Nowcasting trade in value added indicators:
Trade in value added (TiVA) indicators are increasingly used to monitor countries' integration into global supply chains. However, they are published with a significant lag - often two or three years - which reduces their relevance for monitoring recent economic developments. This paper aims to...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , , , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Paris
OECD Publishing
2023
|
Schriftenreihe: | OECD Statistics Working Papers
no.2023/03 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Trade in value added (TiVA) indicators are increasingly used to monitor countries' integration into global supply chains. However, they are published with a significant lag - often two or three years - which reduces their relevance for monitoring recent economic developments. This paper aims to provide more timely insights into the international fragmentation of production by exploring new ways of nowcasting five TiVA indicators for the years 2021 and 2022 covering a panel of 41 economies at the economy-wide level and for 24 industry sectors. The analysis relies on a range of models, including Gradient boosted trees (GBM), and other machine-learning techniques, in a panel setting, uses a wide range of explanatory variables capturing domestic business cycles and global economic developments and corrects for publication lags to produce nowcasts in quasi-real time conditions. Resulting nowcasting algorithms significantly improve compared to the benchmark model and exhibit relatively low prediction errors at a one- and two-year horizon, although model performance varies across countries and sectors. |
Beschreibung: | 1 Online-Ressource (55 p.) 21 x 28cm. |
DOI: | 10.1787/00f8aff7-en |
Internformat
MARC
LEADER | 00000nam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-13-SOC-098549960 | ||
003 | DE-627-1 | ||
005 | 20231204121122.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231204s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1787/00f8aff7-en |2 doi | |
035 | |a (DE-627-1)098549960 | ||
035 | |a (DE-599)KEP098549960 | ||
035 | |a (FR-PaOEC)00f8aff7-en | ||
035 | |a (EBP)098549960 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
084 | |a C53 |2 jelc | ||
084 | |a F17 |2 jelc | ||
084 | |a C4 |2 jelc | ||
100 | 1 | |a Mourougane, Annabelle |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Nowcasting trade in value added indicators |c Annabelle, Mourougane ... [et al] |
264 | 1 | |a Paris |b OECD Publishing |c 2023 | |
300 | |a 1 Online-Ressource (55 p.) |c 21 x 28cm. | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
490 | 0 | |a OECD Statistics Working Papers |v no.2023/03 | |
520 | |a Trade in value added (TiVA) indicators are increasingly used to monitor countries' integration into global supply chains. However, they are published with a significant lag - often two or three years - which reduces their relevance for monitoring recent economic developments. This paper aims to provide more timely insights into the international fragmentation of production by exploring new ways of nowcasting five TiVA indicators for the years 2021 and 2022 covering a panel of 41 economies at the economy-wide level and for 24 industry sectors. The analysis relies on a range of models, including Gradient boosted trees (GBM), and other machine-learning techniques, in a panel setting, uses a wide range of explanatory variables capturing domestic business cycles and global economic developments and corrects for publication lags to produce nowcasts in quasi-real time conditions. Resulting nowcasting algorithms significantly improve compared to the benchmark model and exhibit relatively low prediction errors at a one- and two-year horizon, although model performance varies across countries and sectors. | ||
650 | 4 | |a Economics | |
700 | 1 | |a Knutsson, Polina |e MitwirkendeR |4 ctb | |
700 | 1 | |a Pazos, Rodrigo |e MitwirkendeR |4 ctb | |
700 | 1 | |a Schmidt, Julia |e MitwirkendeR |4 ctb | |
700 | 1 | |a Palermo, Francesco |e MitwirkendeR |4 ctb | |
856 | 4 | 0 | |l FWS01 |p ZDB-13-SOC |q FWS_PDA_SOC |u https://doi.org/10.1787/00f8aff7-en |3 Volltext |
912 | |a ZDB-13-SOC | ||
951 | |a BO | ||
912 | |a ZDB-13-SOC | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-13-SOC-098549960 |
---|---|
_version_ | 1816797312910884864 |
adam_text | |
any_adam_object | |
author | Mourougane, Annabelle |
author2 | Knutsson, Polina Pazos, Rodrigo Schmidt, Julia Palermo, Francesco |
author2_role | ctb ctb ctb ctb |
author2_variant | p k pk r p rp j s js f p fp |
author_facet | Mourougane, Annabelle Knutsson, Polina Pazos, Rodrigo Schmidt, Julia Palermo, Francesco |
author_role | aut |
author_sort | Mourougane, Annabelle |
author_variant | a m am |
building | Verbundindex |
bvnumber | localFWS |
collection | ZDB-13-SOC |
ctrlnum | (DE-627-1)098549960 (DE-599)KEP098549960 (FR-PaOEC)00f8aff7-en (EBP)098549960 |
discipline | Wirtschaftswissenschaften |
