The geometry of Hessian structures /:
The geometry of Hessian structures is a fascinating emerging field of research. It is in particular a very close relative of Kählerian geometry, and connected with many important pure mathematical branches such as affine differential geometry, homogeneous spaces and cohomology. The theory also finds...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hackensack, N.J. :
World Scientific,
©2007.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The geometry of Hessian structures is a fascinating emerging field of research. It is in particular a very close relative of Kählerian geometry, and connected with many important pure mathematical branches such as affine differential geometry, homogeneous spaces and cohomology. The theory also finds deep relation to information geometry in applied mathematics. This systematic introduction to the subject first develops the fundamentals of Hessian structures on the basis of a certain pair of a flat connection and a Riemannian metric, and then describes these related fields as applications of the. |
Beschreibung: | 1 online resource (xiv, 246 pages) |
Bibliographie: | Includes bibliographical references (pages 237-241) and index. |
ISBN: | 9789812707536 9812707530 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn172989118 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 070918s2007 nju ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OCLCQ |d IDEBK |d OCLCQ |d MERUC |d OCLCQ |d OCLCF |d OCLCQ |d NLGGC |d OCLCQ |d EBLCP |d OCLCQ |d AGLDB |d MOR |d ZCU |d OCLCQ |d U3W |d STF |d VTS |d ICG |d INT |d VT2 |d OCLCQ |d TKN |d OCLCQ |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d AJS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
020 | |a 9789812707536 |q (electronic bk.) | ||
020 | |a 9812707530 |q (electronic bk.) | ||
020 | |z 9812700315 | ||
020 | |z 9789812700315 | ||
035 | |a (OCoLC)172989118 | ||
050 | 4 | |a QA641 |b .S458 2007eb | |
072 | 7 | |a MAT |x 012030 |2 bisacsh | |
082 | 7 | |a 516.36 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Shima, Hirohiko. |0 http://id.loc.gov/authorities/names/no2007069178 | |
245 | 1 | 4 | |a The geometry of Hessian structures / |c Hirohiko Shima. |
246 | 3 | 0 | |a Hessian structures |
260 | |a Hackensack, N.J. : |b World Scientific, |c ©2007. | ||
300 | |a 1 online resource (xiv, 246 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 237-241) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Preface; Introduction; Contents; 1. Affine spaces and connections; 2. Hessian structures; 3. Curvatures for Hessian structures; 4. Regular convex cones; 5. Hessian structures and affine differential geometry; 6. Hessian structures and information geometry; 7. Cohomology on at manifolds; 8. Compact Hessian manifolds; 9. Symmetric spaces with invariant Hessian structures; 10. Homogeneous spaces with invariant Hessian structures; 11. Homogeneous spaces with invariant projectively at connections; Bibliography; Index. | |
520 | |a The geometry of Hessian structures is a fascinating emerging field of research. It is in particular a very close relative of Kählerian geometry, and connected with many important pure mathematical branches such as affine differential geometry, homogeneous spaces and cohomology. The theory also finds deep relation to information geometry in applied mathematics. This systematic introduction to the subject first develops the fundamentals of Hessian structures on the basis of a certain pair of a flat connection and a Riemannian metric, and then describes these related fields as applications of the. | ||
650 | 0 | |a Geometry, Differential. |0 http://id.loc.gov/authorities/subjects/sh85054146 | |
650 | 0 | |a Homology theory. |0 http://id.loc.gov/authorities/subjects/sh85061770 | |
650 | 0 | |a Homogeneous spaces. |0 http://id.loc.gov/authorities/subjects/sh85061766 | |
650 | 0 | |a Manifolds (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85080549 | |
650 | 6 | |a Géométrie différentielle. | |
650 | 6 | |a Homologie. | |
650 | 6 | |a Espaces homogènes. | |
650 | 6 | |a Variétés (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Geometry |x Differential. |2 bisacsh | |
650 | 7 | |a Geometry, Differential |2 fast | |
650 | 7 | |a Homogeneous spaces |2 fast | |
650 | 7 | |a Homology theory |2 fast | |
650 | 7 | |a Manifolds (Mathematics) |2 fast | |
758 | |i has work: |a The geometry of Hessian structures (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGGGDD4vRGxpCkYmb7gyq3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Shima, Hirohiko. |t Geometry of Hessian structures. |d Hackensack, N.J. : World Scientific, ©2007 |z 9812700315 |z 9789812700315 |w (DLC) 2007298479 |w (OCoLC)167542989 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203860 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24684141 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL312289 | ||
938 | |a EBSCOhost |b EBSC |n 203860 | ||
938 | |a YBP Library Services |b YANK |n 2705619 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn172989118 |
---|---|
_version_ | 1816881653299019776 |
adam_text | |
any_adam_object | |
author | Shima, Hirohiko |
author_GND | http://id.loc.gov/authorities/names/no2007069178 |
