Bayesian classification, Bayesian networks, linear and nonlinear classifier design (including neural networks and support vector machines), dynamic programming and hidden Markov models for sequential data, feature generation (including wavelets, principal component analysis, independent component analysis and fractals), feature selection techniques, basic concepts from learning theory, and clustering concepts and algorithms. This book considers classical and current theory and practice, of both supervised and unsupervised pattern recognition, to build a complete background for professionals and students of engineering. FOR INSTRUCTORS: To obtain access to the solutions manual for this title simply register on our textbook website (textbooks.elsevier.com)and request access to the Computer Science or Electronics and Electrical Engineering subject area. Once approved (usually within one business day) you will be able to access all of the instructor-only materials through the "Instructor Manual" link on this book's full web page. * The latest results on support vector machines including v-SVM's and their geometric interpretation * Classifier combinations including the Boosting approach * State-of-the-art material for clustering algorithms tailored for large data sets and/or high dimensional data, as required by applications such as web-mining and bioinformatics * Coverage of diverse applications such as image analysis, optical character recognition, channel equalization, speech recognition and audio classification |
Beschreibung: | 1 online resource (xvi, 837 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780080513614 0080513611 0123695317 9780123695314 1281311464 9781281311467 9786611311469 6611311467 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn239612960 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 080806s2006 caua ob 001 0 eng d | ||
010 | |z 2007279784 | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d OSU |d YDXCP |d IDEBK |d E7B |d OCLCQ |d EBLCP |d OCLCQ |d OPELS |d UMI |d DEBSZ |d NLGGC |d OCLCQ |d OCLCF |d MERUC |d UKDOC |d OCLCQ |d COO |d OCLCQ |d AZK |d LOA |d JBG |d AGLDB |d MOR |d PIFAG |d ZCU |d OCLCQ |d OTZ |d OCLCQ |d U3W |d STF |d WRM |d D6H |d OCLCQ |d VTS |d CEF |d NRAMU |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d AU@ |d OCLCQ |d LEAUB |d DKC |d OCLCQ |d UKCRE |d VLY |d AJS |d OCLCO |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d EZC |d COA | ||
019 | |a 162130465 |a 226282414 |a 263152597 |a 437211975 |a 503312428 |a 646747331 |a 824144552 |a 839374194 |a 961511233 |a 962680303 |a 966210596 |a 988454615 |a 992050227 |a 1004368060 |a 1034971154 |a 1035712770 |a 1037793395 |a 1038697822 |a 1045488726 |a 1055353497 |a 1058054927 |a 1062881145 |a 1081230408 |a 1153453132 |a 1162001573 |a 1228606756 |a 1241861071 |a 1259100611 |a 1290051488 |a 1300667992 |a 1340104694 | ||
020 | |a 9780080513614 |q (electronic bk.) | ||
020 | |a 0080513611 |q (electronic bk.) | ||
020 | |a 0123695317 |q (alk. paper) | ||
020 | |a 9780123695314 |q (alk. paper) | ||
020 | |a 1281311464 | ||
020 | |a 9781281311467 | ||
020 | |a 9786611311469 | ||
020 | |a 6611311467 | ||
024 | 3 | |a 9780123695314 | |
024 | 8 | |a (WaSeSS)ssj0000218839 | |
035 | |a (OCoLC)239612960 |z (OCoLC)162130465 |z (OCoLC)226282414 |z (OCoLC)263152597 |z (OCoLC)437211975 |z (OCoLC)503312428 |z (OCoLC)646747331 |z (OCoLC)824144552 |z (OCoLC)839374194 |z (OCoLC)961511233 |z (OCoLC)962680303 |z (OCoLC)966210596 |z (OCoLC)988454615 |z (OCoLC)992050227 |z (OCoLC)1004368060 |z (OCoLC)1034971154 |z (OCoLC)1035712770 |z (OCoLC)1037793395 |z (OCoLC)1038697822 |z (OCoLC)1045488726 |z (OCoLC)1055353497 |z (OCoLC)1058054927 |z (OCoLC)1062881145 |z (OCoLC)1081230408 |z (OCoLC)1153453132 |z (OCoLC)1162001573 |z (OCoLC)1228606756 |z (OCoLC)1241861071 |z (OCoLC)1259100611 |z (OCoLC)1290051488 |z (OCoLC)1300667992 |z (OCoLC)1340104694 | ||
037 | |a 116089:116187 |b Elsevier Science & Technology |n http://www.sciencedirect.com | ||
050 | 4 | |a TK7882.P3 |b T46 2006eb | |
072 | 7 | |a COM |x 047000 |2 bisacsh | |
082 | 7 | |a 006.4 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Theodoridis, Sergios, |d 1951- |1 https://id.oclc.org/worldcat/entity/E39PCjxcjmqG9c6pj4TqgXMGjK |0 http://id.loc.gov/authorities/names/n98061001 | |
