Introduction to probability and statistics for data science: with R
Introduction to Probability and Statistics for Data Science provides a solid course in the fundamental concepts, methods and theory of statistics for students in statistics, data science, biostatistics, engineering, and physical science programs. It teaches students to understand, use, and build on...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2025
|
Schlagworte: | |
Zusammenfassung: | Introduction to Probability and Statistics for Data Science provides a solid course in the fundamental concepts, methods and theory of statistics for students in statistics, data science, biostatistics, engineering, and physical science programs. It teaches students to understand, use, and build on modern statistical techniques for complex problems. The authors develop the methods from both an intuitive and mathematical angle, illustrating with simple examples how and why the methods work. More complicated examples, many of which incorporate data and code in R, show how the method is used in practice. Through this guidance, students get the big picture about how statistics works and can be applied. This text covers more modern topics such as regression trees, large scale hypothesis testing, bootstrapping, MCMC, time series, and fewer theoretical topics like the Cramer-Rao lower bound and the Rao-Blackwell theorem. It features more than 250 high-quality figures, 180 of which involve actual data. Data and R are code available on our website so that students can reproduce the examples and do hands-on exercises |
Beschreibung: | Part I. Descriptive Statistics & Data Science: 1. Introduction; 2. Descriptive statistics; 3. Data visualization; Part II. Probability: 4. Basic probability; 5. Random variables; 6. Discrete distributions; 7. Continuous distribution; Part III. Classical Statistical Inference: 8. About data & data collection; 9. Sampling distributions; 10. Point estimation; 11. Confidence intervals; 12. Hypothesis testing; 13. Hypothesis tests for two or more samples; 14. Hypothesis tests for discrete data; 15. Regression; Part IV. Bayesian and Other Computer Intensive Methods: 16. Bayesian methods; 17. Time series methods; 18. The jackknife and bootstrap; Part V. Advanced Topics in Inference & Data Science: 19. Generalized linear models and regression trees; 20. Cross-validation and estimates of prediction error; 21. Large-scale hypothesis testing and the false discovery rate; Appendix. More About R. |
Beschreibung: | xvi, 812 Seiten Illustrationen, Diagramme |
ISBN: | 9781107113046 9781009568357 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV050058307 | ||
003 | DE-604 | ||
005 | 20250526 | ||
007 | t| | ||
008 | 241127s2025 xx a||| |||| 00||| eng d | ||
020 | |a 9781107113046 |c hardback |9 978-1-107-11304-6 | ||
020 | |a 9781009568357 |c paperback |9 978-1-009-56835-7 | ||
024 | 3 | |a 9781009568357 | |
035 | |a (OCoLC)1516147683 | ||
035 | |a (DE-599)BVBBV050058307 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Rigdon, Steven E. |d 1955- |e Verfasser |0 (DE-588)1213042364 |4 aut | |
245 | 1 | 0 | |a Introduction to probability and statistics for data science |b with R |c Steven E. Rigdon (Saint Louis University), Ronald D. Fricker, Jr. (Virginia Polytechnic Institute and State University), Douglas C. Montgomery (Arizona State University) |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2025 | |
300 | |a xvi, 812 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Part I. Descriptive Statistics & Data Science: 1. Introduction; 2. Descriptive statistics; 3. Data visualization; Part II. Probability: 4. Basic probability; 5. Random variables; 6. Discrete distributions; 7. Continuous distribution; Part III. Classical Statistical Inference: 8. About data & data collection; 9. Sampling distributions; 10. Point estimation; 11. Confidence intervals; 12. Hypothesis testing; 13. Hypothesis tests for two or more samples; 14. Hypothesis tests for discrete data; 15. Regression; Part IV. Bayesian and Other Computer Intensive Methods: 16. Bayesian methods; 17. Time series methods; 18. The jackknife and bootstrap; Part V. Advanced Topics in Inference & Data Science: 19. Generalized linear models and regression trees; 20. Cross-validation and estimates of prediction error; 21. Large-scale hypothesis testing and the false discovery rate; Appendix. More About R. | ||
520 | |a Introduction to Probability and Statistics for Data Science provides a solid course in the fundamental concepts, methods and theory of statistics for students in statistics, data science, biostatistics, engineering, and physical science programs. It teaches students to understand, use, and build on modern statistical techniques for complex problems. The authors develop the methods from both an intuitive and mathematical angle, illustrating with simple examples how and why the methods work. More complicated examples, many of which incorporate data and code in R, show how the method is used in practice. Through this guidance, students get the big picture about how statistics works and can be applied. This text covers more modern topics such as regression trees, large scale hypothesis testing, bootstrapping, MCMC, time series, and fewer theoretical topics like the Cramer-Rao lower bound and the Rao-Blackwell theorem. It features more than 250 high-quality figures, 180 of which involve actual data. Data and R are code available on our website so that students can reproduce the examples and do hands-on exercises | ||
