Data mining in time series databases /:
Adding the time dimension to real-world databases produces Time Series Databases (TSDB) and introduces new aspects and difficulties to data mining and knowledge discovery. This manual examines state-of-the-art methodology for mining time series databases. The novel data mining methods presented in t...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London :
World Scientific,
©2004.
|
Schriftenreihe: | Series in machine perception and artificial intelligence ;
v. 57. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Adding the time dimension to real-world databases produces Time Series Databases (TSDB) and introduces new aspects and difficulties to data mining and knowledge discovery. This manual examines state-of-the-art methodology for mining time series databases. The novel data mining methods presented in the book include techniques for efficient segmentation, indexing, and classification of noisy and dynamic time series. A graph-based method for anomaly detection in time series is described and the text also studies the implications of a novel and potentially useful representation of time series as strings. The problem of detecting changes in data mining models that are induced from temporal databases is additionally discussed. |
Beschreibung: | 1 online resource (xi, 192 pages) : illustrations. |
Bibliographie: | Includes bibliographical references. |
ISBN: | 1423723023 9781423723028 9789812382900 9812382909 1281347760 9781281347763 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm61395447 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 050901s2004 njua ob 000 0 eng d | ||
010 | |a 2007273377 | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d YDXCP |d OCLCQ |d OCLCO |d MERUC |d CCO |d E7B |d COCUF |d DKDLA |d IDEBK |d CSU |d OCLCQ |d OCLCF |d OCLCQ |d AZK |d AGLDB |d MOR |d PIFBR |d X#7 |d LIV |d OCLCQ |d U3W |d STF |d WRM |d OCLCQ |d VTS |d REC |d INT |d NRAMU |d VT2 |d OCLCQ |d COO |d OCLCQ |d WYU |d OCLCQ |d UKAHL |d UKCRE |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ | ||
015 | |a GBA472639 |2 bnb | ||
016 | 7 | |a 013003794 |2 Uk | |
019 | |a 133168771 |a 474894831 |a 478346103 |a 559914045 |a 646737837 |a 666919149 |a 722387571 |a 740947360 |a 815568163 |a 888641227 |a 961660643 |a 962576458 |a 988434906 |a 992057389 |a 1037792813 |a 1038577758 |a 1045522225 |a 1062889423 |a 1081196633 |a 1153534166 |a 1228595063 | ||
020 | |a 1423723023 |q (electronic bk.) | ||
020 | |a 9781423723028 |q (electronic bk.) | ||
020 | |a 9789812382900 | ||
020 | |a 9812382909 | ||
020 | |a 1281347760 | ||
020 | |a 9781281347763 | ||
035 | |a (OCoLC)61395447 |z (OCoLC)133168771 |z (OCoLC)474894831 |z (OCoLC)478346103 |z (OCoLC)559914045 |z (OCoLC)646737837 |z (OCoLC)666919149 |z (OCoLC)722387571 |z (OCoLC)740947360 |z (OCoLC)815568163 |z (OCoLC)888641227 |z (OCoLC)961660643 |z (OCoLC)962576458 |z (OCoLC)988434906 |z (OCoLC)992057389 |z (OCoLC)1037792813 |z (OCoLC)1038577758 |z (OCoLC)1045522225 |z (OCoLC)1062889423 |z (OCoLC)1081196633 |z (OCoLC)1153534166 |z (OCoLC)1228595063 | ||
050 | 4 | |a QA76.9.D343 |b D3834 2004eb | |
072 | 7 | |a COM |x 025000 |2 bisacsh | |
072 | 7 | |a UN |2 bicssc | |
082 | 7 | |a 006.33 |2 22 | |
084 | |a 54.64 |2 bcl | ||
084 | |a QH 237 |2 rvk | ||
084 | |a SK 845 |2 rvk | ||
084 | |a ST 530 |2 rvk | ||
049 | |a MAIN | ||
245 | 0 | 0 | |a Data mining in time series databases / |c editors, Mark Last, Abraham Kandel, Horst Bunke. |
260 | |a New Jersey ; |a London : |b World Scientific, |c ©2004. | ||
300 | |a 1 online resource (xi, 192 pages) : |b illustrations. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
490 | 1 | |a Series in machine perception and artificial intelligence ; |v v. 57 | |
504 | |a Includes bibliographical references. | ||
505 | 0 | 0 | |t Segmenting time series : a survey and novel approach / |r E. Keogh [and others] -- |t A survey of recent methods for efficient retrieval of similar time sequences / |r M.L. Hetland -- |t Indexing of compressed time series / |r E. Fink and K.B. Pratt -- |t Indexing time-series under conditions of noise / |r M. Vlachos, D. Gunopulos, and G. Das -- |t Change detection in classification models induced from time series data / |r G. Zeira [and others] -- |t Classification and detection of abnormal events in time series of graphs / |r H. Bunke and M. Kraetzl -- |t Boosting interval-based literals : variable length and early classification / |r C.J. Alonso González and J.J. Rodríguez Diez -- |t Median strings : a review / |r X. Jiang, H. Bunke, and J. Csirik. |
