Introductory analysis :: a deeper view of calculus /
Introductory Analysis addresses the needs of students taking a course in analysis after completing a semester or two of calculus, and offers an alternative to texts that assume that math majors are their only audience. By using a conversational style that does not compromise mathematical precision,...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
San Diego :
Harcourt/Academic Press,
©2001.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Introductory Analysis addresses the needs of students taking a course in analysis after completing a semester or two of calculus, and offers an alternative to texts that assume that math majors are their only audience. By using a conversational style that does not compromise mathematical precision, the author explains the material in terms that help the reader gain a firmer grasp of calculus concepts.* Written in an engaging, conversational tone and readable style while softening the rigor and theory* Takes a realistic approach to the necessary and accessible level of abstra. |
Beschreibung: | 1 online resource (xvi, 201 pages) : illustrations |
Bibliographie: | Includes bibliographical references (page 197) and index. |
ISBN: | 9780080549422 008054942X 1281028711 9781281028716 9786611028718 6611028714 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn173523352 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 071001s2001 caua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d BTCTA |d OCLCQ |d CDX |d E7B |d IDEBK |d OCLCQ |d OCLCF |d NLGGC |d OCLCQ |d AGLDB |d OCLCQ |d VTS |d M8D |d VLY |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 171133266 |a 178161214 |a 232311886 |a 648314815 |a 1162248701 |a 1241961707 |a 1300670180 | ||
020 | |a 9780080549422 |q (electronic bk.) | ||
020 | |a 008054942X |q (electronic bk.) | ||
020 | |a 1281028711 | ||
020 | |a 9781281028716 | ||
020 | |a 9786611028718 | ||
020 | |a 6611028714 | ||
020 | |z 0120725509 |q (Cloth) | ||
035 | |a (OCoLC)173523352 |z (OCoLC)171133266 |z (OCoLC)178161214 |z (OCoLC)232311886 |z (OCoLC)648314815 |z (OCoLC)1162248701 |z (OCoLC)1241961707 |z (OCoLC)1300670180 | ||
050 | 4 | |a QA300 |b .B15 2001eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Bagby, Richard J. |0 http://id.loc.gov/authorities/names/nr00029591 | |
245 | 1 | 0 | |a Introductory analysis : |b a deeper view of calculus / |c Richard J. Bagby. |
260 | |a San Diego : |b Harcourt/Academic Press, |c ©2001. | ||
300 | |a 1 online resource (xvi, 201 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (page 197) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Copyright Page; Contents; Acknowledgments; Preface; Chapter I. The Real Number System; 1. Familiar Number Systems; 2. Intervals; 3. Suprema and Infima; 4. Exact Arithmetic in R; 5. Topics for Further Study; Chapter II. Continuous Functions; 1. Functions in Mathematics; 2. Continuity of Numerical Functions; 3. The Intermediate Value Theorem; 4. More Ways to Form Continuous Functions; 5. Extreme Values; Chapter III. Limits; 1. Sequences and Limits; 2. Limits and Removing Discontinuities; 3. Limits Involving infinity; Chapter IV. The Derivative; 1. Differentiability | |
505 | 8 | |a 2. Combining Differentiable Functions3. Mean Values; 4. Second Derivatives and Approximations; 5. Higher Derivatives; 6. Inverse Functions; 7. Implicit Functions and Implicit Differentiation; Chapter V. The Riemann Integral; 1. Areas and Riemann Sums; 2. Simplifying the Conditions for Integrability; 3. Recognizing Integrability; 4. Functions Defined by Integrals; 5. The Fundamental Theorem of Calculus; 6. Topics for Further Study; Chapter VI. Exponential and Logarithmic Functions; 1. Exponents and Logarithms; 2. Algebraic Laws as Definitions; 3. The Natural Logarithm | |
505 | 8 | |a 4. The Natural Exponential Function5. An Important Limit; Chapter VII. Curves and Arc Length; 1. The Concept of Arc Length; 2. Arc Length and Integration; 3. Arc Length as a Parameter; 4. The Arctangent and Arcsine Functions; 5. The Fundamental Trigonometric Limit; Chapter VIII. Sequences and Series of Functions; 1. Functions Defined by Limits; 2. Continuity and Uniform Convergence; 3. Integrals and Derivatives; 4. Taylor's Theorem; 5. Power Series; 6. Topics for Further Study; Chapter IX. Additional Computational Methods; 1. L'Hôpital's Rule; 2. Newton's Method; 3. Simpson's Rule | |
