Introduction to machine learning with Python:
Machine learning is a subfield of artificial intelligence, broadly defined as a machine's capability to imitate intelligent human behavior. Like humans, machines become capable of making intelligent decisions by learning from their past experiences. Machine learning is being employed in many ap...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Doral
Bentham Science Publishers
2023
|
Schlagworte: | |
Online-Zugang: | DE-19 |
Zusammenfassung: | Machine learning is a subfield of artificial intelligence, broadly defined as a machine's capability to imitate intelligent human behavior. Like humans, machines become capable of making intelligent decisions by learning from their past experiences. Machine learning is being employed in many applications, including fraud detection and prevention, self-driving cars, recommendation systems, facial recognition technology, and intelligent computing. This book helps beginners learn the art and science of machine learning. It presens real-world examples that leverage the popular Python machine learning ecosystem, The topics covered in this book include machine learning basics: supervised and unsupervised learning, linear regression and logistic regression, Support Vector Machines (SVMs). It also delves into special topics such as neural networks, theory of generalisation, and bias and fairness in machine learning. After reading this book, computer science and engineering students - at college and university levels - will receive a complete understanding of machine learning fundamentals and will be able to implement neural network solutions in information systems, and also extend them to their advantage. Cover -- Title -- Copyright -- End User License Agreement -- Contents -- Foreword -- Preface -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- Introduction to Python -- INTRODUCTION -- Web Development -- Game Development -- Artificial Intelligence and Machine Learning -- Desktop GUI -- SETTING UP PYTHON ENVIRONMENT -- Steps Involved In Installing Python On Windows Include The Following: -- Steps involved in installing Python on Macintosh include the following -- Setting Up Path -- Setting Up Path In The Unix/linux -- WHY PYTHON FOR DATA SCIENCE? -- ECOSYSTEM FOR PYTHON MACHINE LEARNING -- ESSENTIAL TOOLS AND LIBRARIES -- Jupyter Notebook -- Pip Install Jupiter -- NumPy -- Pandas -- Scikit-learn -- SciPy -- Matplotlib -- Mglearn -- PYTHON CODES -- CONCLUSION -- EXERCISES -- REFERENCES -- Introduction To Machine Learning -- INTRODUCTION -- DESIGN A LEARNING SYSTEM -- Selection Of Training Set -- Selection Of Target Function -- Selection Of A Function Approximation Algorithm -- PERSPECTIVE AND ISSUES IN MACHINE LEARNING -- Issues In Machine Learning -- Quality of Data -- Improve the Quality of Training -- Overfitting the Training Data -- Machine Learning Involves A Complex Process -- Insufficient training data -- Feasibility of Learning An Unknown Target Function -- Collection of Data -- Pre-processing of Data -- Finding The Model That Will Be Best For The Data -- Training and Testing Of The Developed Model Evaluation -- In Sample Error and Out of Sample Error -- APPLICATIONS OF MACHINE LEARNING -- Virtual Personal Assistants -- Traffic Prediction -- Online Transportation Networks -- Video Surveillance System -- Social Media Services -- People you May Know -- Face Recognition -- Similar Pins -- Sentiment Analysis -- Email Spam and Malware Filtering -- Online Customer Support -- Result Refinement of a Search Engine. |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (139 Seiten) |
ISBN: | 9789815124422 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049944410 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 241108s2023 xx o|||| 00||| eng d | ||
020 | |a 9789815124422 |9 978-981-5124-42-2 | ||
035 | |a (OCoLC)1477599821 | ||
035 | |a (DE-599)KEP089772008 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-19 | ||
082 | 0 | |a 005.133 | |
082 | 0 | |a 006.31 | |
100 | 1 | |a Chopra, Deepti |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to machine learning with Python |c authored by Deepti Chopra & Roopal Khurana |
264 | 1 | |a Doral |b Bentham Science Publishers |c 2023 | |
300 | |a 1 Online-Ressource (139 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | 3 | |a Machine learning is a subfield of artificial intelligence, broadly defined as a machine's capability to imitate intelligent human behavior. Like humans, machines become capable of making intelligent decisions by learning from their past experiences. Machine learning is being employed in many applications, including fraud detection and prevention, self-driving cars, recommendation systems, facial recognition technology, and intelligent computing. This book helps beginners learn the art and science of machine learning. It presens real-world examples that leverage the popular Python machine learning ecosystem, The topics covered in this book include machine learning basics: supervised and unsupervised learning, linear regression and logistic regression, Support Vector Machines (SVMs). It also delves into special topics such as neural networks, theory of generalisation, and bias and fairness in machine learning. After reading this book, computer science and engineering students - at college and university levels - will receive a complete understanding of machine learning fundamentals and will be able to implement neural network solutions in information systems, and also extend them to their advantage. | |