245 | 1 | 0 | |a Pattern recognition / |c Sergios Theodoridis and Konstantinos Koutroumbas. |
250 | |a 3rd ed. | ||
260 | |a Amsterdam ; |a Boston : |b Elsevier/Academic Press, |c ©2006. | ||
300 | |a 1 online resource (xvi, 837 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |2 rdaft |0 http://rdaregistry.info/termList/fileType/1002. | ||
490 | 1 | |a Pattern Recognition | |
588 | 0 | |a Print version record. | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Chapter 1: Introduction -- Chapter 2: Classifiers Based on Bayes Decision Theory -- Chapter 3: Linear Classifiers -- Chapter 4: Nonlinear Classifiers -- Chapter 5: Feature Selection -- Chapter 6: Feature Generation I -- Chapter 7: Feature Generation II -- Chapter 8: Template Matching -- Chapter 9: Context-Dependant Classification -- Chapter 10: System Evaluation -- Chapter 11: Clustering: Basic Concepts -- Chapter 12: Clustering Algorithms I (Sequential) -- Chapter 13: Clustering Algorithms II (Hierarchical) -- Chapter 14: Clustering Algorithms III (Functional Optimization) -- Chapter 15: Clustering Algorithms IV (Graph Theory) -- Chapter 16: Cluster Validity. | |
520 | |a A classic -- offering comprehensive and unified coverage with a balance between theory and practice! Pattern recognition is integral to a wide spectrum of scientific disciplines and technologies including image analysis, speech recognition, audio classification, communications, computer-aided diagnosis, and data mining. The authors, leading experts in the field of pattern recognition, have once again provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. Each chapter is designed to begin with basics of theory progressing to advanced topics and then discusses cutting-edge techniques. Problems and exercises are present at the end of each chapter with a solutions manual provided via a companion website where a number of demonstrations are also available to aid the reader in gaining practical experience with the theories and associated algorithms. This edition includes discussion of Bayesian classification, Bayesian networks, linear and nonlinear classifier design (including neural networks and support vector machines), dynamic programming and hidden Markov models for sequential data, feature generation (including wavelets, principal component analysis, independent component analysis and fractals), feature selection techniques, basic concepts from learning theory, and clustering concepts and algorithms. This book considers classical and current theory and practice, of both supervised and unsupervised pattern recognition, to build a complete background for professionals and students of engineering. FOR INSTRUCTORS: To obtain access to the solutions manual for this title simply register on our textbook website (textbooks.elsevier.com)and request access to the Computer Science or Electronics and Electrical Engineering subject area. Once approved (usually within one business day) you will be able to access all of the instructor-only materials through the "Instructor Manual" link on this book's full web page. * The latest results on support vector machines including v-SVM's and their geometric interpretation * Classifier combinations including the Boosting approach * State-of-the-art material for clustering algorithms tailored for large data sets and/or high dimensional data, as required by applications such as web-mining and bioinformatics * Coverage of diverse applications such as image analysis, optical character recognition, channel equalization, speech recognition and audio classification | ||
546 | |a English. | ||
650 | 0 | |a Pattern recognition systems. |0 http://id.loc.gov/authorities/subjects/sh85098791 | |
650 | 2 | |a Pattern Recognition, Automated |0 https://id.nlm.nih.gov/mesh/D010363 | |
650 | 6 | |a Reconnaissance des formes (Informatique) | |
650 | 7 | |a COMPUTERS |x Optical Data Processing. |2 bisacsh | |
650 | 7 | |a Pattern recognition systems |2 fast | |
655 | 7 | |a dissertations. |2 aat | |
655 | 7 | |a Academic theses |2 fast | |
655 | 7 | |a Academic theses. |2 lcgft |0 http://id.loc.gov/authorities/genreForms/gf2014026039 | |
655 | 7 | |a Thèses et écrits académiques. |2 rvmgf | |
700 | 1 | |a Koutroumbas, Konstantinos, |d 1967- |1 https://id.oclc.org/worldcat/entity/E39PCjxJr3Qg8K6q7r9m76YcCP |0 http://id.loc.gov/authorities/names/n98061012 | |
