Simulating Hamiltonian dynamics /:
Geometric integrators are timestepping methods, designed to exactly satisfy properties inherent in a system of differential equations. Beginning from basic principles of geometric integration and a discussion of the advantageous properties of such schemes, the book introduces a variety of methods an...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK ; New York :
Cambridge University Press,
2005.
|
Schriftenreihe: | Cambridge monographs on applied and computational mathematics ;
14. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Geometric integrators are timestepping methods, designed to exactly satisfy properties inherent in a system of differential equations. Beginning from basic principles of geometric integration and a discussion of the advantageous properties of such schemes, the book introduces a variety of methods and applications. Includes examples and excercises. |
Beschreibung: | 1 online resource (xvi, 379 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 357-373) and index. |
ISBN: | 0511080808 9780511080807 9780511614118 051161411X |
Internformat
MARC
LEADER | 00000cam a22000004a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm59717005 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 050427s2005 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCL |d OCLCQ |d YDXCP |d OCLCQ |d OCLCO |d OCLCQ |d OCLCF |d OCLCQ |d CAMBR |d AU@ |d E7B |d MHW |d IDEBK |d REDDC |d DEBSZ |d OL$ |d OCLCQ |d EBLCP |d OCLCQ |d HTC |d OCLCQ |d OCLCO |d OCLCA |d OCLCQ |d S8J |d OCLCQ |d OCLCA |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB | ||
019 | |a 144551778 |a 171136845 |a 271790053 |a 437146062 |a 813439116 |a 852653872 |a 976487821 | ||
020 | |a 0511080808 |q (electronic bk.) | ||
020 | |a 9780511080807 |q (electronic bk.) | ||
020 | |a 9780511614118 |q (electronic bk.) | ||
020 | |a 051161411X |q (electronic bk.) | ||
020 | |z 0521772907 | ||
020 | |z 9780521772907 | ||
020 | |z 0511080042 | ||
020 | |z 9780511080043 | ||
035 | |a (OCoLC)59717005 |z (OCoLC)144551778 |z (OCoLC)171136845 |z (OCoLC)271790053 |z (OCoLC)437146062 |z (OCoLC)813439116 |z (OCoLC)852653872 |z (OCoLC)976487821 | ||
050 | 4 | |a QA614.83 |b .L45 2005eb | |
072 | 7 | |a MAT |x 007000 |2 bisacsh | |
082 | 7 | |a 515/.39 |2 22 | |
084 | |a 31.44 |2 bcl | ||
084 | |a 31.76 |2 bcl | ||
084 | |a SK 950 |2 rvk | ||
084 | |a MAT 344f |2 stub | ||
084 | |a MAT 650f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Leimkuhler, B. | |
245 | 1 | 0 | |a Simulating Hamiltonian dynamics / |c Benedict Leimkuhler, Sebastian Reich. |
260 | |a Cambridge, UK ; |a New York : |b Cambridge University Press, |c 2005. | ||
300 | |a 1 online resource (xvi, 379 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge monographs on applied and computational mathematics ; |v 14 | |
504 | |a Includes bibliographical references (pages 357-373) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | 0 | |g 1. |t Introduction -- |g 2. |t Numerical methods -- |g 3. |t Hamiltonian mechanics -- |g 4. |t Geometric integrators -- |g 5. |t The modified equations -- |g 6. |t Higher-order methods -- |g 7. |t Constrained mechanical systems -- |g 8. |t Rigid body dynamics -- |g 9. |t Adaptive geometric integrators -- |g 10. |t Highly oscillatory problems -- |g 11. |t Molecular dynamics -- |g 12. |t Hamiltonian PDEs. |
520 | |a Geometric integrators are timestepping methods, designed to exactly satisfy properties inherent in a system of differential equations. Beginning from basic principles of geometric integration and a discussion of the advantageous properties of such schemes, the book introduces a variety of methods and applications. Includes examples and excercises. | ||
650 | 0 | |a Hamiltonian systems. |0 http://id.loc.gov/authorities/subjects/sh85058563 | |
650 | 6 | |a Systèmes hamiltoniens. | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x General. |2 bisacsh | |
650 | 7 | |a Hamiltonian systems |2 fast | |
650 | 7 | |a Hamiltonsches System |2 gnd |0 http://d-nb.info/gnd/4139943-2 | |
650 | 7 | |a Konservatives System |2 gnd | |
650 | 7 | |a Numerisches Verfahren |2 gnd |0 http://d-nb.info/gnd/4128130-5 | |
650 | 7 | |a Simulation |2 gnd | |
650 | 7 | |a Numerische Integration |2 gnd |0 http://d-nb.info/gnd/4172168-8 | |
655 | 0 | |a Electronic books. | |
655 | 4 | |a Electronic books. | |
700 | 1 | |a Reich, Sebastian. | |