505 | 8 | |a 4. The Substitution Rule for IntegralsReferences; Index | |
520 | |a Introductory Analysis addresses the needs of students taking a course in analysis after completing a semester or two of calculus, and offers an alternative to texts that assume that math majors are their only audience. By using a conversational style that does not compromise mathematical precision, the author explains the material in terms that help the reader gain a firmer grasp of calculus concepts.* Written in an engaging, conversational tone and readable style while softening the rigor and theory* Takes a realistic approach to the necessary and accessible level of abstra. | ||
546 | |a English. | ||
650 | 0 | |a Mathematical analysis. |0 http://id.loc.gov/authorities/subjects/sh85082116 | |
650 | 6 | |a Analyse mathématique. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Mathematical analysis |2 fast | |
758 | |i has work: |a Introductory analysis (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFDf3mtB9QBkQ8kwJ3mjYd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Bagby, Richard J. |t Introductory analysis. |d San Diego : Harcourt/Academic Press, ©2001 |z 0120725509 |z 9780120725502 |w (DLC) 00103265 |w (OCoLC)45316258 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203257 |3 Volltext |
938 | |a Baker and Taylor |b BTCP |n BK0007476097 | ||
938 | |a Coutts Information Services |b COUT |n 6484137 | ||
938 | |a ebrary |b EBRY |n ebr10188249 | ||
938 | |a EBSCOhost |b EBSC |n 203257 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 102871 | ||
938 | |a YBP Library Services |b YANK |n 2614877 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn173523352 |
---|---|
_version_ | 1816881653886222336 |
adam_text | |
any_adam_object | |
author | Bagby, Richard J. |
author_GND | http://id.loc.gov/authorities/names/nr00029591 |
author_facet | Bagby, Richard J. |
author_role | |
author_sort | Bagby, Richard J. |
author_variant | r j b rj rjb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA300 |
callnumber-raw | QA300 .B15 2001eb |
callnumber-search | QA300 .B15 2001eb |
callnumber-sort | QA 3300 B15 42001EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Copyright Page; Contents; Acknowledgments; Preface; Chapter I. The Real Number System; 1. Familiar Number Systems; 2. Intervals; 3. Suprema and Infima; 4. Exact Arithmetic in R; 5. Topics for Further Study; Chapter II. Continuous Functions; 1. Functions in Mathematics; 2. Continuity of Numerical Functions; 3. The Intermediate Value Theorem; 4. More Ways to Form Continuous Functions; 5. Extreme Values; Chapter III. Limits; 1. Sequences and Limits; 2. Limits and Removing Discontinuities; 3. Limits Involving infinity; Chapter IV. The Derivative; 1. Differentiability 2. Combining Differentiable Functions3. Mean Values; 4. Second Derivatives and Approximations; 5. Higher Derivatives; 6. Inverse Functions; 7. Implicit Functions and Implicit Differentiation; Chapter V. The Riemann Integral; 1. Areas and Riemann Sums; 2. Simplifying the Conditions for Integrability; 3. Recognizing Integrability; 4. Functions Defined by Integrals; 5. The Fundamental Theorem of Calculus; 6. Topics for Further Study; Chapter VI. Exponential and Logarithmic Functions; 1. Exponents and Logarithms; 2. Algebraic Laws as Definitions; 3. The Natural Logarithm 4. The Natural Exponential Function5. An Important Limit; Chapter VII. Curves and Arc Length; 1. The Concept of Arc Length; 2. Arc Length and Integration; 3. Arc Length as a Parameter; 4. The Arctangent and Arcsine Functions; 5. The Fundamental Trigonometric Limit; Chapter VIII. Sequences and Series of Functions; 1. Functions Defined by Limits; 2. Continuity and Uniform Convergence; 3. Integrals and Derivatives; 4. Taylor's Theorem; 5. Power Series; 6. Topics for Further Study; Chapter IX. Additional Computational Methods; 1. L'Hôpital's Rule; 2. Newton's Method; 3. Simpson's Rule 4. The Substitution Rule for IntegralsReferences; Index |