758 | |i has work: |a Pattern recognition (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGqxtddG7Pd6cPhYf7PDWP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Theodoridis, Sergios, 1951- |t Pattern recognition. |b 3rd ed. |d Amsterdam ; Boston : Elsevier/Academic Press, ©2006 |z 0123695317 |z 9780123695314 |w (DLC) 2007279784 |w (OCoLC)173809153 |
830 | 0 | |a Pattern Recognition. | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=230861 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/book/9780123695314 |3 Volltext |
938 | |a 123Library |b 123L |n 36802 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH23085458 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL344670 | ||
938 | |a ebrary |b EBRY |n ebr10229407 | ||
938 | |a EBSCOhost |b EBSC |n 230861 | ||
938 | |a YBP Library Services |b YANK |n 2820974 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn239612960 |
---|---|
_version_ | 1816881670185287680 |
adam_text | |
any_adam_object | |
author | Theodoridis, Sergios, 1951- |
author2 | Koutroumbas, Konstantinos, 1967- |
author2_role | |
author2_variant | k k kk |
author_GND | http://id.loc.gov/authorities/names/n98061001 http://id.loc.gov/authorities/names/n98061012 |
author_facet | Theodoridis, Sergios, 1951- Koutroumbas, Konstantinos, 1967- |
author_role | |
author_sort | Theodoridis, Sergios, 1951- |
author_variant | s t st |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TK7882 |
callnumber-raw | TK7882.P3 T46 2006eb |
callnumber-search | TK7882.P3 T46 2006eb |
callnumber-sort | TK 47882 P3 T46 42006EB |
callnumber-subject | TK - Electrical and Nuclear Engineering |
collection | ZDB-4-EBA |
contents | Chapter 1: Introduction -- Chapter 2: Classifiers Based on Bayes Decision Theory -- Chapter 3: Linear Classifiers -- Chapter 4: Nonlinear Classifiers -- Chapter 5: Feature Selection -- Chapter 6: Feature Generation I -- Chapter 7: Feature Generation II -- Chapter 8: Template Matching -- Chapter 9: Context-Dependant Classification -- Chapter 10: System Evaluation -- Chapter 11: Clustering: Basic Concepts -- Chapter 12: Clustering Algorithms I (Sequential) -- Chapter 13: Clustering Algorithms II (Hierarchical) -- Chapter 14: Clustering Algorithms III (Functional Optimization) -- Chapter 15: Clustering Algorithms IV (Graph Theory) -- Chapter 16: Cluster Validity. |
ctrlnum | (OCoLC)239612960 |
dewey-full | 006.4 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.4 |
dewey-search | 006.4 |
dewey-sort | 16.4 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | 3rd ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07769cam a2200769 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn239612960</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">080806s2006 caua ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2007279784</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OSU</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OPELS</subfield><subfield code="d">UMI</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">MERUC</subfield><subfield code="d">UKDOC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">JBG</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">D6H</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">VLY</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">EZC</subfield><subfield code="d">COA</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">162130465</subfield><subfield code="a">226282414</subfield><subfield code="a">263152597</subfield><subfield code="a">437211975</subfield><subfield code="a">503312428</subfield><subfield code="a">646747331</subfield><subfield code="a">824144552</subfield><subfield code="a">839374194</subfield><subfield code="a">961511233</subfield><subfield code="a">962680303</subfield><subfield code="a">966210596</subfield><subfield code="a">988454615</subfield><subfield code="a">992050227</subfield><subfield code="a">1004368060</subfield><subfield code="a">1034971154</subfield><subfield code="a">1035712770</subfield><subfield code="a">1037793395</subfield><subfield code="a">1038697822</subfield><subfield code="a">1045488726</subfield><subfield code="a">1055353497</subfield><subfield code="a">1058054927</subfield><subfield code="a">1062881145</subfield><subfield code="a">1081230408</subfield><subfield