From quantum cohomology to integrable systems /:
This text focuses on the extraordinary success of quantum cohomology and its connections with many existing areas of traditional mathematics and new areas such as mirror symmetry. Aimed at graduate students in mathematics as well as theoretical physicists, the text assumes basic familiarity with dif...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford ; New York :
Oxford University Press,
2008.
|
Schriftenreihe: | Oxford graduate texts in mathematics ;
15. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This text focuses on the extraordinary success of quantum cohomology and its connections with many existing areas of traditional mathematics and new areas such as mirror symmetry. Aimed at graduate students in mathematics as well as theoretical physicists, the text assumes basic familiarity with differential equations and cohomology. - ;Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable systems. This text explains what is behind the extraordinary success of quantum cohomology, leading to its connectio. |
Beschreibung: | 1 online resource (xxix, 305 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 0191524123 9780191524127 1281341363 9781281341365 9786611341367 6611341366 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn236393392 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 080729s2008 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d CDX |d N$T |d IDEBK |d E7B |d OCLCQ |d MERUC |d OCLCQ |d UKMGB |d OCLCF |d DKDLA |d OCLCO |d OCLCQ |d NLGGC |d YDXCP |d EBLCP |d MHW |d DEBSZ |d OCLCQ |d AZK |d LOA |d COCUF |d AGLDB |d MOR |d PIFAG |d ZCU |d OCLCQ |d U3W |d STF |d WRM |d OCLCQ |d VTS |d NRAMU |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d TKN |d OCLCQ |d DKC |d OCLCQ |d K6U |d OCLCQ |d VLY |d AJS |d UKAHL |d OCLCO |d OCLCQ |d YDX |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ |d OCLCO |d OCLCQ | ||
016 | 7 | |a 013828475 |2 Uk | |
019 | |a 244656003 |a 476241760 |a 646747868 |a 815567751 |a 871979765 |a 961622729 |a 962689690 |a 1162011269 |a 1241753725 |a 1290032032 |a 1300445620 | ||
020 | |a 0191524123 |q (electronic bk.) | ||
020 | |a 9780191524127 |q (electronic bk.) | ||
020 | |a 1281341363 | ||
020 | |a 9781281341365 | ||
020 | |a 9786611341367 | ||
020 | |a 6611341366 | ||
020 | |z 0198565992 |q (Cloth) | ||
020 | |z 9780198565994 |q (acid-free paper) | ||
035 | |a (OCoLC)236393392 |z (OCoLC)244656003 |z (OCoLC)476241760 |z (OCoLC)646747868 |z (OCoLC)815567751 |z (OCoLC)871979765 |z (OCoLC)961622729 |z (OCoLC)962689690 |z (OCoLC)1162011269 |z (OCoLC)1241753725 |z (OCoLC)1290032032 |z (OCoLC)1300445620 | ||
050 | 4 | |a QA612.3 |b .G84 2008eb | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
072 | 7 | |a PBPD |2 bicssc | |
082 | 7 | |a 514/.23 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Guest, Martin A. |1 https://id.oclc.org/worldcat/entity/E39PBJbRfVk34hXjKFtdmhgh73 |0 http://id.loc.gov/authorities/names/n96089810 | |
245 | 1 | 0 | |a From quantum cohomology to integrable systems / |c Martin A. Guest. |
260 | |a Oxford ; |a New York : |b Oxford University Press, |c 2008. | ||
300 | |a 1 online resource (xxix, 305 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a Oxford graduate texts in mathematics ; |v 15 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Preface; Acknowledgements; Contents; Introduction; 1 The many faces of cohomology; 2 Quantum cohomology; 3 Quantum differential equations; 4 Linear differential equations in general; 5 The quantum D-module; 6 Abstract quantum cohomology; 7 Integrable systems; 8 Solving integrable systems; 9 Quantum cohomology as an integrable system; 10 Integrable systems and quantum cohomology; References; Index. | |
520 | |a This text focuses on the extraordinary success of quantum cohomology and its connections with many existing areas of traditional mathematics and new areas such as mirror symmetry. Aimed at graduate students in mathematics as well as theoretical physicists, the text assumes basic familiarity with differential equations and cohomology. - ;Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable systems. This text explains what is behind the extraordinary success of quantum cohomology, leading to its connectio. | ||
546 | |a English. | ||
650 | 0 | |a Homology theory. |0 http://id.loc.gov/authorities/subjects/sh85061770 | |
650 | 0 | |a Quantum theory. |0 http://id.loc.gov/authorities/subjects/sh85109469 | |
650 | 0 | |a Differential equations. |0 http://id.loc.gov/authorities/subjects/sh85037890 | |
650 | 0 | |a Mappings (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85080857 | |
650 | 6 | |a Homologie. | |
650 | 6 | |a Théorie quantique. | |
650 | 6 | |a Équations différentielles. | |
650 | 6 | |a Applications (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a Differential equations |2 fast | |
650 | 7 | |a Homology theory |2 fast | |
650 | 7 | |a Mappings (Mathematics) |2 fast | |
650 | 7 | |a Quantum theory |2 fast | |
776 | 0 | 8 | |i Print version: |a Guest, Martin A. |t From quantum cohomology to integrable systems. |d Oxford ; New York : Oxford University Press, 2008 |z 9780198565994 |z 0198565992 |w (DLC) 2007035101 |w (OCoLC)166624934 |
830 | 0 | |a Oxford graduate texts in mathematics ; |v 15. |0 http://id.loc.gov/authorities/names/n96121759 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=218111 |3 Volltext |
938 | |a YBP Library Services |b YANK |n 20450751 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH24243908 | ||
938 | |a Coutts Information Services |b COUT |n 8450824 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL7034226 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL415328 | ||
938 | |a EBSCOhost |b EBSC |n 218111 | ||
938 | |a YBP Library Services |b YANK |n 18045396 | ||
938 | |a YBP Library Services |b YANK |n 2903361 | ||
938 | |a YBP Library Services |b YANK |n 2855205 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn236393392 |
---|---|
_version_ | 1816881669760614401 |
adam_text | |
any_adam_object | |
author | Guest, Martin A. |
author_GND | http://id.loc.gov/authorities/names/n96089810 |
author_facet | Guest, Martin A. |
author_role | |