ctrlnum | (OCoLC)173523352 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05125cam a2200637 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn173523352</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">071001s2001 caua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">BTCTA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CDX</subfield><subfield code="d">E7B</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">M8D</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">171133266</subfield><subfield code="a">178161214</subfield><subfield code="a">232311886</subfield><subfield code="a">648314815</subfield><subfield code="a">1162248701</subfield><subfield code="a">1241961707</subfield><subfield code="a">1300670180</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080549422</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">008054942X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281028711</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281028716</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611028718</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611028714</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0120725509</subfield><subfield code="q">(Cloth)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)173523352</subfield><subfield code="z">(OCoLC)171133266</subfield><subfield code="z">(OCoLC)178161214</subfield><subfield code="z">(OCoLC)232311886</subfield><subfield code="z">(OCoLC)648314815</subfield><subfield code="z">(OCoLC)1162248701</subfield><subfield code="z">(OCoLC)1241961707</subfield><subfield code="z">(OCoLC)1300670180</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA300</subfield><subfield code="b">.B15 2001eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bagby, Richard J.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nr00029591</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introductory analysis :</subfield><subfield code="b">a deeper view of calculus /</subfield><subfield code="c">Richard J. Bagby.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">San Diego :</subfield><subfield code="b">Harcourt/Academic Press,</subfield><subfield code="c">©2001.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 201 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (page 197) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Copyright Page; Contents; Acknowledgments; Preface; Chapter I. The Real Number System; 1. Familiar Number Systems; 2. Intervals; 3. Suprema and Infima; 4. Exact Arithmetic in R; 5. Topics for Further Study; Chapter II. Continuous Functions; 1. Functions in Mathematics; 2. Continuity of Numerical Functions; 3. The Intermediate Value Theorem; 4. More Ways to Form Continuous Functions; 5. Extreme Values; Chapter III. Limits; 1. Sequences and Limits; 2. Limits and Removing Discontinuities; 3. Limits Involving infinity; Chapter IV. The Derivative; 1. Differentiability</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Combining Differentiable Functions3. Mean Values; 4. Second Derivatives and Approximations; 5. Higher Derivatives; 6. Inverse Functions; 7. Implicit Functions and Implicit Differentiation; Chapter V. The Riemann Integral; 1. Areas and Riemann Sums; 2. Simplifying the Conditions for Integrability; 3. Recognizing Integrability; 4. Functions Defined by Integrals; 5. The Fundamental Theorem of Calculus; 6. Topics for Further Study; Chapter VI. Exponential and Logarithmic Functions; 1. Exponents and Logarithms; 2. Algebraic Laws as Definitions; 3. The Natural Logarithm</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. The Natural Exponential Function5. An Important Limit; Chapter VII. Curves and Arc Length; 1. The Concept of Arc Length; 2. Arc Length and Integration; 3. Arc Length as a Parameter; 4. The Arctangent and Arcsine Functions; 5. The Fundamental Trigonometric Limit; Chapter VIII. Sequences and Series of Functions; 1. Functions Defined by Limits; 2. Continuity and Uniform Convergence; 3. Integrals and Derivatives; 4. Taylor's Theorem; 5. Power Series; 6. Topics for Further Study; Chapter IX. Additional Computational Methods; 1. L'Hôpital's Rule; 2. Newton's Method; 3. Simpson's Rule</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. The Substitution Rule for IntegralsReferences; Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introductory Analysis addresses the needs of students taking a course in analysis after completing a semester or two of calculus, and offers an alternative to texts that assume that math majors are their only audience. By using a conversational style that does not compromise mathematical precision, the author explains the material in terms that help the reader gain a firmer grasp of calculus concepts.