758 | |i has work: |a Simulating Hamiltonian dynamics (Text) |1 https://id.oclc.org/worldcat/entity/E39PCYVXv9BtdFjYpQGJTpFc8C |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Leimkuhler, B. |t Simulating Hamiltonian dynamics. |d Cambridge, UK ; New York : Cambridge University Press, 2005 |z 0521772907 |w (DLC) 2004045685 |w (OCoLC)54677786 |
830 | 0 | |a Cambridge monographs on applied and computational mathematics ; |v 14. |0 http://id.loc.gov/authorities/names/n95073089 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=129306 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL228242 | ||
938 | |a ebrary |b EBRY |n ebr10429040 | ||
938 | |a EBSCOhost |b EBSC |n 129306 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 41506 | ||
938 | |a YBP Library Services |b YANK |n 2618481 | ||
938 | |a YBP Library Services |b YANK |n 3581864 | ||
938 | |a YBP Library Services |b YANK |n 7036566 | ||
938 | |a YBP Library Services |b YANK |n 2301665 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm59717005 |
---|---|
_version_ | 1816881627100348416 |
adam_text | |
any_adam_object | |
author | Leimkuhler, B. |
author2 | Reich, Sebastian |
author2_role | |
author2_variant | s r sr |
author_facet | Leimkuhler, B. Reich, Sebastian |
author_role | |
author_sort | Leimkuhler, B. |
author_variant | b l bl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA614 |
callnumber-raw | QA614.83 .L45 2005eb |
callnumber-search | QA614.83 .L45 2005eb |
callnumber-sort | QA 3614.83 L45 42005EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 950 |
classification_tum | MAT 344f MAT 650f |
collection | ZDB-4-EBA |
contents | Introduction -- Numerical methods -- Hamiltonian mechanics -- Geometric integrators -- The modified equations -- Higher-order methods -- Constrained mechanical systems -- Rigid body dynamics -- Adaptive geometric integrators -- Highly oscillatory problems -- Molecular dynamics -- Hamiltonian PDEs. |
ctrlnum | (OCoLC)59717005 |
dewey-full | 515/.39 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.39 |
dewey-search | 515/.39 |
dewey-sort | 3515 239 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04298cam a22007814a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm59717005 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">050427s2005 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CAMBR</subfield><subfield code="d">AU@</subfield><subfield code="d">E7B</subfield><subfield code="d">MHW</subfield><subfield code="d">IDEBK</subfield><subfield code="d">REDDC</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OL$</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HTC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S8J</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">144551778</subfield><subfield code="a">171136845</subfield><subfield code="a">271790053</subfield><subfield code="a">437146062</subfield><subfield code="a">813439116</subfield><subfield code="a">852653872</subfield><subfield code="a">976487821</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511080808</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511080807</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511614118</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">051161411X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521772907</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521772907</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0511080042</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780511080043</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)59717005</subfield><subfield code="z">(OCoLC)144551778</subfield><subfield code="z">(OCoLC)171136845</subfield><subfield code="z">(OCoLC)271790053</subfield><subfield code="z">(OCoLC)437146062</subfield><subfield code="z">(OCoLC)813439116</subfield><subfield code="z">(OCoLC)852653872</subfield><subfield code="z">(OCoLC)976487821</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA614.83</subfield><subfield code="b">.L45 2005eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">007000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.39</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.44</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.76</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 344f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 650f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Leimkuhler, B.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simulating Hamiltonian dynamics /</subfield><subfield code="c">Benedict Leimkuhler, Sebastian Reich.