650 | 0 | 7 | |a R |g Programm |0 (DE-588)4705956-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Science |0 (DE-588)1140936166 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 0 | 1 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | 2 | |a Data Science |0 (DE-588)1140936166 |D s |
689 | 0 | 3 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 4 | |a R |g Programm |0 (DE-588)4705956-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Fricker, Ronald D. |c Jr. |d 1960- |e Verfasser |0 (DE-588)17361566X |4 aut | |
700 | 1 | |a Montgomery, Douglas C. |d 1943- |e Verfasser |0 (DE-588)12861448X |4 aut | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035395921 |
Datensatz im Suchindex
_version_ | 1833191916582207488 |
---|---|
adam_text | |
any_adam_object | |
author | Rigdon, Steven E. 1955- Fricker, Ronald D. Jr. 1960- Montgomery, Douglas C. 1943- |
author_GND | (DE-588)1213042364 (DE-588)17361566X (DE-588)12861448X |
author_facet | Rigdon, Steven E. 1955- Fricker, Ronald D. Jr. 1960- Montgomery, Douglas C. 1943- |
author_role | aut aut aut |
author_sort | Rigdon, Steven E. 1955- |
author_variant | s e r se ser r d f rd rdf d c m dc dcm |
building | Verbundindex |
bvnumber | BV050058307 |
ctrlnum | (OCoLC)1516147683 (DE-599)BVBBV050058307 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV050058307</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250526</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">241127s2025 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107113046</subfield><subfield code="c">hardback</subfield><subfield code="9">978-1-107-11304-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009568357</subfield><subfield code="c">paperback</subfield><subfield code="9">978-1-009-56835-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781009568357</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1516147683</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050058307</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rigdon, Steven E.</subfield><subfield code="d">1955-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1213042364</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to probability and statistics for data science</subfield><subfield code="b">with R</subfield><subfield code="c">Steven E. Rigdon (Saint Louis University), Ronald D. Fricker, Jr. (Virginia Polytechnic Institute and State University), Douglas C. Montgomery (Arizona State University)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2025</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 812 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Part I. Descriptive Statistics & Data Science: 1. Introduction; 2. Descriptive statistics; 3. Data visualization; Part II. Probability: 4. Basic probability; 5. Random variables; 6. Discrete distributions; 7. Continuous distribution; Part III. Classical Statistical Inference: 8. About data & data collection; 9. Sampling distributions; 10. Point estimation; 11. Confidence intervals; 12. Hypothesis testing; 13. Hypothesis tests for two or more samples; 14. Hypothesis tests for discrete data; 15. Regression; Part IV. Bayesian and Other Computer Intensive Methods: 16. Bayesian methods; 17. Time series methods; 18. The jackknife and bootstrap; Part V. Advanced Topics in Inference & Data Science: 19. Generalized linear models and regression trees; 20. Cross-validation and estimates of prediction error; 21. Large-scale hypothesis testing and the false discovery rate; Appendix. More About R.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduction to Probability and Statistics for Data Science provides a solid course in the fundamental concepts, methods and theory of statistics for students in statistics, data science, biostatistics, engineering, and physical science programs. It teaches students to understand, use, and build on modern statistical techniques for complex problems. The authors develop the methods from both an intuitive and mathematical angle, illustrating with simple examples how and why the methods work. More complicated examples, many of which incorporate data and code in R, show how the method is used in practice. Through this guidance, students get the big picture about how statistics works and can be applied. This text covers more modern topics such as regression trees, large scale hypothesis testing, bootstrapping, MCMC, time series, and fewer theoretical topics like the Cramer-Rao lower bound and the Rao-Blackwell theorem. It features more than 250 high-quality figures, 180 of which involve actual data. Data and R are code available on our website so that students can reproduce the examples and do hands-on exercises</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fricker, Ronald D.</subfield><subfield code="c">Jr.</subfield><subfield code="d">1960-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)17361566X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Montgomery, Douglas C.</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12861448X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035395921</subfield></datafield></record></collection> |
id | DE-604.BV050058307 |
illustrated | Illustrated |
indexdate | 2025-05-26T14:00:47Z |
institution | BVB |
isbn | 9781107113046 9781009568357 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035395921 |
