The cellular basis of pial collateral formation and post-stroke adaptation:
Die Bildung und Aufrechterhaltung von Blutgefäßnetzen ist essenziell für Entwicklung, Gewebewachstum, Homöostase und Regeneration. Gefäßnetze erweitern sich durch ein Gleichgewicht von Endothelzellmigration und -proliferation. Während die Angiogenese gut untersucht ist, ist die Bildung arterieller G...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
[2024?]
|
Schlagworte: | |
Online-Zugang: | kostenfrei |
Zusammenfassung: | Die Bildung und Aufrechterhaltung von Blutgefäßnetzen ist essenziell für Entwicklung, Gewebewachstum, Homöostase und Regeneration. Gefäßnetze erweitern sich durch ein Gleichgewicht von Endothelzellmigration und -proliferation. Während die Angiogenese gut untersucht ist, ist die Bildung arterieller Gefäße weniger erforscht. Piale Kollateralgefäße, eine seltene Form vaskulärer Redundanz im zentralen Nervensystem, verbinden Hirnarterien und schützen bei Schlaganfällen, indem sie blockierte Arterien ersetzen. Ein besserer pialer Kollateralfluss führt zu besseren Ergebnissen, was die Bedeutung ihrer Bildung und des Umbaus bei Schlaganfällen verdeutlicht. Diese Arbeit untersucht die zellulären Mechanismen, die der Bildung und dem Remodeling pialer Kollateralen zugrunde liegen. Mit Lineage-Tracing und hochauflösender Bildgebung pialer Gefäße von Mäusen wird gezeigt, dass Kollateralen primär aus wandernden, arteriellen Zellen und zu einem geringeren Teil aus Plexus-Zellen entstehen. Ich identifiziere den Mechanismus der Mosaikbesiedlung, bei dem arterielle und plexusstammende Endothelzellen (ECs) in vorkollaterale Kapillaren rekrutiert werden, die sich arteriell umgestalten. Während der embryonalen Entwicklung erfolgt die Kollateralbildung durch Rekrutierung von ECs, während der Umbau nach einem Schlaganfall auf der Proliferation lokaler, arterieller ECs beruht. Ultrastrukturelle Analysen zeigen, dass Kollateral-ECs eine hohe Caveolardichte aufweisen, die nach einem Schlaganfall im Vergleich zu Arterien rasch abnimmt. Die Arbeit beschreibt verschiedene Prozesse, die die Bildung und den Umbau pialer Kollateralen fördern, und hebt die Bedeutung endothelialer Linien hervor. Diese Erkenntnisse betonen die Relevanz arteriellen Wachstums für die Wiederherstellung des Kreislaufs und den Bedarf an verbesserten Kollateraltherapien für Schlaganfälle. Englische Version: The formation and maintenance of blood vessel networks are crucial for development, tissue growth, homeostasis, and regeneration. Vascular networks expand and remodel through a balance of endothelial cell migration and proliferation. While angiogenesis—the growth of new vessels from existing ones—is well-studied, arterial vessel formation remains less explored. Pial collateral vessels, a rare form of vascular redundancy in the central nervous system, connect cerebral arteries and provide protection during stroke by dilating to replace blocked arteries. Patients with better pial collateral flow show improved outcomes, underscoring the importance of understanding collateral formation and remodeling in stroke. This work investigates the cellular mechanisms underlying pial collateral formation and post-stroke remodeling. Using lineage tracing and high-resolution imaging of mouse pial vasculature, I show that pial collaterals primarily arise from migrating artery-derived cells, with a smaller contribution from plexus-derived cells. I identify a novel mechanism—mosaic colonization—where arterial and plexus endothelial cells (ECs) are recruited into pre-collateral capillaries, coinciding with arterialization. Embryonic collateral formation involves EC recruitment, while post-stroke remodeling relies on proliferation of local artery-derived ECs. Ultrastructural analysis reveals collateral ECs exhibit high caveolar density, which rapidly declines after stroke compared to arterial caveolae. Overall, this thesis delineates distinct processes driving pial collateral formation and remodeling, highlighting the key endothelial lineages. These findings emphasize the importance of arterial growth in restoring circulation and underscore the need for improved collateral therapeutics for stroke. |
Beschreibung: | Date of oral examination: 11.07.2024 Der Text enthält eine Zusammenfassung in deutscher und englischer Sprache. Veröffentlichung der elektronischen Ressource auf dem edoc-Server der Humboldt-Universität zu Berlin: 2024 |
Beschreibung: | 1 Online-Ressource (160 Seiten) Illustrationen, Diagramme |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV050066317 | ||
003 | DE-604 | ||
005 | 20241212 | ||