588 | 0 | |a Print version record. | |
520 | |a Adding the time dimension to real-world databases produces Time Series Databases (TSDB) and introduces new aspects and difficulties to data mining and knowledge discovery. This manual examines state-of-the-art methodology for mining time series databases. The novel data mining methods presented in the book include techniques for efficient segmentation, indexing, and classification of noisy and dynamic time series. A graph-based method for anomaly detection in time series is described and the text also studies the implications of a novel and potentially useful representation of time series as strings. The problem of detecting changes in data mining models that are induced from temporal databases is additionally discussed. | ||
650 | 0 | |a Data mining. |0 http://id.loc.gov/authorities/subjects/sh97002073 | |
650 | 0 | |a Distributed databases. |0 http://id.loc.gov/authorities/subjects/sh88000865 | |
650 | 2 | |a Data Mining |0 https://id.nlm.nih.gov/mesh/D057225 | |
650 | 6 | |a Exploration de données (Informatique) | |
650 | 6 | |a Bases de données réparties. | |
650 | 7 | |a COMPUTERS |x Expert Systems. |2 bisacsh | |
650 | 7 | |a Data mining |2 fast | |
650 | 7 | |a Distributed databases |2 fast | |
650 | 7 | |a Exploration de données (Informatique) |2 rvm | |
650 | 7 | |a Bases de données réparties. |2 rvm | |
700 | 1 | |a Last, Mark. | |
700 | 1 | |a Kandel, Abraham. | |
700 | 1 | |a Bunke, Horst. | |
776 | 0 | 8 | |i Print version: |t Data mining in time series databases. |d New Jersey ; London : World Scientific, ©2004 |z 9812382909 |w (OCoLC)56760428 |
830 | 0 | |a Series in machine perception and artificial intelligence ; |v v. 57. |0 http://id.loc.gov/authorities/names/n91107585 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=137593 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24683654 | ||
938 | |a ebrary |b EBRY |n ebr10088379 | ||
938 | |a EBSCOhost |b EBSC |n 137593 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 134776 | ||
938 | |a YBP Library Services |b YANK |n 2407418 | ||
938 | |a YBP Library Services |b YANK |n 10410357 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm61395447 |
---|---|
_version_ | 1816881629825597440 |
adam_text | |
any_adam_object | |
author2 | Last, Mark Kandel, Abraham Bunke, Horst |
author2_role | |
author2_variant | m l ml a k ak h b hb |
author_additional | E. Keogh [and others] -- M.L. Hetland -- E. Fink and K.B. Pratt -- M. Vlachos, D. Gunopulos, and G. Das -- G. Zeira [and others] -- H. Bunke and M. Kraetzl -- C.J. Alonso González and J.J. Rodríguez Diez -- X. Jiang, H. Bunke, and J. Csirik. |
author_facet | Last, Mark Kandel, Abraham Bunke, Horst |
author_sort | Last, Mark |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.D343 D3834 2004eb |
callnumber-search | QA76.9.D343 D3834 2004eb |
callnumber-sort | QA 276.9 D343 D3834 42004EB |
callnumber-subject | QA - Mathematics |
classification_rvk | QH 237 SK 845 ST 530 |
collection | ZDB-4-EBA |
contents | Segmenting time series : a survey and novel approach / A survey of recent methods for efficient retrieval of similar time sequences / Indexing of compressed time series / Indexing time-series under conditions of noise / Change detection in classification models induced from time series data / Classification and detection of abnormal events in time series of graphs / Boosting interval-based literals : variable length and early classification / Median strings : a review / |
ctrlnum | (OCoLC)61395447 |
dewey-full | 006.33 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.33 |
dewey-search | 006.33 |
dewey-sort | 16.33 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05202cam a2200769 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm61395447 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">050901s2004 njua ob 000 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2007273377</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">MERUC</subfield><subfield code="d">CCO</subfield><subfield code="d">E7B</subfield><subfield code="d">COCUF</subfield><subfield code="d">DKDLA</subfield><subfield code="d">IDEBK</subfield><subfield code="d">CSU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFBR</subfield><subfield code="d">X#7</subfield><subfield code="d">LIV</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">INT</subfield><subfield