Can firm micro data match macro trends?: Comparing MultiProd and STAN
Better understanding about the drivers of aggregate productivity and wage inequality requires data that offer a representative picture of the underlying firm-level heterogeneity but are, at the same time, able to reproduce patterns observed in aggregate data. The OECD MultiProd project aims to gener...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Paris
OECD Publishing
2019
|
Schriftenreihe: | OECD Science, Technology and Industry Working Papers
no.2019/02 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Better understanding about the drivers of aggregate productivity and wage inequality requires data that offer a representative picture of the underlying firm-level heterogeneity but are, at the same time, able to reproduce patterns observed in aggregate data. The OECD MultiProd project aims to generate such data by collaborating with a network of national experts who apply a harmonised statistical code to representative business microdata across a large number of countries. This paper compares the project's output to the OECD STAN database to test to what extent MultiProd data can be taken as reflecting the aggregate economies in question, and if they are able to reproduce patterns observed in aggregate data across years, industries and countries. The results suggest that (1) MultiProd captures a major part of gross output, value added and employment in most of the countries covered; and (2) MultiProd reproduces aggregate patterns relatively well, with median correlations over time, across industries and across countries between 0.75. |
Beschreibung: | 1 Online-Ressource (19 p.) |
DOI: | 10.1787/2b0ac915-en |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-13-SOC-06124984X | ||
003 | DE-627-1 | ||
005 | 20231204121301.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210204s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1787/2b0ac915-en |2 doi | |
035 | |a (DE-627-1)06124984X | ||
035 | |a (DE-599)KEP06124984X | ||
035 | |a (FR-PaOEC)2b0ac915-en | ||
035 | |a (EBP)06124984X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Bajgar, Matej |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Can firm micro data match macro trends? |b Comparing MultiProd and STAN |c Matej, Bajgar ... [et al] |
264 | 1 | |a Paris |b OECD Publishing |c 2019 | |
300 | |a 1 Online-Ressource (19 p.) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
490 | 0 | |a OECD Science, Technology and Industry Working Papers |v no.2019/02 | |
520 | |a Better understanding about the drivers of aggregate productivity and wage inequality requires data that offer a representative picture of the underlying firm-level heterogeneity but are, at the same time, able to reproduce patterns observed in aggregate data. The OECD MultiProd project aims to generate such data by collaborating with a network of national experts who apply a harmonised statistical code to representative business microdata across a large number of countries. This paper compares the project's output to the OECD STAN database to test to what extent MultiProd data can be taken as reflecting the aggregate economies in question, and if they are able to reproduce patterns observed in aggregate data across years, industries and countries. The results suggest that (1) MultiProd captures a major part of gross output, value added and employment in most of the countries covered; and (2) MultiProd reproduces aggregate patterns relatively well, with median correlations over time, across industries and across countries between 0.75. | ||
650 | 4 | |a Science and Technology | |
650 | 4 | |a Industry and Services | |
700 | 1 | |a Berlingieri, Giuseppe |e MitwirkendeR |4 ctb | |
700 | 1 | |a Calligaris, Sara |e MitwirkendeR |4 ctb | |
700 | 1 | |a Criscuolo, Chiara |e MitwirkendeR |4 ctb | |
856 | 4 | 0 | |l FWS01 |p ZDB-13-SOC |q FWS_PDA_SOC |u https://doi.org/10.1787/2b0ac915-en |3 Volltext |
912 | |a ZDB-13-SOC | ||
912 | |a ZDB-13-SOC | ||
951 | |a BO | ||
912 | |a ZDB-13-SOC | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-13-SOC-06124984X |
---|---|
_version_ | 1816797342884429824 |
adam_text | |
any_adam_object | |
author | Bajgar, Matej |
author2 | Berlingieri, Giuseppe Calligaris, Sara Criscuolo, Chiara |
author2_role | ctb ctb ctb |
author2_variant | g b gb s c sc c c cc |
author_facet | Bajgar, Matej Berlingieri, Giuseppe Calligaris, Sara Criscuolo, Chiara |
author_role | aut |
author_sort | Bajgar, Matej |
author_variant | m b mb |
building | Verbundindex |
bvnumber | localFWS |
collection | ZDB-13-SOC |
ctrlnum | (DE-627-1)06124984X (DE-599)KEP06124984X (FR-PaOEC)2b0ac915-en (EBP)06124984X |
discipline | Wirtschaftswissenschaften |