007 | cr|uuu---uuuuu | ||
008 | 241203s2024 xx a||| om||| 00||| eng d | ||
024 | 7 | |a 10.18452/30029 |2 doi | |
024 | 7 | |a urn:nbn:de:kobv:11-110-18452/30605-8 |2 urn | |
035 | |a (OCoLC)1477613822 | ||
035 | |a (DE-599)BVBBV050066317 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-11 | ||
084 | |8 1\p |a 616.81 |2 23ksdnb | ||
084 | |8 2\p |a 610 |2 23sdnb | ||
100 | 1 | |a Perović, Tijana |e Verfasser |0 (DE-588)1350440280 |4 aut | |
245 | 1 | 0 | |a The cellular basis of pial collateral formation and post-stroke adaptation |c by Tijana Perović |
264 | 1 | |a Berlin |c [2024?] | |
300 | |a 1 Online-Ressource (160 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Date of oral examination: 11.07.2024 | ||
500 | |a Der Text enthält eine Zusammenfassung in deutscher und englischer Sprache. | ||
500 | |a Veröffentlichung der elektronischen Ressource auf dem edoc-Server der Humboldt-Universität zu Berlin: 2024 | ||
502 | |b Dissertation |c Humboldt-Universität zu Berlin |d 2024 | ||
520 | 8 | |a Die Bildung und Aufrechterhaltung von Blutgefäßnetzen ist essenziell für Entwicklung, Gewebewachstum, Homöostase und Regeneration. Gefäßnetze erweitern sich durch ein Gleichgewicht von Endothelzellmigration und -proliferation. Während die Angiogenese gut untersucht ist, ist die Bildung arterieller Gefäße weniger erforscht. Piale Kollateralgefäße, eine seltene Form vaskulärer Redundanz im zentralen Nervensystem, verbinden Hirnarterien und schützen bei Schlaganfällen, indem sie blockierte Arterien ersetzen. Ein besserer pialer Kollateralfluss führt zu besseren Ergebnissen, was die Bedeutung ihrer Bildung und des Umbaus bei Schlaganfällen verdeutlicht. Diese Arbeit untersucht die zellulären Mechanismen, die der Bildung und dem Remodeling pialer Kollateralen zugrunde liegen. Mit Lineage-Tracing und hochauflösender Bildgebung pialer Gefäße von Mäusen wird gezeigt, dass Kollateralen primär aus wandernden, arteriellen Zellen und zu einem geringeren Teil aus Plexus-Zellen entstehen. Ich identifiziere den Mechanismus der Mosaikbesiedlung, bei dem arterielle und plexusstammende Endothelzellen (ECs) in vorkollaterale Kapillaren rekrutiert werden, die sich arteriell umgestalten. Während der embryonalen Entwicklung erfolgt die Kollateralbildung durch Rekrutierung von ECs, während der Umbau nach einem Schlaganfall auf der Proliferation lokaler, arterieller ECs beruht. Ultrastrukturelle Analysen zeigen, dass Kollateral-ECs eine hohe Caveolardichte aufweisen, die nach einem Schlaganfall im Vergleich zu Arterien rasch abnimmt. Die Arbeit beschreibt verschiedene Prozesse, die die Bildung und den Umbau pialer Kollateralen fördern, und hebt die Bedeutung endothelialer Linien hervor. Diese Erkenntnisse betonen die Relevanz arteriellen Wachstums für die Wiederherstellung des Kreislaufs und den Bedarf an verbesserten Kollateraltherapien für Schlaganfälle. | |
520 | 8 | |a Englische Version: The formation and maintenance of blood vessel networks are crucial for development, tissue growth, homeostasis, and regeneration. Vascular networks expand and remodel through a balance of endothelial cell migration and proliferation. While angiogenesis—the growth of new vessels from existing ones—is well-studied, arterial vessel formation remains less explored. Pial collateral vessels, a rare form of vascular redundancy in the central nervous system, connect cerebral arteries and provide protection during stroke by dilating to replace blocked arteries. Patients with better pial collateral flow show improved outcomes, underscoring the importance of understanding collateral formation and remodeling in stroke. This work investigates the cellular mechanisms underlying pial collateral formation and post-stroke remodeling. Using lineage tracing and high-resolution imaging of mouse pial vasculature, I show that pial collaterals primarily arise from migrating artery-derived cells, with a smaller contribution from plexus-derived cells. I identify a novel mechanism—mosaic colonization—where arterial and plexus endothelial cells (ECs) are recruited into pre-collateral capillaries, coinciding with arterialization. Embryonic collateral formation involves EC recruitment, while post-stroke remodeling relies on proliferation of local artery-derived ECs. Ultrastructural analysis reveals collateral ECs exhibit high caveolar density, which rapidly declines after stroke compared to arterial caveolae. Overall, this thesis delineates distinct processes driving pial collateral formation and remodeling, highlighting the key endothelial lineages. These findings emphasize the importance of arterial growth in restoring circulation and underscore the need for improved collateral therapeutics for stroke. | |