author_facet | Shima, Hirohiko |
author_role | |
author_sort | Shima, Hirohiko |
author_variant | h s hs |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA641 |
callnumber-raw | QA641 .S458 2007eb |
callnumber-search | QA641 .S458 2007eb |
callnumber-sort | QA 3641 S458 42007EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preface; Introduction; Contents; 1. Affine spaces and connections; 2. Hessian structures; 3. Curvatures for Hessian structures; 4. Regular convex cones; 5. Hessian structures and affine differential geometry; 6. Hessian structures and information geometry; 7. Cohomology on at manifolds; 8. Compact Hessian manifolds; 9. Symmetric spaces with invariant Hessian structures; 10. Homogeneous spaces with invariant Hessian structures; 11. Homogeneous spaces with invariant projectively at connections; Bibliography; Index. |
ctrlnum | (OCoLC)172989118 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03925cam a2200613 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn172989118</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">070918s2007 nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812707536</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812707530</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812700315</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812700315</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)172989118</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA641</subfield><subfield code="b">.S458 2007eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shima, Hirohiko.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2007069178</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The geometry of Hessian structures /</subfield><subfield code="c">Hirohiko Shima.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Hessian structures</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Hackensack, N.J. :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2007.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 246 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 237-241) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; Introduction; Contents; 1. Affine spaces and connections; 2. Hessian structures; 3. Curvatures for Hessian structures; 4. Regular convex cones; 5. Hessian structures and affine differential geometry; 6. Hessian structures and information geometry; 7. Cohomology on at manifolds; 8. Compact Hessian manifolds; 9. Symmetric spaces with invariant Hessian structures; 10. Homogeneous spaces with invariant Hessian structures; 11. Homogeneous spaces with invariant projectively at connections; Bibliography; Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The geometry of Hessian structures is a fascinating emerging field of research. It is in particular a very close relative of Kählerian geometry, and connected with many important pure mathematical branches such as affine differential geometry, homogeneous spaces and cohomology. The theory also finds deep relation to information geometry in applied mathematics. This systematic introduction to the subject first develops the fundamentals of Hessian structures on the basis of a certain pair of a flat connection and a Riemannian metric, and then describes these related fields as applications of the.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry, Differential.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054146</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Homology theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85061770</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Homogeneous spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85061766</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85080549</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie différentielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Homologie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces homogènes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">Differential.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Differential</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homogeneous spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homology theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">The geometry of Hessian structures (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGGGDD4vRGxpCkYmb7gyq3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Shima, Hirohiko.</subfield><subfield code="t">Geometry of Hessian structures.</subfield><subfield code="d">Hackensack, N.J. : World Scientific, ©2007</subfield><subfield code="z">9812700315</subfield><subfield code="z">9789812700315</subfield><subfield code="w">(DLC) 2007298479</subfield><subfield code="w">(OCoLC)167542989</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203860</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684141</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL312289</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">203860</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2705619</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn172989118 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:16:08Z |
institution | BVB |
isbn | 9789812707536 9812707530 |