code="a">1153453132</subfield><subfield code="a">1162001573</subfield><subfield code="a">1228606756</subfield><subfield code="a">1241861071</subfield><subfield code="a">1259100611</subfield><subfield code="a">1290051488</subfield><subfield code="a">1300667992</subfield><subfield code="a">1340104694</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080513614</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080513611</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0123695317</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123695314</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281311464</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281311467</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611311469</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611311467</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780123695314</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">(WaSeSS)ssj0000218839</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)239612960</subfield><subfield code="z">(OCoLC)162130465</subfield><subfield code="z">(OCoLC)226282414</subfield><subfield code="z">(OCoLC)263152597</subfield><subfield code="z">(OCoLC)437211975</subfield><subfield code="z">(OCoLC)503312428</subfield><subfield code="z">(OCoLC)646747331</subfield><subfield code="z">(OCoLC)824144552</subfield><subfield code="z">(OCoLC)839374194</subfield><subfield code="z">(OCoLC)961511233</subfield><subfield code="z">(OCoLC)962680303</subfield><subfield code="z">(OCoLC)966210596</subfield><subfield code="z">(OCoLC)988454615</subfield><subfield code="z">(OCoLC)992050227</subfield><subfield code="z">(OCoLC)1004368060</subfield><subfield code="z">(OCoLC)1034971154</subfield><subfield code="z">(OCoLC)1035712770</subfield><subfield code="z">(OCoLC)1037793395</subfield><subfield code="z">(OCoLC)1038697822</subfield><subfield code="z">(OCoLC)1045488726</subfield><subfield code="z">(OCoLC)1055353497</subfield><subfield code="z">(OCoLC)1058054927</subfield><subfield code="z">(OCoLC)1062881145</subfield><subfield code="z">(OCoLC)1081230408</subfield><subfield code="z">(OCoLC)1153453132</subfield><subfield code="z">(OCoLC)1162001573</subfield><subfield code="z">(OCoLC)1228606756</subfield><subfield code="z">(OCoLC)1241861071</subfield><subfield code="z">(OCoLC)1259100611</subfield><subfield code="z">(OCoLC)1290051488</subfield><subfield code="z">(OCoLC)1300667992</subfield><subfield code="z">(OCoLC)1340104694</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">116089:116187</subfield><subfield code="b">Elsevier Science & Technology</subfield><subfield code="n">http://www.sciencedirect.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TK7882.P3</subfield><subfield code="b">T46 2006eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">047000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.4</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Theodoridis, Sergios,</subfield><subfield code="d">1951-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjxcjmqG9c6pj4TqgXMGjK</subfield><subfield code="0">http://id.loc.gov/authorities/names/n98061001</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pattern recognition /</subfield><subfield code="c">Sergios Theodoridis and Konstantinos Koutroumbas.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3rd ed.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Amsterdam ;</subfield><subfield code="a">Boston :</subfield><subfield code="b">Elsevier/Academic Press,</subfield><subfield code="c">©2006.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 837 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="2">rdaft</subfield><subfield code="0">http://rdaregistry.info/termList/fileType/1002.</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Pattern Recognition</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Chapter 1: Introduction -- Chapter 2: Classifiers Based on Bayes Decision Theory -- Chapter 3: Linear Classifiers -- Chapter 4: Nonlinear Classifiers -- Chapter 5: Feature Selection -- Chapter 6: Feature Generation I -- Chapter 7: Feature Generation II -- Chapter 8: Template Matching -- Chapter 9: Context-Dependant Classification -- Chapter 10: System Evaluation -- Chapter 11: Clustering: Basic Concepts -- Chapter 12: Clustering Algorithms I (Sequential) -- Chapter 13: Clustering Algorithms II (Hierarchical) -- Chapter 14: Clustering Algorithms III (Functional Optimization) -- Chapter 15: Clustering Algorithms IV (Graph Theory) -- Chapter 16: Cluster Validity.