author_sort | Guest, Martin A. |
author_variant | m a g ma mag |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA612 |
callnumber-raw | QA612.3 .G84 2008eb |
callnumber-search | QA612.3 .G84 2008eb |
callnumber-sort | QA 3612.3 G84 42008EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preface; Acknowledgements; Contents; Introduction; 1 The many faces of cohomology; 2 Quantum cohomology; 3 Quantum differential equations; 4 Linear differential equations in general; 5 The quantum D-module; 6 Abstract quantum cohomology; 7 Integrable systems; 8 Solving integrable systems; 9 Quantum cohomology as an integrable system; 10 Integrable systems and quantum cohomology; References; Index. |
ctrlnum | (OCoLC)236393392 |
dewey-full | 514/.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.23 |
dewey-search | 514/.23 |
dewey-sort | 3514 223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04812cam a2200781 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn236393392</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">080729s2008 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CDX</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DKDLA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">MHW</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VLY</subfield><subfield code="d">AJS</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">013828475</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">244656003</subfield><subfield code="a">476241760</subfield><subfield code="a">646747868</subfield><subfield code="a">815567751</subfield><subfield code="a">871979765</subfield><subfield code="a">961622729</subfield><subfield code="a">962689690</subfield><subfield code="a">1162011269</subfield><subfield code="a">1241753725</subfield><subfield code="a">1290032032</subfield><subfield code="a">1300445620</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191524123</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191524127</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281341363</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281341365</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611341367</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611341366</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0198565992</subfield><subfield code="q">(Cloth)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780198565994</subfield><subfield code="q">(acid-free paper)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)236393392</subfield><subfield code="z">(OCoLC)244656003</subfield><subfield code="z">(OCoLC)476241760</subfield><subfield code="z">(OCoLC)646747868</subfield><subfield code="z">(OCoLC)815567751</subfield><subfield code="z">(OCoLC)871979765</subfield><subfield code="z">(OCoLC)961622729</subfield><subfield code="z">(OCoLC)962689690</subfield><subfield code="z">(OCoLC)1162011269</subfield><subfield code="z">(OCoLC)1241753725</subfield><subfield code="z">(OCoLC)1290032032</subfield><subfield code="z">(OCoLC)1300445620</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA612.3</subfield><subfield code="b">.G84 2008eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBPD</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">514/.23</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guest, Martin A.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJbRfVk34hXjKFtdmhgh73</subfield><subfield code="0">http://id.loc.gov/authorities/names/n96089810</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">From quantum cohomology to integrable systems /</subfield><subfield code="c">Martin A. Guest.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Oxford ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Oxford University Press,</subfield><subfield code="c">2008.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxix, 305 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Oxford graduate texts in mathematics ;</subfield><subfield code="v">15</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; Acknowledgements; Contents; Introduction; 1 The many faces of cohomology; 2 Quantum cohomology; 3 Quantum differential equations; 4 Linear differential equations in general; 5 The quantum D-module; 6 Abstract quantum cohomology; 7 Integrable systems; 8 Solving integrable systems; 9 Quantum cohomology as an integrable system; 10 Integrable systems and quantum cohomology; References; Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This text focuses on the extraordinary success of quantum cohomology and its connections with many existing areas of traditional mathematics and new areas such as mirror symmetry. Aimed at graduate students in mathematics as well as theoretical physicists, the text assumes basic familiarity with differential equations and cohomology. - ;Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable systems. This text explains what is behind the extraordinary success of quantum cohomology, leading to its connectio.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Homology theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85061770</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantum theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85109469</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037890</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mappings (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85080857</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Homologie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie quantique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations différentielles.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Applications (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homology theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mappings (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Guest, Martin A.</subfield><subfield code="t">From quantum cohomology to integrable systems.</subfield><subfield code="d">Oxford ; New York : Oxford University Press, 2008</subfield><subfield code="z">9780198565994</subfield><subfield code="z">0198565992</subfield><subfield code="w">(DLC) 2007035101</subfield><subfield code="w">(OCoLC)166624934</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Oxford graduate texts in mathematics ;</subfield><subfield code="v">15.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n96121759</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=218111</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">20450751</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24243908</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">8450824</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL7034226</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL415328</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">218111</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">18045396</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2903361</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2855205</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn236393392 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:16:24Z |