650 | 0 | 7 | |a Angiogenese |0 (DE-588)4142449-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Angiogenese |0 (DE-588)4142449-9 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |a Perović, Tijana |t The cellular basis of pial collateral formation and post-stroke adaptation |n Druck-Ausgabe |
856 | 4 | 0 | |u http://edoc.hu-berlin.de/18452/30605 |x Verlag |z kostenfrei |3 Volltext |
883 | 0 | |8 1\p |a emakn |c 0,07153 |d 20241210 |q DE-101 |u https://d-nb.info/provenance/plan#emakn | |
883 | 0 | |8 2\p |a emasg |c 0,45822 |d 20241210 |q DE-101 |u https://d-nb.info/provenance/plan#emasg | |
912 | |a ebook | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035403815 |
Datensatz im Suchindex
_version_ | 1822490702679900160 |
---|---|
adam_text | |
any_adam_object | |
author | Perović, Tijana |
author_GND | (DE-588)1350440280 |
author_facet | Perović, Tijana |
author_role | aut |
author_sort | Perović, Tijana |
author_variant | t p tp |
building | Verbundindex |
bvnumber | BV050066317 |
collection | ebook |
ctrlnum | (OCoLC)1477613822 (DE-599)BVBBV050066317 |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV050066317</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241212</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">241203s2024 xx a||| om||| 00||| eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.18452/30029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:kobv:11-110-18452/30605-8</subfield><subfield code="2">urn</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1477613822</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050066317</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">616.81</subfield><subfield code="2">23ksdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">2\p</subfield><subfield code="a">610</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Perović, Tijana</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1350440280</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The cellular basis of pial collateral formation and post-stroke adaptation</subfield><subfield code="c">by Tijana Perović</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="c">[2024?]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (160 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Date of oral examination: 11.07.2024</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Der Text enthält eine Zusammenfassung in deutscher und englischer Sprache.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Veröffentlichung der elektronischen Ressource auf dem edoc-Server der Humboldt-Universität zu Berlin: 2024</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Humboldt-Universität zu Berlin</subfield><subfield code="d">2024</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">Die Bildung und Aufrechterhaltung von Blutgefäßnetzen ist essenziell für Entwicklung, Gewebewachstum, Homöostase und Regeneration. Gefäßnetze erweitern sich durch ein Gleichgewicht von Endothelzellmigration und -proliferation. Während die Angiogenese gut untersucht ist, ist die Bildung arterieller Gefäße weniger erforscht. Piale Kollateralgefäße, eine seltene Form vaskulärer Redundanz im zentralen Nervensystem, verbinden Hirnarterien und schützen bei Schlaganfällen, indem sie blockierte Arterien ersetzen. Ein besserer pialer Kollateralfluss führt zu besseren Ergebnissen, was die Bedeutung ihrer Bildung und des Umbaus bei Schlaganfällen verdeutlicht. Diese Arbeit untersucht die zellulären Mechanismen, die der Bildung und dem Remodeling pialer Kollateralen zugrunde liegen. Mit Lineage-Tracing und hochauflösender Bildgebung pialer Gefäße von Mäusen wird gezeigt, dass Kollateralen primär aus wandernden, arteriellen Zellen und zu einem geringeren Teil aus Plexus-Zellen entstehen. Ich identifiziere den Mechanismus der Mosaikbesiedlung, bei dem arterielle und plexusstammende Endothelzellen (ECs) in vorkollaterale Kapillaren rekrutiert werden, die sich arteriell umgestalten. Während der embryonalen Entwicklung erfolgt die Kollateralbildung durch Rekrutierung von ECs, während der Umbau nach einem Schlaganfall auf der Proliferation lokaler, arterieller ECs beruht. Ultrastrukturelle Analysen zeigen, dass Kollateral-ECs eine hohe Caveolardichte aufweisen, die nach einem Schlaganfall im Vergleich zu Arterien rasch abnimmt. Die Arbeit beschreibt verschiedene Prozesse, die die Bildung und den Umbau pialer Kollateralen fördern, und hebt die Bedeutung endothelialer Linien hervor. Diese Erkenntnisse betonen die Relevanz arteriellen Wachstums für die Wiederherstellung des Kreislaufs und den Bedarf an verbesserten Kollateraltherapien für Schlaganfälle.