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A classic -- offering comprehensive and unified coverage with a balance between theory and practice! Pattern recognition is integral to a wide spectrum of scientific disciplines and technologies including image analysis, speech recognition, audio classification, communications, computer-aided diagnosis, and data mining. The authors, leading experts in the field of pattern recognition, have once again provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. Each chapter is designed to begin with basics of theory progressing to advanced topics and then discusses cutting-edge techniques. Problems and exercises are present at the end of each chapter with a solutions manual provided via a companion website where a number of demonstrations are also available to aid the reader in gaining practical experience with the theories and associated algorithms. This edition includes discussion of Bayesian classification, Bayesian networks, linear and nonlinear classifier design (including neural networks and support vector machines), dynamic programming and hidden Markov models for sequential data, feature generation (including wavelets, principal component analysis, independent component analysis and fractals), feature selection techniques, basic concepts from learning theory, and clustering concepts and algorithms. This book considers classical and current theory and practice, of both supervised and unsupervised pattern recognition, to build a complete background for professionals and students of engineering. FOR INSTRUCTORS: To obtain access to the solutions manual for this title simply register on our textbook website (textbooks.elsevier.com)and request access to the Computer Science or Electronics and Electrical Engineering subject area. Once approved (usually within one business day) you will be able to access all of the instructor-only materials through the "Instructor Manual" link on this book's full web page. * The latest results on support vector machines including v-SVM's and their geometric interpretation * Classifier combinations including the Boosting approach * State-of-the-art material for clustering algorithms tailored for large data sets and/or high dimensional data, as required by applications such as web-mining and bioinformatics * Coverage of diverse applications such as image analysis, optical character recognition, channel equalization, speech recognition and audio classification</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Pattern recognition systems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85098791</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Pattern Recognition, Automated</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D010363</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Reconnaissance des formes (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Optical Data Processing.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pattern recognition systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">dissertations.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Academic theses</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Academic theses.</subfield><subfield code="2">lcgft</subfield><subfield code="0">http://id.loc.gov/authorities/genreForms/gf2014026039</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Thèses et écrits académiques.</subfield><subfield code="2">rvmgf</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koutroumbas, Konstantinos,</subfield><subfield code="d">1967-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjxJr3Qg8K6q7r9m76YcCP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n98061012</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Pattern recognition (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGqxtddG7Pd6cPhYf7PDWP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Theodoridis, Sergios, 1951-</subfield><subfield code="t">Pattern recognition.</subfield><subfield code="b">3rd ed.