institution | BVB |
isbn | 0191524123 9780191524127 1281341363 9781281341365 9786611341367 6611341366 |
language | English |
oclc_num | 236393392 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxix, 305 pages) |
psigel | ZDB-4-EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Oxford University Press, |
record_format | marc |
series | Oxford graduate texts in mathematics ; |
series2 | Oxford graduate texts in mathematics ; |
spelling | Guest, Martin A. https://id.oclc.org/worldcat/entity/E39PBJbRfVk34hXjKFtdmhgh73 http://id.loc.gov/authorities/names/n96089810 From quantum cohomology to integrable systems / Martin A. Guest. Oxford ; New York : Oxford University Press, 2008. 1 online resource (xxix, 305 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Oxford graduate texts in mathematics ; 15 Includes bibliographical references and index. Print version record. Preface; Acknowledgements; Contents; Introduction; 1 The many faces of cohomology; 2 Quantum cohomology; 3 Quantum differential equations; 4 Linear differential equations in general; 5 The quantum D-module; 6 Abstract quantum cohomology; 7 Integrable systems; 8 Solving integrable systems; 9 Quantum cohomology as an integrable system; 10 Integrable systems and quantum cohomology; References; Index. This text focuses on the extraordinary success of quantum cohomology and its connections with many existing areas of traditional mathematics and new areas such as mirror symmetry. Aimed at graduate students in mathematics as well as theoretical physicists, the text assumes basic familiarity with differential equations and cohomology. - ;Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable systems. This text explains what is behind the extraordinary success of quantum cohomology, leading to its connectio. English. Homology theory. http://id.loc.gov/authorities/subjects/sh85061770 Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Differential equations. http://id.loc.gov/authorities/subjects/sh85037890 Mappings (Mathematics) http://id.loc.gov/authorities/subjects/sh85080857 Homologie. Théorie quantique. Équations différentielles. Applications (Mathématiques) MATHEMATICS Topology. bisacsh Differential equations fast Homology theory fast Mappings (Mathematics) fast Quantum theory fast Print version: Guest, Martin A. From quantum cohomology to integrable systems. Oxford ; New York : Oxford University Press, 2008 9780198565994 0198565992 (DLC) 2007035101 (OCoLC)166624934 Oxford graduate texts in mathematics ; 15. http://id.loc.gov/authorities/names/n96121759 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=218111 Volltext |
spellingShingle | Guest, Martin A. From quantum cohomology to integrable systems / Oxford graduate texts in mathematics ; Preface; Acknowledgements; Contents; Introduction; 1 The many faces of cohomology; 2 Quantum cohomology; 3 Quantum differential equations; 4 Linear differential equations in general; 5 The quantum D-module; 6 Abstract quantum cohomology; 7 Integrable systems; 8 Solving integrable systems; 9 Quantum cohomology as an integrable system; 10 Integrable systems and quantum cohomology; References; Index. Homology theory. http://id.loc.gov/authorities/subjects/sh85061770 Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Differential equations. http://id.loc.gov/authorities/subjects/sh85037890 Mappings (Mathematics) http://id.loc.gov/authorities/subjects/sh85080857 Homologie. Théorie quantique. Équations différentielles. Applications (Mathématiques) MATHEMATICS Topology. bisacsh Differential equations fast Homology theory fast Mappings (Mathematics) fast Quantum theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85061770 http://id.loc.gov/authorities/subjects/sh85109469 http://id.loc.gov/authorities/subjects/sh85037890 http://id.loc.gov/authorities/subjects/sh85080857 |
title | From quantum cohomology to integrable systems / |
title_auth | From quantum cohomology to integrable systems / |
title_exact_search | From quantum cohomology to integrable systems / |
title_full | From quantum cohomology to integrable systems / Martin A. Guest. |
title_fullStr | From quantum cohomology to integrable systems / Martin A. Guest. |
title_full_unstemmed | From quantum cohomology to integrable systems / Martin A. Guest. |
title_short | From quantum cohomology to integrable systems / |
title_sort | from quantum cohomology to integrable systems |
topic | Homology theory. http://id.loc.gov/authorities/subjects/sh85061770 Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Differential equations. http://id.loc.gov/authorities/subjects/sh85037890 Mappings (Mathematics) http://id.loc.gov/authorities/subjects/sh85080857 Homologie. Théorie quantique. Équations différentielles. Applications (Mathématiques) MATHEMATICS Topology. bisacsh Differential equations fast Homology theory fast Mappings (Mathematics) fast Quantum theory fast |
topic_facet | Homology theory. Quantum theory. Differential equations. Mappings (Mathematics) Homologie. Théorie quantique. Équations différentielles. Applications (Mathématiques) MATHEMATICS Topology. Differential equations Homology theory Quantum theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=218111 |
work_keys_str_mv | AT guestmartina fromquantumcohomologytointegrablesystems |