doi_str_mv | 10.1787/00f8aff7-en |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02398nam a22004092 4500</leader><controlfield tag="001">ZDB-13-SOC-098549960</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20231204121122.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231204s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1787/00f8aff7-en</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)098549960</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP098549960</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(FR-PaOEC)00f8aff7-en</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EBP)098549960</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">C53</subfield><subfield code="2">jelc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">F17</subfield><subfield code="2">jelc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">C4</subfield><subfield code="2">jelc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mourougane, Annabelle</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nowcasting trade in value added indicators</subfield><subfield code="c">Annabelle, Mourougane ... [et al]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">OECD Publishing</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (55 p.)</subfield><subfield code="c">21 x 28cm.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">OECD Statistics Working Papers</subfield><subfield code="v">no.2023/03</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Trade in value added (TiVA) indicators are increasingly used to monitor countries' integration into global supply chains. However, they are published with a significant lag - often two or three years - which reduces their relevance for monitoring recent economic developments. This paper aims to provide more timely insights into the international fragmentation of production by exploring new ways of nowcasting five TiVA indicators for the years 2021 and 2022 covering a panel of 41 economies at the economy-wide level and for 24 industry sectors. The analysis relies on a range of models, including Gradient boosted trees (GBM), and other machine-learning techniques, in a panel setting, uses a wide range of explanatory variables capturing domestic business cycles and global economic developments and corrects for publication lags to produce nowcasts in quasi-real time conditions. Resulting nowcasting algorithms significantly improve compared to the benchmark model and exhibit relatively low prediction errors at a one- and two-year horizon, although model performance varies across countries and sectors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Knutsson, Polina</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pazos, Rodrigo</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmidt, Julia</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Palermo, Francesco</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="q">FWS_PDA_SOC</subfield><subfield code="u">https://doi.org/10.1787/00f8aff7-en</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-13-SOC-098549960 |
illustrated | Not Illustrated |
indexdate | 2024-11-26T14:55:35Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-863 DE-BY-FWS |
owner_facet | DE-863 DE-BY-FWS |
physical | 1 Online-Ressource (55 p.) 21 x 28cm. |
psigel | ZDB-13-SOC |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | OECD Publishing |
record_format | marc |
series2 | OECD Statistics Working Papers |
spelling | Mourougane, Annabelle VerfasserIn aut Nowcasting trade in value added indicators Annabelle, Mourougane ... [et al] Paris OECD Publishing 2023 1 Online-Ressource (55 p.) 21 x 28cm. Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier OECD Statistics Working Papers no.2023/03 Trade in value added (TiVA) indicators are increasingly used to monitor countries' integration into global supply chains. However, they are published with a significant lag - often two or three years - which reduces their relevance for monitoring recent economic developments. This paper aims to provide more timely insights into the international fragmentation of production by exploring new ways of nowcasting five TiVA indicators for the years 2021 and 2022 covering a panel of 41 economies at the economy-wide level and for 24 industry sectors. The analysis relies on a range of models, including Gradient boosted trees (GBM), and other machine-learning techniques, in a panel setting, uses a wide range of explanatory variables capturing domestic business cycles and global economic developments and corrects for publication lags to produce nowcasts in quasi-real time conditions. Resulting nowcasting algorithms significantly improve compared to the benchmark model and exhibit relatively low prediction errors at a one- and two-year horizon, although model performance varies across countries and sectors. Economics Knutsson, Polina MitwirkendeR ctb Pazos, Rodrigo MitwirkendeR ctb Schmidt, Julia MitwirkendeR ctb Palermo, Francesco MitwirkendeR ctb FWS01 ZDB-13-SOC FWS_PDA_SOC https://doi.org/10.1787/00f8aff7-en Volltext |
spellingShingle | Mourougane, Annabelle Nowcasting trade in value added indicators Economics |
title | Nowcasting trade in value added indicators |
title_auth | Nowcasting trade in value added indicators |
title_exact_search | Nowcasting trade in value added indicators |
title_full | Nowcasting trade in value added indicators Annabelle, Mourougane ... [et al] |
title_fullStr | Nowcasting trade in value added indicators Annabelle, Mourougane ... [et al] |
title_full_unstemmed | Nowcasting trade in value added indicators Annabelle, Mourougane ... [et al] |
title_short | Nowcasting trade in value added indicators |
title_sort | nowcasting trade in value added indicators |
topic | Economics |
topic_facet | Economics |
url | https://doi.org/10.1787/00f8aff7-en |
work_keys_str_mv | AT mourouganeannabelle nowcastingtradeinvalueaddedindicators AT knutssonpolina nowcastingtradeinvalueaddedindicators AT pazosrodrigo nowcastingtradeinvalueaddedindicators AT schmidtjulia nowcastingtradeinvalueaddedindicators AT palermofrancesco nowcastingtradeinvalueaddedindicators |