language | English |
oclc_num | 172989118 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 246 pages) |
psigel | ZDB-4-EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | World Scientific, |
record_format | marc |
spelling | Shima, Hirohiko. http://id.loc.gov/authorities/names/no2007069178 The geometry of Hessian structures / Hirohiko Shima. Hessian structures Hackensack, N.J. : World Scientific, ©2007. 1 online resource (xiv, 246 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 237-241) and index. Print version record. Preface; Introduction; Contents; 1. Affine spaces and connections; 2. Hessian structures; 3. Curvatures for Hessian structures; 4. Regular convex cones; 5. Hessian structures and affine differential geometry; 6. Hessian structures and information geometry; 7. Cohomology on at manifolds; 8. Compact Hessian manifolds; 9. Symmetric spaces with invariant Hessian structures; 10. Homogeneous spaces with invariant Hessian structures; 11. Homogeneous spaces with invariant projectively at connections; Bibliography; Index. The geometry of Hessian structures is a fascinating emerging field of research. It is in particular a very close relative of Kählerian geometry, and connected with many important pure mathematical branches such as affine differential geometry, homogeneous spaces and cohomology. The theory also finds deep relation to information geometry in applied mathematics. This systematic introduction to the subject first develops the fundamentals of Hessian structures on the basis of a certain pair of a flat connection and a Riemannian metric, and then describes these related fields as applications of the. Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Homology theory. http://id.loc.gov/authorities/subjects/sh85061770 Homogeneous spaces. http://id.loc.gov/authorities/subjects/sh85061766 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Géométrie différentielle. Homologie. Espaces homogènes. Variétés (Mathématiques) MATHEMATICS Geometry Differential. bisacsh Geometry, Differential fast Homogeneous spaces fast Homology theory fast Manifolds (Mathematics) fast has work: The geometry of Hessian structures (Text) https://id.oclc.org/worldcat/entity/E39PCGGGDD4vRGxpCkYmb7gyq3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Shima, Hirohiko. Geometry of Hessian structures. Hackensack, N.J. : World Scientific, ©2007 9812700315 9789812700315 (DLC) 2007298479 (OCoLC)167542989 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203860 Volltext |
spellingShingle | Shima, Hirohiko The geometry of Hessian structures / Preface; Introduction; Contents; 1. Affine spaces and connections; 2. Hessian structures; 3. Curvatures for Hessian structures; 4. Regular convex cones; 5. Hessian structures and affine differential geometry; 6. Hessian structures and information geometry; 7. Cohomology on at manifolds; 8. Compact Hessian manifolds; 9. Symmetric spaces with invariant Hessian structures; 10. Homogeneous spaces with invariant Hessian structures; 11. Homogeneous spaces with invariant projectively at connections; Bibliography; Index. Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Homology theory. http://id.loc.gov/authorities/subjects/sh85061770 Homogeneous spaces. http://id.loc.gov/authorities/subjects/sh85061766 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Géométrie différentielle. Homologie. Espaces homogènes. Variétés (Mathématiques) MATHEMATICS Geometry Differential. bisacsh Geometry, Differential fast Homogeneous spaces fast Homology theory fast Manifolds (Mathematics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85054146 http://id.loc.gov/authorities/subjects/sh85061770 http://id.loc.gov/authorities/subjects/sh85061766 http://id.loc.gov/authorities/subjects/sh85080549 |
title | The geometry of Hessian structures / |
title_alt | Hessian structures |
title_auth | The geometry of Hessian structures / |
title_exact_search | The geometry of Hessian structures / |
title_full | The geometry of Hessian structures / Hirohiko Shima. |
title_fullStr | The geometry of Hessian structures / Hirohiko Shima. |
title_full_unstemmed | The geometry of Hessian structures / Hirohiko Shima. |
title_short | The geometry of Hessian structures / |
title_sort | geometry of hessian structures |
topic | Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Homology theory. http://id.loc.gov/authorities/subjects/sh85061770 Homogeneous spaces. http://id.loc.gov/authorities/subjects/sh85061766 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Géométrie différentielle. Homologie. Espaces homogènes. Variétés (Mathématiques) MATHEMATICS Geometry Differential. bisacsh Geometry, Differential fast Homogeneous spaces fast Homology theory fast Manifolds (Mathematics) fast |
topic_facet | Geometry, Differential. Homology theory. Homogeneous spaces. Manifolds (Mathematics) Géométrie différentielle. Homologie. Espaces homogènes. Variétés (Mathématiques) MATHEMATICS Geometry Differential. Geometry, Differential Homogeneous spaces Homology theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203860 |
work_keys_str_mv | AT shimahirohiko thegeometryofhessianstructures AT shimahirohiko hessianstructures AT shimahirohiko geometryofhessianstructures |