doi_str_mv | 10.1787/2b0ac915-en |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02314cam a22003852 4500</leader><controlfield tag="001">ZDB-13-SOC-06124984X</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20231204121301.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210204s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1787/2b0ac915-en</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)06124984X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP06124984X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(FR-PaOEC)2b0ac915-en</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EBP)06124984X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bajgar, Matej</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Can firm micro data match macro trends?</subfield><subfield code="b">Comparing MultiProd and STAN</subfield><subfield code="c">Matej, Bajgar ... [et al]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">OECD Publishing</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (19 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">OECD Science, Technology and Industry Working Papers</subfield><subfield code="v">no.2019/02</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Better understanding about the drivers of aggregate productivity and wage inequality requires data that offer a representative picture of the underlying firm-level heterogeneity but are, at the same time, able to reproduce patterns observed in aggregate data. The OECD MultiProd project aims to generate such data by collaborating with a network of national experts who apply a harmonised statistical code to representative business microdata across a large number of countries. This paper compares the project's output to the OECD STAN database to test to what extent MultiProd data can be taken as reflecting the aggregate economies in question, and if they are able to reproduce patterns observed in aggregate data across years, industries and countries. The results suggest that (1) MultiProd captures a major part of gross output, value added and employment in most of the countries covered; and (2) MultiProd reproduces aggregate patterns relatively well, with median correlations over time, across industries and across countries between 0.75.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science and Technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Industry and Services</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berlingieri, Giuseppe</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Calligaris, Sara</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Criscuolo, Chiara</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="q">FWS_PDA_SOC</subfield><subfield code="u">https://doi.org/10.1787/2b0ac915-en</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-13-SOC-06124984X |
illustrated | Not Illustrated |
indexdate | 2024-11-26T14:56:03Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-863 DE-BY-FWS |
owner_facet | DE-863 DE-BY-FWS |
physical | 1 Online-Ressource (19 p.) |
psigel | ZDB-13-SOC |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | OECD Publishing |
record_format | marc |
series2 | OECD Science, Technology and Industry Working Papers |
spelling | Bajgar, Matej VerfasserIn aut Can firm micro data match macro trends? Comparing MultiProd and STAN Matej, Bajgar ... [et al] Paris OECD Publishing 2019 1 Online-Ressource (19 p.) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier OECD Science, Technology and Industry Working Papers no.2019/02 Better understanding about the drivers of aggregate productivity and wage inequality requires data that offer a representative picture of the underlying firm-level heterogeneity but are, at the same time, able to reproduce patterns observed in aggregate data. The OECD MultiProd project aims to generate such data by collaborating with a network of national experts who apply a harmonised statistical code to representative business microdata across a large number of countries. This paper compares the project's output to the OECD STAN database to test to what extent MultiProd data can be taken as reflecting the aggregate economies in question, and if they are able to reproduce patterns observed in aggregate data across years, industries and countries. The results suggest that (1) MultiProd captures a major part of gross output, value added and employment in most of the countries covered; and (2) MultiProd reproduces aggregate patterns relatively well, with median correlations over time, across industries and across countries between 0.75. Science and Technology Industry and Services Berlingieri, Giuseppe MitwirkendeR ctb Calligaris, Sara MitwirkendeR ctb Criscuolo, Chiara MitwirkendeR ctb FWS01 ZDB-13-SOC FWS_PDA_SOC https://doi.org/10.1787/2b0ac915-en Volltext |
spellingShingle | Bajgar, Matej Can firm micro data match macro trends? Comparing MultiProd and STAN Science and Technology Industry and Services |
title | Can firm micro data match macro trends? Comparing MultiProd and STAN |
title_auth | Can firm micro data match macro trends? Comparing MultiProd and STAN |
title_exact_search | Can firm micro data match macro trends? Comparing MultiProd and STAN |
title_full | Can firm micro data match macro trends? Comparing MultiProd and STAN Matej, Bajgar ... [et al] |
title_fullStr | Can firm micro data match macro trends? Comparing MultiProd and STAN Matej, Bajgar ... [et al] |
title_full_unstemmed | Can firm micro data match macro trends? Comparing MultiProd and STAN Matej, Bajgar ... [et al] |
title_short | Can firm micro data match macro trends? |
title_sort | can firm micro data match macro trends comparing multiprod and stan |
title_sub | Comparing MultiProd and STAN |
topic | Science and Technology Industry and Services |
topic_facet | Science and Technology Industry and Services |
url | https://doi.org/10.1787/2b0ac915-en |
work_keys_str_mv | AT bajgarmatej canfirmmicrodatamatchmacrotrendscomparingmultiprodandstan AT berlingierigiuseppe canfirmmicrodatamatchmacrotrendscomparingmultiprodandstan AT calligarissara canfirmmicrodatamatchmacrotrendscomparingmultiprodandstan AT criscuolochiara canfirmmicrodatamatchmacrotrendscomparingmultiprodandstan |