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">Englische Version: The formation and maintenance of blood vessel networks are crucial for development, tissue growth, homeostasis, and regeneration. Vascular networks expand and remodel through a balance of endothelial cell migration and proliferation. While angiogenesis—the growth of new vessels from existing ones—is well-studied, arterial vessel formation remains less explored. Pial collateral vessels, a rare form of vascular redundancy in the central nervous system, connect cerebral arteries and provide protection during stroke by dilating to replace blocked arteries. Patients with better pial collateral flow show improved outcomes, underscoring the importance of understanding collateral formation and remodeling in stroke. This work investigates the cellular mechanisms underlying pial collateral formation and post-stroke remodeling. Using lineage tracing and high-resolution imaging of mouse pial vasculature, I show that pial collaterals primarily arise from migrating artery-derived cells, with a smaller contribution from plexus-derived cells. I identify a novel mechanism—mosaic colonization—where arterial and plexus endothelial cells (ECs) are recruited into pre-collateral capillaries, coinciding with arterialization. Embryonic collateral formation involves EC recruitment, while post-stroke remodeling relies on proliferation of local artery-derived ECs. Ultrastructural analysis reveals collateral ECs exhibit high caveolar density, which rapidly declines after stroke compared to arterial caveolae. Overall, this thesis delineates distinct processes driving pial collateral formation and remodeling, highlighting the key endothelial lineages. These findings emphasize the importance of arterial growth in restoring circulation and underscore the need for improved collateral therapeutics for stroke.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Angiogenese</subfield><subfield code="0">(DE-588)4142449-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Angiogenese</subfield><subfield code="0">(DE-588)4142449-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Perović, Tijana</subfield><subfield code="t">The cellular basis of pial collateral formation and post-stroke adaptation</subfield><subfield code="n">Druck-Ausgabe</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://edoc.hu-berlin.de/18452/30605</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">emakn</subfield><subfield code="c">0,07153</subfield><subfield code="d">20241210</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emakn</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">emasg</subfield><subfield code="c">0,45822</subfield><subfield code="d">20241210</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emasg</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035403815</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV050066317 |
illustrated | Illustrated |
indexdate | 2025-01-28T11:09:34Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035403815 |
oclc_num | 1477613822 |
open_access_boolean | 1 |
owner | DE-11 |
owner_facet | DE-11 |
physical | 1 Online-Ressource (160 Seiten) Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
record_format | marc |
spelling | Perović, Tijana Verfasser (DE-588)1350440280 aut The cellular basis of pial collateral formation and post-stroke adaptation by Tijana Perović Berlin [2024?] 1 Online-Ressource (160 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Date of oral examination: 11.07.2024 Der Text enthält eine Zusammenfassung in deutscher und englischer Sprache. Veröffentlichung der elektronischen Ressource auf dem edoc-Server der Humboldt-Universität zu Berlin: 2024 Dissertation Humboldt-Universität zu Berlin 2024 Die Bildung und Aufrechterhaltung von Blutgefäßnetzen ist essenziell für Entwicklung, Gewebewachstum, Homöostase und Regeneration. Gefäßnetze erweitern sich durch ein Gleichgewicht von Endothelzellmigration und -proliferation. Während die Angiogenese gut untersucht ist, ist die Bildung arterieller Gefäße weniger erforscht. Piale Kollateralgefäße, eine seltene Form vaskulärer Redundanz im zentralen Nervensystem, verbinden Hirnarterien und schützen bei Schlaganfällen, indem sie blockierte Arterien ersetzen. Ein besserer pialer Kollateralfluss führt zu besseren Ergebnissen, was die Bedeutung ihrer Bildung und des Umbaus bei Schlaganfällen verdeutlicht. Diese Arbeit untersucht die zellulären Mechanismen, die der Bildung und dem Remodeling