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, UK ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2005.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 379 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge monographs on applied and computational mathematics ;</subfield><subfield code="v">14</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 357-373) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Numerical methods --</subfield><subfield code="g">3.</subfield><subfield code="t">Hamiltonian mechanics --</subfield><subfield code="g">4.</subfield><subfield code="t">Geometric integrators --</subfield><subfield code="g">5.</subfield><subfield code="t">The modified equations --</subfield><subfield code="g">6.</subfield><subfield code="t">Higher-order methods --</subfield><subfield code="g">7.</subfield><subfield code="t">Constrained mechanical systems --</subfield><subfield code="g">8.</subfield><subfield code="t">Rigid body dynamics --</subfield><subfield code="g">9.</subfield><subfield code="t">Adaptive geometric integrators --</subfield><subfield code="g">10.</subfield><subfield code="t">Highly oscillatory problems --</subfield><subfield code="g">11.</subfield><subfield code="t">Molecular dynamics --</subfield><subfield code="g">12.</subfield><subfield code="t">Hamiltonian PDEs.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Geometric integrators are timestepping methods, designed to exactly satisfy properties inherent in a system of differential equations. Beginning from basic principles of geometric integration and a discussion of the advantageous properties of such schemes, the book introduces a variety of methods and applications. Includes examples and excercises.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Hamiltonian systems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85058563</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Systèmes hamiltoniens.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hamiltonian systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hamiltonsches System</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4139943-2</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Konservatives System</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4128130-5</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Simulation</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerische Integration</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4172168-8</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reich, Sebastian.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Simulating Hamiltonian dynamics (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCYVXv9BtdFjYpQGJTpFc8C</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Leimkuhler, B.</subfield><subfield code="t">Simulating Hamiltonian dynamics.</subfield><subfield code="d">Cambridge, UK ; New York : Cambridge University Press, 2005</subfield><subfield code="z">0521772907</subfield><subfield code="w">(DLC) 2004045685</subfield><subfield code="w">(OCoLC)54677786</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge monographs on applied and computational mathematics ;</subfield><subfield code="v">14.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n95073089</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=129306</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL228242</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10429040</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">129306</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">41506</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2618481</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3581864</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7036566</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2301665</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic books. |
genre_facet | Electronic books. |
id | ZDB-4-EBA-ocm59717005 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:15:43Z |
institution | BVB |
isbn | 0511080808 9780511080807 9780511614118 051161411X |
language | English |
oclc_num | 59717005 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xvi, 379 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Cambridge University Press, |
record_format | marc |
series | Cambridge monographs on applied and computational mathematics ; |
series2 | Cambridge monographs on applied and computational mathematics ; |