* Written in an engaging, conversational tone and readable style while softening the rigor and theory* Takes a realistic approach to the necessary and accessible level of abstra.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082116</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Introductory analysis (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFDf3mtB9QBkQ8kwJ3mjYd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Bagby, Richard J.</subfield><subfield code="t">Introductory analysis.</subfield><subfield code="d">San Diego : Harcourt/Academic Press, ©2001</subfield><subfield code="z">0120725509</subfield><subfield code="z">9780120725502</subfield><subfield code="w">(DLC) 00103265</subfield><subfield code="w">(OCoLC)45316258</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203257</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Baker and Taylor</subfield><subfield code="b">BTCP</subfield><subfield code="n">BK0007476097</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">6484137</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10188249</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">203257</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">102871</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2614877</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn173523352 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:09Z |
institution | BVB |
isbn | 9780080549422 008054942X 1281028711 9781281028716 9786611028718 6611028714 |
language | English |
oclc_num | 173523352 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xvi, 201 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Harcourt/Academic Press, |
record_format | marc |
spelling | Bagby, Richard J. http://id.loc.gov/authorities/names/nr00029591 Introductory analysis : a deeper view of calculus / Richard J. Bagby. San Diego : Harcourt/Academic Press, ©2001. 1 online resource (xvi, 201 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (page 197) and index. Print version record. Cover; Copyright Page; Contents; Acknowledgments; Preface; Chapter I. The Real Number System; 1. Familiar Number Systems; 2. Intervals; 3. Suprema and Infima; 4. Exact Arithmetic in R; 5. Topics for Further Study; Chapter II. Continuous Functions; 1. Functions in Mathematics; 2. Continuity of Numerical Functions; 3. The Intermediate Value Theorem; 4. More Ways to Form Continuous Functions; 5. Extreme Values; Chapter III. Limits; 1. Sequences and Limits; 2. Limits and Removing Discontinuities; 3. Limits Involving infinity; Chapter IV. The Derivative; 1. Differentiability 2. Combining Differentiable Functions3. Mean Values; 4. Second Derivatives and Approximations; 5. Higher Derivatives; 6. Inverse Functions; 7. Implicit Functions and Implicit Differentiation; Chapter V. The Riemann Integral; 1. Areas and Riemann Sums; 2. Simplifying the Conditions for Integrability; 3. Recognizing Integrability; 4. Functions Defined by Integrals; 5. The Fundamental Theorem of Calculus; 6. Topics for Further Study; Chapter VI. Exponential and Logarithmic Functions; 1. Exponents and Logarithms; 2. Algebraic Laws as Definitions; 3. The Natural Logarithm 4. The Natural Exponential Function5. An Important Limit; Chapter VII. Curves and Arc Length; 1. The Concept of Arc Length; 2. Arc Length and Integration; 3. Arc Length as a Parameter; 4. The Arctangent and Arcsine Functions; 5. The Fundamental Trigonometric Limit; Chapter VIII. Sequences and Series of Functions; 1. Functions Defined by Limits; 2. Continuity and Uniform Convergence; 3. Integrals and Derivatives; 4. Taylor's Theorem; 5. Power Series; 6. Topics for Further Study; Chapter IX. Additional Computational Methods; 1. L'Hôpital's Rule; 2. Newton's Method; 3. Simpson's Rule 4. The Substitution Rule for IntegralsReferences; Index Introductory Analysis addresses the needs of students taking a course in analysis after completing a semester or two of calculus, and offers an alternative to texts that assume that math majors are their only audience. By using a conversational style that does not compromise mathematical precision, the author explains the material in terms that help the reader gain a firmer grasp of calculus concepts.