pialer Kollateralen zugrunde liegen. Mit Lineage-Tracing und hochauflösender Bildgebung pialer Gefäße von Mäusen wird gezeigt, dass Kollateralen primär aus wandernden, arteriellen Zellen und zu einem geringeren Teil aus Plexus-Zellen entstehen. Ich identifiziere den Mechanismus der Mosaikbesiedlung, bei dem arterielle und plexusstammende Endothelzellen (ECs) in vorkollaterale Kapillaren rekrutiert werden, die sich arteriell umgestalten. Während der embryonalen Entwicklung erfolgt die Kollateralbildung durch Rekrutierung von ECs, während der Umbau nach einem Schlaganfall auf der Proliferation lokaler, arterieller ECs beruht. Ultrastrukturelle Analysen zeigen, dass Kollateral-ECs eine hohe Caveolardichte aufweisen, die nach einem Schlaganfall im Vergleich zu Arterien rasch abnimmt. Die Arbeit beschreibt verschiedene Prozesse, die die Bildung und den Umbau pialer Kollateralen fördern, und hebt die Bedeutung endothelialer Linien hervor. Diese Erkenntnisse betonen die Relevanz arteriellen Wachstums für die Wiederherstellung des Kreislaufs und den Bedarf an verbesserten Kollateraltherapien für Schlaganfälle. Englische Version: The formation and maintenance of blood vessel networks are crucial for development, tissue growth, homeostasis, and regeneration. Vascular networks expand and remodel through a balance of endothelial cell migration and proliferation. While angiogenesis—the growth of new vessels from existing ones—is well-studied, arterial vessel formation remains less explored. Pial collateral vessels, a rare form of vascular redundancy in the central nervous system, connect cerebral arteries and provide protection during stroke by dilating to replace blocked arteries. Patients with better pial collateral flow show improved outcomes, underscoring the importance of understanding collateral formation and remodeling in stroke. This work investigates the cellular mechanisms underlying pial collateral formation and post-stroke remodeling. Using lineage tracing and high-resolution imaging of mouse pial vasculature, I show that pial collaterals primarily arise from migrating artery-derived cells, with a smaller contribution from plexus-derived cells. I identify a novel mechanism—mosaic colonization—where arterial and plexus endothelial cells (ECs) are recruited into pre-collateral capillaries, coinciding with arterialization. Embryonic collateral formation involves EC recruitment, while post-stroke remodeling relies on proliferation of local artery-derived ECs. Ultrastructural analysis reveals collateral ECs exhibit high caveolar density, which rapidly declines after stroke compared to arterial caveolae. Overall, this thesis delineates distinct processes driving pial collateral formation and remodeling, highlighting the key endothelial lineages. These findings emphasize the importance of arterial growth in restoring circulation and underscore the need for improved collateral therapeutics for stroke. Angiogenese (DE-588)4142449-9 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Angiogenese (DE-588)4142449-9 s DE-604 Erscheint auch als Perović, Tijana The cellular basis of pial collateral formation and post-stroke adaptation Druck-Ausgabe http://edoc.hu-berlin.de/18452/30605 Verlag kostenfrei Volltext 1\p emakn 0,07153 20241210 DE-101 https://d-nb.info/provenance/plan#emakn 2\p emasg 0,45822 20241210 DE-101 https://d-nb.info/provenance/plan#emasg |
spellingShingle | Perović, Tijana The cellular basis of pial collateral formation and post-stroke adaptation Angiogenese (DE-588)4142449-9 gnd |
subject_GND | (DE-588)4142449-9 (DE-588)4113937-9 |
title | The cellular basis of pial collateral formation and post-stroke adaptation |
title_auth | The cellular basis of pial collateral formation and post-stroke adaptation |
title_exact_search | The cellular basis of pial collateral formation and post-stroke adaptation |
title_full | The cellular basis of pial collateral formation and post-stroke adaptation by Tijana Perović |
title_fullStr | The cellular basis of pial collateral formation and post-stroke adaptation by Tijana Perović |
title_full_unstemmed | The cellular basis of pial collateral formation and post-stroke adaptation by Tijana Perović |
title_short | The cellular basis of pial collateral formation and post-stroke adaptation |
title_sort | the cellular basis of pial collateral formation and post stroke adaptation |
topic | Angiogenese (DE-588)4142449-9 gnd |
topic_facet | Angiogenese Hochschulschrift |
url | http://edoc.hu-berlin.de/18452/30605 |
work_keys_str_mv | AT perovictijana thecellularbasisofpialcollateralformationandpoststrokeadaptation |