code="d">NRAMU</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">UKCRE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA472639</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">013003794</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">133168771</subfield><subfield code="a">474894831</subfield><subfield code="a">478346103</subfield><subfield code="a">559914045</subfield><subfield code="a">646737837</subfield><subfield code="a">666919149</subfield><subfield code="a">722387571</subfield><subfield code="a">740947360</subfield><subfield code="a">815568163</subfield><subfield code="a">888641227</subfield><subfield code="a">961660643</subfield><subfield code="a">962576458</subfield><subfield code="a">988434906</subfield><subfield code="a">992057389</subfield><subfield code="a">1037792813</subfield><subfield code="a">1038577758</subfield><subfield code="a">1045522225</subfield><subfield code="a">1062889423</subfield><subfield code="a">1081196633</subfield><subfield code="a">1153534166</subfield><subfield code="a">1228595063</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1423723023</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781423723028</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812382900</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812382909</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281347760</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281347763</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)61395447</subfield><subfield code="z">(OCoLC)133168771</subfield><subfield code="z">(OCoLC)474894831</subfield><subfield code="z">(OCoLC)478346103</subfield><subfield code="z">(OCoLC)559914045</subfield><subfield code="z">(OCoLC)646737837</subfield><subfield code="z">(OCoLC)666919149</subfield><subfield code="z">(OCoLC)722387571</subfield><subfield code="z">(OCoLC)740947360</subfield><subfield code="z">(OCoLC)815568163</subfield><subfield code="z">(OCoLC)888641227</subfield><subfield code="z">(OCoLC)961660643</subfield><subfield code="z">(OCoLC)962576458</subfield><subfield code="z">(OCoLC)988434906</subfield><subfield code="z">(OCoLC)992057389</subfield><subfield code="z">(OCoLC)1037792813</subfield><subfield code="z">(OCoLC)1038577758</subfield><subfield code="z">(OCoLC)1045522225</subfield><subfield code="z">(OCoLC)1062889423</subfield><subfield code="z">(OCoLC)1081196633</subfield><subfield code="z">(OCoLC)1153534166</subfield><subfield code="z">(OCoLC)1228595063</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.9.D343</subfield><subfield code="b">D3834 2004eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">025000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">UN</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.33</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.64</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 237</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 845</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Data mining in time series databases /</subfield><subfield code="c">editors, Mark Last, Abraham Kandel, Horst Bunke.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New Jersey ;</subfield><subfield code="a">London :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2004.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 192 pages) :</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series in machine perception and artificial intelligence ;</subfield><subfield code="v">v. 57</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Segmenting time series : a survey and novel approach /</subfield><subfield code="r">E. Keogh [and others] --</subfield><subfield code="t">A survey of recent methods for efficient retrieval of similar time sequences /</subfield><subfield code="r">M.L. Hetland --</subfield><subfield code="t">Indexing of compressed time series /</subfield><subfield code="r">E. Fink and K.B. Pratt --</subfield><subfield code="t">Indexing time-series under conditions of noise /</subfield><subfield code="r">M. Vlachos, D. Gunopulos, and G. Das --</subfield><subfield code="t">Change detection in classification models induced from time series data /</subfield><subfield code="r">G. Zeira [and others] --</subfield><subfield code="t">Classification and detection of abnormal events in time series of graphs /</subfield><subfield code="r">H. Bunke and M. Kraetzl --</subfield><subfield code="t">Boosting interval-based literals : variable length and early classification /</subfield><subfield code="r">C.J. Alonso González and J.J. Rodríguez Diez --</subfield><subfield code="t">Median strings : a review /</subfield><subfield code="r">X. Jiang, H. Bunke, and J. Csirik.