</subfield><subfield code="d">Amsterdam ; Boston : Elsevier/Academic Press, ©2006</subfield><subfield code="z">0123695317</subfield><subfield code="z">9780123695314</subfield><subfield code="w">(DLC) 2007279784</subfield><subfield code="w">(OCoLC)173809153</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Pattern Recognition.</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=230861</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/book/9780123695314</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">123Library</subfield><subfield code="b">123L</subfield><subfield code="n">36802</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH23085458</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL344670</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10229407</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">230861</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2820974</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | dissertations. aat Academic theses fast Academic theses. lcgft http://id.loc.gov/authorities/genreForms/gf2014026039 Thèses et écrits académiques. rvmgf |
genre_facet | dissertations. Academic theses Academic theses. Thèses et écrits académiques. |
id | ZDB-4-EBA-ocn239612960 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:24Z |
institution | BVB |
isbn | 9780080513614 0080513611 0123695317 9780123695314 1281311464 9781281311467 9786611311469 6611311467 |
language | English |
oclc_num | 239612960 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xvi, 837 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Elsevier/Academic Press, |
record_format | marc |
series | Pattern Recognition. |
series2 | Pattern Recognition |
spelling | Theodoridis, Sergios, 1951- https://id.oclc.org/worldcat/entity/E39PCjxcjmqG9c6pj4TqgXMGjK http://id.loc.gov/authorities/names/n98061001 Pattern recognition / Sergios Theodoridis and Konstantinos Koutroumbas. 3rd ed. Amsterdam ; Boston : Elsevier/Academic Press, ©2006. 1 online resource (xvi, 837 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier text file rdaft http://rdaregistry.info/termList/fileType/1002. Pattern Recognition Print version record. Includes bibliographical references and index. Chapter 1: Introduction -- Chapter 2: Classifiers Based on Bayes Decision Theory -- Chapter 3: Linear Classifiers -- Chapter 4: Nonlinear Classifiers -- Chapter 5: Feature Selection -- Chapter 6: Feature Generation I -- Chapter 7: Feature Generation II -- Chapter 8: Template Matching -- Chapter 9: Context-Dependant Classification -- Chapter 10: System Evaluation -- Chapter 11: Clustering: Basic Concepts -- Chapter 12: Clustering Algorithms I (Sequential) -- Chapter 13: Clustering Algorithms II (Hierarchical) -- Chapter 14: Clustering Algorithms III (Functional Optimization) -- Chapter 15: Clustering Algorithms IV (Graph Theory) -- Chapter 16: Cluster Validity. A classic -- offering comprehensive and unified coverage with a balance between theory and practice! Pattern recognition is integral to a wide spectrum of scientific disciplines and technologies including image analysis, speech recognition, audio classification, communications, computer-aided diagnosis, and data mining. The authors, leading experts in the field of pattern recognition, have once again provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. Each chapter is designed to begin with basics of theory progressing to advanced topics and then discusses cutting-edge techniques. Problems and exercises are present at the end of each chapter with a solutions manual provided via a companion website where a number of demonstrations are also available to aid the reader in gaining practical experience with the theories and associated algorithms. This edition includes discussion of Bayesian classification, Bayesian networks, linear and nonlinear classifier design (including neural networks and support vector machines), dynamic programming and hidden Markov models for sequential data, feature generation (including wavelets, principal component analysis, independent component analysis and fractals), feature selection techniques, basic concepts from learning theory, and clustering concepts and algorithms. This book considers classical and current theory and practice, of both supervised and unsupervised pattern recognition, to build a complete background for professionals and students of engineering. FOR INSTRUCTORS: To obtain