spelling | Leimkuhler, B. Simulating Hamiltonian dynamics / Benedict Leimkuhler, Sebastian Reich. Cambridge, UK ; New York : Cambridge University Press, 2005. 1 online resource (xvi, 379 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Cambridge monographs on applied and computational mathematics ; 14 Includes bibliographical references (pages 357-373) and index. Print version record. 1. Introduction -- 2. Numerical methods -- 3. Hamiltonian mechanics -- 4. Geometric integrators -- 5. The modified equations -- 6. Higher-order methods -- 7. Constrained mechanical systems -- 8. Rigid body dynamics -- 9. Adaptive geometric integrators -- 10. Highly oscillatory problems -- 11. Molecular dynamics -- 12. Hamiltonian PDEs. Geometric integrators are timestepping methods, designed to exactly satisfy properties inherent in a system of differential equations. Beginning from basic principles of geometric integration and a discussion of the advantageous properties of such schemes, the book introduces a variety of methods and applications. Includes examples and excercises. Hamiltonian systems. http://id.loc.gov/authorities/subjects/sh85058563 Systèmes hamiltoniens. MATHEMATICS Differential Equations General. bisacsh Hamiltonian systems fast Hamiltonsches System gnd http://d-nb.info/gnd/4139943-2 Konservatives System gnd Numerisches Verfahren gnd http://d-nb.info/gnd/4128130-5 Simulation gnd Numerische Integration gnd http://d-nb.info/gnd/4172168-8 Electronic books. Reich, Sebastian. has work: Simulating Hamiltonian dynamics (Text) https://id.oclc.org/worldcat/entity/E39PCYVXv9BtdFjYpQGJTpFc8C https://id.oclc.org/worldcat/ontology/hasWork Print version: Leimkuhler, B. Simulating Hamiltonian dynamics. Cambridge, UK ; New York : Cambridge University Press, 2005 0521772907 (DLC) 2004045685 (OCoLC)54677786 Cambridge monographs on applied and computational mathematics ; 14. http://id.loc.gov/authorities/names/n95073089 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=129306 Volltext |
spellingShingle | Leimkuhler, B. Simulating Hamiltonian dynamics / Cambridge monographs on applied and computational mathematics ; Introduction -- Numerical methods -- Hamiltonian mechanics -- Geometric integrators -- The modified equations -- Higher-order methods -- Constrained mechanical systems -- Rigid body dynamics -- Adaptive geometric integrators -- Highly oscillatory problems -- Molecular dynamics -- Hamiltonian PDEs. Hamiltonian systems. http://id.loc.gov/authorities/subjects/sh85058563 Systèmes hamiltoniens. MATHEMATICS Differential Equations General. bisacsh Hamiltonian systems fast Hamiltonsches System gnd http://d-nb.info/gnd/4139943-2 Konservatives System gnd Numerisches Verfahren gnd http://d-nb.info/gnd/4128130-5 Simulation gnd Numerische Integration gnd http://d-nb.info/gnd/4172168-8 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85058563 http://d-nb.info/gnd/4139943-2 http://d-nb.info/gnd/4128130-5 http://d-nb.info/gnd/4172168-8 |
title | Simulating Hamiltonian dynamics / |
title_alt | Introduction -- Numerical methods -- Hamiltonian mechanics -- Geometric integrators -- The modified equations -- Higher-order methods -- Constrained mechanical systems -- Rigid body dynamics -- Adaptive geometric integrators -- Highly oscillatory problems -- Molecular dynamics -- Hamiltonian PDEs. |
title_auth | Simulating Hamiltonian dynamics / |
title_exact_search | Simulating Hamiltonian dynamics / |
title_full | Simulating Hamiltonian dynamics / Benedict Leimkuhler, Sebastian Reich. |
title_fullStr | Simulating Hamiltonian dynamics / Benedict Leimkuhler, Sebastian Reich. |
title_full_unstemmed | Simulating Hamiltonian dynamics / Benedict Leimkuhler, Sebastian Reich. |
title_short | Simulating Hamiltonian dynamics / |
title_sort | simulating hamiltonian dynamics |
topic | Hamiltonian systems. http://id.loc.gov/authorities/subjects/sh85058563 Systèmes hamiltoniens. MATHEMATICS Differential Equations General. bisacsh Hamiltonian systems fast Hamiltonsches System gnd http://d-nb.info/gnd/4139943-2 Konservatives System gnd Numerisches Verfahren gnd http://d-nb.info/gnd/4128130-5 Simulation gnd Numerische Integration gnd http://d-nb.info/gnd/4172168-8 |
topic_facet | Hamiltonian systems. Systèmes hamiltoniens. MATHEMATICS Differential Equations General. Hamiltonian systems Hamiltonsches System Konservatives System Numerisches Verfahren Simulation Numerische Integration Electronic books. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=129306 |
work_keys_str_mv | AT leimkuhlerb simulatinghamiltoniandynamics AT reichsebastian simulatinghamiltoniandynamics |