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Adding the time dimension to real-world databases produces Time Series Databases (TSDB) and introduces new aspects and difficulties to data mining and knowledge discovery. This manual examines state-of-the-art methodology for mining time series databases. The novel data mining methods presented in the book include techniques for efficient segmentation, indexing, and classification of noisy and dynamic time series. A graph-based method for anomaly detection in time series is described and the text also studies the implications of a novel and potentially useful representation of time series as strings. The problem of detecting changes in data mining models that are induced from temporal databases is additionally discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh97002073</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Distributed databases.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh88000865</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Data Mining</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D057225</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Bases de données réparties.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Expert Systems.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data mining</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Distributed databases</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Exploration de données (Informatique)</subfield><subfield code="2">rvm</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bases de données réparties.</subfield><subfield code="2">rvm</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Last, Mark.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kandel, Abraham.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bunke, Horst.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Data mining in time series databases.</subfield><subfield code="d">New Jersey ; London : World Scientific, ©2004</subfield><subfield code="z">9812382909</subfield><subfield code="w">(OCoLC)56760428</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series in machine perception and artificial intelligence ;</subfield><subfield code="v">v. 57.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n91107585</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=137593</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24683654</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10088379</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">137593</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">134776</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2407418</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10410357</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocm61395447 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:15:46Z |
institution | BVB |
isbn | 1423723023 9781423723028 9789812382900 9812382909 1281347760 9781281347763 |
language | English |
lccn | 2007273377 |
oclc_num | 61395447 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 192 pages) : illustrations. |
psigel | ZDB-4-EBA |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | World Scientific, |
record_format | marc |
series | Series in machine perception and artificial intelligence ; |
series2 | Series in machine perception and artificial intelligence ; |
spelling | Data mining in time series databases / editors, Mark Last, Abraham Kandel, Horst Bunke. New Jersey ; London : World Scientific, ©2004. 1 online resource (xi, 192 pages) : illustrations. text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda Series in machine perception and artificial intelligence ; v. 57 Includes bibliographical references. Segmenting time series : a survey and novel approach / E. Keogh [and others] -- A survey of recent methods for efficient retrieval of similar time sequences / M.L. Hetland -- Indexing of compressed time series / E. Fink and K.B. Pratt -- Indexing time-series under conditions of noise / M. Vlachos, D. Gunopulos, and G. Das -- Change detection in classification models induced from time series data / G. Zeira [and others] -- Classification and detection of abnormal events in time series of graphs / H. Bunke and M. Kraetzl -- Boosting interval-based literals : variable length and early classification / C.J. Alonso González and J.J. Rodríguez Diez -- Median strings : a review / X. Jiang, H. Bunke, and