access to the solutions manual for this title simply register on our textbook website (textbooks.elsevier.com)and request access to the Computer Science or Electronics and Electrical Engineering subject area. Once approved (usually within one business day) you will be able to access all of the instructor-only materials through the "Instructor Manual" link on this book's full web page. * The latest results on support vector machines including v-SVM's and their geometric interpretation * Classifier combinations including the Boosting approach * State-of-the-art material for clustering algorithms tailored for large data sets and/or high dimensional data, as required by applications such as web-mining and bioinformatics * Coverage of diverse applications such as image analysis, optical character recognition, channel equalization, speech recognition and audio classification English. Pattern recognition systems. http://id.loc.gov/authorities/subjects/sh85098791 Pattern Recognition, Automated https://id.nlm.nih.gov/mesh/D010363 Reconnaissance des formes (Informatique) COMPUTERS Optical Data Processing. bisacsh Pattern recognition systems fast dissertations. aat Academic theses fast Academic theses. lcgft http://id.loc.gov/authorities/genreForms/gf2014026039 Thèses et écrits académiques. rvmgf Koutroumbas, Konstantinos, 1967- https://id.oclc.org/worldcat/entity/E39PCjxJr3Qg8K6q7r9m76YcCP http://id.loc.gov/authorities/names/n98061012 has work: Pattern recognition (Text) https://id.oclc.org/worldcat/entity/E39PCGqxtddG7Pd6cPhYf7PDWP https://id.oclc.org/worldcat/ontology/hasWork Print version: Theodoridis, Sergios, 1951- Pattern recognition. 3rd ed. Amsterdam ; Boston : Elsevier/Academic Press, ©2006 0123695317 9780123695314 (DLC) 2007279784 (OCoLC)173809153 Pattern Recognition. FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=230861 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/book/9780123695314 Volltext |
spellingShingle | Theodoridis, Sergios, 1951- Pattern recognition / Pattern Recognition. Chapter 1: Introduction -- Chapter 2: Classifiers Based on Bayes Decision Theory -- Chapter 3: Linear Classifiers -- Chapter 4: Nonlinear Classifiers -- Chapter 5: Feature Selection -- Chapter 6: Feature Generation I -- Chapter 7: Feature Generation II -- Chapter 8: Template Matching -- Chapter 9: Context-Dependant Classification -- Chapter 10: System Evaluation -- Chapter 11: Clustering: Basic Concepts -- Chapter 12: Clustering Algorithms I (Sequential) -- Chapter 13: Clustering Algorithms II (Hierarchical) -- Chapter 14: Clustering Algorithms III (Functional Optimization) -- Chapter 15: Clustering Algorithms IV (Graph Theory) -- Chapter 16: Cluster Validity. Pattern recognition systems. http://id.loc.gov/authorities/subjects/sh85098791 Pattern Recognition, Automated https://id.nlm.nih.gov/mesh/D010363 Reconnaissance des formes (Informatique) COMPUTERS Optical Data Processing. bisacsh Pattern recognition systems fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85098791 https://id.nlm.nih.gov/mesh/D010363 http://id.loc.gov/authorities/genreForms/gf2014026039 |
title | Pattern recognition / |
title_auth | Pattern recognition / |
title_exact_search | Pattern recognition / |
title_full | Pattern recognition / Sergios Theodoridis and Konstantinos Koutroumbas. |
title_fullStr | Pattern recognition / Sergios Theodoridis and Konstantinos Koutroumbas. |
title_full_unstemmed | Pattern recognition / Sergios Theodoridis and Konstantinos Koutroumbas. |
title_short | Pattern recognition / |
title_sort | pattern recognition |
topic | Pattern recognition systems. http://id.loc.gov/authorities/subjects/sh85098791 Pattern Recognition, Automated https://id.nlm.nih.gov/mesh/D010363 Reconnaissance des formes (Informatique) COMPUTERS Optical Data Processing. bisacsh Pattern recognition systems fast |
topic_facet | Pattern recognition systems. Pattern Recognition, Automated Reconnaissance des formes (Informatique) COMPUTERS Optical Data Processing. Pattern recognition systems dissertations. Academic theses Academic theses. Thèses et écrits académiques. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=230861 https://www.sciencedirect.com/science/book/9780123695314 |
work_keys_str_mv | AT theodoridissergios patternrecognition AT koutroumbaskonstantinos patternrecognition |