oclc_num | 1516147683 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xvi, 812 Seiten Illustrationen, Diagramme |
publishDate | 2025 |
publishDateSearch | 2025 |
publishDateSort | 2025 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Rigdon, Steven E. 1955- Verfasser (DE-588)1213042364 aut Introduction to probability and statistics for data science with R Steven E. Rigdon (Saint Louis University), Ronald D. Fricker, Jr. (Virginia Polytechnic Institute and State University), Douglas C. Montgomery (Arizona State University) Cambridge Cambridge University Press 2025 xvi, 812 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Part I. Descriptive Statistics & Data Science: 1. Introduction; 2. Descriptive statistics; 3. Data visualization; Part II. Probability: 4. Basic probability; 5. Random variables; 6. Discrete distributions; 7. Continuous distribution; Part III. Classical Statistical Inference: 8. About data & data collection; 9. Sampling distributions; 10. Point estimation; 11. Confidence intervals; 12. Hypothesis testing; 13. Hypothesis tests for two or more samples; 14. Hypothesis tests for discrete data; 15. Regression; Part IV. Bayesian and Other Computer Intensive Methods: 16. Bayesian methods; 17. Time series methods; 18. The jackknife and bootstrap; Part V. Advanced Topics in Inference & Data Science: 19. Generalized linear models and regression trees; 20. Cross-validation and estimates of prediction error; 21. Large-scale hypothesis testing and the false discovery rate; Appendix. More About R. Introduction to Probability and Statistics for Data Science provides a solid course in the fundamental concepts, methods and theory of statistics for students in statistics, data science, biostatistics, engineering, and physical science programs. It teaches students to understand, use, and build on modern statistical techniques for complex problems. The authors develop the methods from both an intuitive and mathematical angle, illustrating with simple examples how and why the methods work. More complicated examples, many of which incorporate data and code in R, show how the method is used in practice. Through this guidance, students get the big picture about how statistics works and can be applied. This text covers more modern topics such as regression trees, large scale hypothesis testing, bootstrapping, MCMC, time series, and fewer theoretical topics like the Cramer-Rao lower bound and the Rao-Blackwell theorem. It features more than 250 high-quality figures, 180 of which involve actual data. Data and R are code available on our website so that students can reproduce the examples and do hands-on exercises R Programm (DE-588)4705956-4 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Data Science (DE-588)1140936166 gnd rswk-swf Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd rswk-swf Statistik (DE-588)4056995-0 gnd rswk-swf Wahrscheinlichkeitstheorie (DE-588)4079013-7 s Statistik (DE-588)4056995-0 s Data Science (DE-588)1140936166 s Datenanalyse (DE-588)4123037-1 s R Programm (DE-588)4705956-4 s DE-604 Fricker, Ronald D. Jr. 1960- Verfasser (DE-588)17361566X aut Montgomery, Douglas C. 1943- Verfasser (DE-588)12861448X aut |
spellingShingle | Rigdon, Steven E. 1955- Fricker, Ronald D. Jr. 1960- Montgomery, Douglas C. 1943- Introduction to probability and statistics for data science with R R Programm (DE-588)4705956-4 gnd Datenanalyse (DE-588)4123037-1 gnd Data Science (DE-588)1140936166 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd Statistik (DE-588)4056995-0 gnd |
subject_GND | (DE-588)4705956-4 (DE-588)4123037-1 (DE-588)1140936166 (DE-588)4079013-7 (DE-588)4056995-0 |
title | Introduction to probability and statistics for data science with R |
title_auth | Introduction to probability and statistics for data science with R |
title_exact_search | Introduction to probability and statistics for data science with R |
title_full | Introduction to probability and statistics for data science with R Steven E. Rigdon (Saint Louis University), Ronald D. Fricker, Jr. (Virginia Polytechnic Institute and State University), Douglas C. Montgomery (Arizona State University) |
title_fullStr | Introduction to probability and statistics for data science with R Steven E. Rigdon (Saint Louis University), Ronald D. Fricker, Jr. (Virginia Polytechnic Institute and State University), Douglas C. Montgomery (Arizona State University) |
title_full_unstemmed | Introduction to probability and statistics for data science with R Steven E. Rigdon (Saint Louis University), Ronald D. Fricker, Jr. (Virginia Polytechnic Institute and State University), Douglas C. Montgomery (Arizona State University) |
title_short | Introduction to probability and statistics for data science |
title_sort | introduction to probability and statistics for data science with r |
title_sub | with R |
topic | R Programm (DE-588)4705956-4 gnd Datenanalyse (DE-588)4123037-1 gnd Data Science (DE-588)1140936166 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd Statistik (DE-588)4056995-0 gnd |
topic_facet | R Programm Datenanalyse Data Science Wahrscheinlichkeitstheorie Statistik |
work_keys_str_mv | AT rigdonstevene introductiontoprobabilityandstatisticsfordatasciencewithr AT frickerronaldd introductiontoprobabilityandstatisticsfordatasciencewithr AT montgomerydouglasc introductiontoprobabilityandstatisticsfordatasciencewithr |