J. Csirik. Print version record. Adding the time dimension to real-world databases produces Time Series Databases (TSDB) and introduces new aspects and difficulties to data mining and knowledge discovery. This manual examines state-of-the-art methodology for mining time series databases. The novel data mining methods presented in the book include techniques for efficient segmentation, indexing, and classification of noisy and dynamic time series. A graph-based method for anomaly detection in time series is described and the text also studies the implications of a novel and potentially useful representation of time series as strings. The problem of detecting changes in data mining models that are induced from temporal databases is additionally discussed. Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Distributed databases. http://id.loc.gov/authorities/subjects/sh88000865 Data Mining https://id.nlm.nih.gov/mesh/D057225 Exploration de données (Informatique) Bases de données réparties. COMPUTERS Expert Systems. bisacsh Data mining fast Distributed databases fast Exploration de données (Informatique) rvm Bases de données réparties. rvm Last, Mark. Kandel, Abraham. Bunke, Horst. Print version: Data mining in time series databases. New Jersey ; London : World Scientific, ©2004 9812382909 (OCoLC)56760428 Series in machine perception and artificial intelligence ; v. 57. http://id.loc.gov/authorities/names/n91107585 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=137593 Volltext |
spellingShingle | Data mining in time series databases / Series in machine perception and artificial intelligence ; Segmenting time series : a survey and novel approach / A survey of recent methods for efficient retrieval of similar time sequences / Indexing of compressed time series / Indexing time-series under conditions of noise / Change detection in classification models induced from time series data / Classification and detection of abnormal events in time series of graphs / Boosting interval-based literals : variable length and early classification / Median strings : a review / Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Distributed databases. http://id.loc.gov/authorities/subjects/sh88000865 Data Mining https://id.nlm.nih.gov/mesh/D057225 Exploration de données (Informatique) Bases de données réparties. COMPUTERS Expert Systems. bisacsh Data mining fast Distributed databases fast Exploration de données (Informatique) rvm Bases de données réparties. rvm |
subject_GND | http://id.loc.gov/authorities/subjects/sh97002073 http://id.loc.gov/authorities/subjects/sh88000865 https://id.nlm.nih.gov/mesh/D057225 |
title | Data mining in time series databases / |
title_alt | Segmenting time series : a survey and novel approach / A survey of recent methods for efficient retrieval of similar time sequences / Indexing of compressed time series / Indexing time-series under conditions of noise / Change detection in classification models induced from time series data / Classification and detection of abnormal events in time series of graphs / Boosting interval-based literals : variable length and early classification / Median strings : a review / |
title_auth | Data mining in time series databases / |
title_exact_search | Data mining in time series databases / |
title_full | Data mining in time series databases / editors, Mark Last, Abraham Kandel, Horst Bunke. |
title_fullStr | Data mining in time series databases / editors, Mark Last, Abraham Kandel, Horst Bunke. |
title_full_unstemmed | Data mining in time series databases / editors, Mark Last, Abraham Kandel, Horst Bunke. |
title_short | Data mining in time series databases / |
title_sort | data mining in time series databases |
topic | Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Distributed databases. http://id.loc.gov/authorities/subjects/sh88000865 Data Mining https://id.nlm.nih.gov/mesh/D057225 Exploration de données (Informatique) Bases de données réparties. COMPUTERS Expert Systems. bisacsh Data mining fast Distributed databases fast Exploration de données (Informatique) rvm Bases de données réparties. rvm |
topic_facet | Data mining. Distributed databases. Data Mining Exploration de données (Informatique) Bases de données réparties. COMPUTERS Expert Systems. Data mining Distributed databases |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=137593 |
work_keys_str_mv | AT lastmark dataminingintimeseriesdatabases AT kandelabraham dataminingintimeseriesdatabases AT bunkehorst dataminingintimeseriesdatabases |