* Written in an engaging, conversational tone and readable style while softening the rigor and theory* Takes a realistic approach to the necessary and accessible level of abstra. English. Mathematical analysis. http://id.loc.gov/authorities/subjects/sh85082116 Analyse mathématique. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Mathematical analysis fast has work: Introductory analysis (Text) https://id.oclc.org/worldcat/entity/E39PCFDf3mtB9QBkQ8kwJ3mjYd https://id.oclc.org/worldcat/ontology/hasWork Print version: Bagby, Richard J. Introductory analysis. San Diego : Harcourt/Academic Press, ©2001 0120725509 9780120725502 (DLC) 00103265 (OCoLC)45316258 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203257 Volltext |
spellingShingle | Bagby, Richard J. Introductory analysis : a deeper view of calculus / Cover; Copyright Page; Contents; Acknowledgments; Preface; Chapter I. The Real Number System; 1. Familiar Number Systems; 2. Intervals; 3. Suprema and Infima; 4. Exact Arithmetic in R; 5. Topics for Further Study; Chapter II. Continuous Functions; 1. Functions in Mathematics; 2. Continuity of Numerical Functions; 3. The Intermediate Value Theorem; 4. More Ways to Form Continuous Functions; 5. Extreme Values; Chapter III. Limits; 1. Sequences and Limits; 2. Limits and Removing Discontinuities; 3. Limits Involving infinity; Chapter IV. The Derivative; 1. Differentiability 2. Combining Differentiable Functions3. Mean Values; 4. Second Derivatives and Approximations; 5. Higher Derivatives; 6. Inverse Functions; 7. Implicit Functions and Implicit Differentiation; Chapter V. The Riemann Integral; 1. Areas and Riemann Sums; 2. Simplifying the Conditions for Integrability; 3. Recognizing Integrability; 4. Functions Defined by Integrals; 5. The Fundamental Theorem of Calculus; 6. Topics for Further Study; Chapter VI. Exponential and Logarithmic Functions; 1. Exponents and Logarithms; 2. Algebraic Laws as Definitions; 3. The Natural Logarithm 4. The Natural Exponential Function5. An Important Limit; Chapter VII. Curves and Arc Length; 1. The Concept of Arc Length; 2. Arc Length and Integration; 3. Arc Length as a Parameter; 4. The Arctangent and Arcsine Functions; 5. The Fundamental Trigonometric Limit; Chapter VIII. Sequences and Series of Functions; 1. Functions Defined by Limits; 2. Continuity and Uniform Convergence; 3. Integrals and Derivatives; 4. Taylor's Theorem; 5. Power Series; 6. Topics for Further Study; Chapter IX. Additional Computational Methods; 1. L'Hôpital's Rule; 2. Newton's Method; 3. Simpson's Rule 4. The Substitution Rule for IntegralsReferences; Index Mathematical analysis. http://id.loc.gov/authorities/subjects/sh85082116 Analyse mathématique. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Mathematical analysis fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082116 |
title | Introductory analysis : a deeper view of calculus / |
title_auth | Introductory analysis : a deeper view of calculus / |
title_exact_search | Introductory analysis : a deeper view of calculus / |
title_full | Introductory analysis : a deeper view of calculus / Richard J. Bagby. |
title_fullStr | Introductory analysis : a deeper view of calculus / Richard J. Bagby. |
title_full_unstemmed | Introductory analysis : a deeper view of calculus / Richard J. Bagby. |
title_short | Introductory analysis : |
title_sort | introductory analysis a deeper view of calculus |
title_sub | a deeper view of calculus / |
topic | Mathematical analysis. http://id.loc.gov/authorities/subjects/sh85082116 Analyse mathématique. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Mathematical analysis fast |
topic_facet | Mathematical analysis. Analyse mathématique. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Mathematical analysis |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203257 |
work_keys_str_mv | AT bagbyrichardj introductoryanalysisadeeperviewofcalculus |