520 | 3 | |a Cover -- Title -- Copyright -- End User License Agreement -- Contents -- Foreword -- Preface -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- Introduction to Python -- INTRODUCTION -- Web Development -- Game Development -- Artificial Intelligence and Machine Learning -- Desktop GUI -- SETTING UP PYTHON ENVIRONMENT -- Steps Involved In Installing Python On Windows Include The Following: -- Steps involved in installing Python on Macintosh include the following -- Setting Up Path -- Setting Up Path In The Unix/linux -- WHY PYTHON FOR DATA SCIENCE? -- ECOSYSTEM FOR PYTHON MACHINE LEARNING -- ESSENTIAL TOOLS AND LIBRARIES -- Jupyter Notebook -- Pip Install Jupiter -- NumPy -- Pandas -- Scikit-learn -- SciPy -- Matplotlib -- Mglearn -- PYTHON CODES -- CONCLUSION -- EXERCISES -- REFERENCES -- Introduction To Machine Learning -- INTRODUCTION -- DESIGN A LEARNING SYSTEM -- Selection Of Training Set -- Selection Of Target Function -- Selection Of A Function Approximation Algorithm -- PERSPECTIVE AND ISSUES IN MACHINE LEARNING -- Issues In Machine Learning -- Quality of Data -- Improve the Quality of Training -- Overfitting the Training Data -- Machine Learning Involves A Complex Process -- Insufficient training data -- Feasibility of Learning An Unknown Target Function -- Collection of Data -- Pre-processing of Data -- Finding The Model That Will Be Best For The Data -- Training and Testing Of The Developed Model Evaluation -- In Sample Error and Out of Sample Error -- APPLICATIONS OF MACHINE LEARNING -- Virtual Personal Assistants -- Traffic Prediction -- Online Transportation Networks -- Video Surveillance System -- Social Media Services -- People you May Know -- Face Recognition -- Similar Pins -- Sentiment Analysis -- Email Spam and Malware Filtering -- Online Customer Support -- Result Refinement of a Search Engine. | |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
653 | 0 | |a Python (Programming language) | |
653 | 0 | |a Machine learning | |
653 | 0 | |a Python (Computer program language) | |
653 | 0 | |a Electronic books | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Khurana, Roopal |e Verfasser |4 aut | |
776 | 0 | |z 9789815124439 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789815124439 |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035282551 | |
966 | e | |u https://ebookcentral.proquest.com/lib/ub-lmu/detail.action?docID=30410702 |l DE-19 |p ZDB-30-PQE |q UBM_Einzelkauf_2024 |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1822483098140409857 |
---|---|
adam_text | |
any_adam_object | |
author | Chopra, Deepti Khurana, Roopal |
author_facet | Chopra, Deepti Khurana, Roopal |
author_role | aut aut |
author_sort | Chopra, Deepti |
author_variant | d c dc r k rk |
building | Verbundindex |
bvnumber | BV049944410 |
collection | ZDB-30-PQE |
ctrlnum | (OCoLC)1477599821 (DE-599)KEP089772008 |
dewey-full | 005.133 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security 006 - Special computer methods |
dewey-raw | 005.133 006.31 |
dewey-search | 005.133 006.31 |
dewey-sort | 15.133 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049944410</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">241108s2023 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789815124422</subfield><subfield code="9">978-981-5124-42-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1477599821</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP089772008</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.133</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chopra, Deepti</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to machine learning with Python</subfield><subfield code="c">authored by Deepti Chopra & Roopal Khurana</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Doral</subfield><subfield code="b">Bentham Science Publishers</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (139 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Machine learning is a subfield of artificial intelligence, broadly defined as a machine's capability to imitate intelligent human behavior. Like humans, machines become capable of making intelligent decisions by learning from their past experiences. Machine learning is being employed in many applications, including fraud detection and prevention, self-driving cars, recommendation systems, facial recognition technology, and intelligent computing. This book helps beginners learn the art and science of machine learning. It presens real-world examples that leverage the popular Python machine learning ecosystem, The topics covered in this book include machine learning basics: supervised and unsupervised learning, linear regression and logistic regression, Support Vector Machines (SVMs). It also delves into special topics such as neural networks, theory of generalisation, and bias and fairness in machine learning. After reading this book, computer science and engineering students - at college and university levels - will receive a complete understanding of machine learning fundamentals and will be able to implement neural network solutions in information systems, and also extend them to their advantage.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Cover -- Title -- Copyright -- End User License Agreement -- Contents -- Foreword -- Preface -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- Introduction to Python -- INTRODUCTION -- Web Development -- Game Development -- Artificial Intelligence and Machine Learning -- Desktop GUI -- SETTING UP PYTHON ENVIRONMENT -- Steps Involved In Installing Python On Windows Include The Following: -- Steps involved in installing Python on Macintosh include the following -- Setting Up Path -- Setting Up Path In The Unix/linux -- WHY PYTHON FOR DATA SCIENCE? -- ECOSYSTEM FOR PYTHON MACHINE LEARNING -- ESSENTIAL TOOLS AND LIBRARIES -- Jupyter Notebook -- Pip Install Jupiter -- NumPy -- Pandas -- Scikit-learn -- SciPy -- Matplotlib -- Mglearn -- PYTHON CODES -- CONCLUSION -- EXERCISES -- REFERENCES -- Introduction To Machine Learning -- INTRODUCTION -- DESIGN A LEARNING SYSTEM -- Selection Of Training Set -- Selection Of Target Function -- Selection Of A Function Approximation Algorithm -- PERSPECTIVE AND ISSUES IN MACHINE LEARNING -- Issues In Machine Learning -- Quality of Data -- Improve the Quality of Training -- Overfitting the Training Data -- Machine Learning Involves A Complex Process -- Insufficient training data -- Feasibility of Learning An Unknown Target Function -- Collection of Data -- Pre-processing of Data -- Finding The Model That Will Be Best For The Data -- Training and Testing Of The Developed Model Evaluation -- In Sample Error and Out of Sample Error -- APPLICATIONS OF MACHINE LEARNING -- Virtual Personal Assistants -- Traffic Prediction -- Online Transportation Networks -- Video Surveillance System -- Social Media Services -- People you May Know -- Face Recognition -- Similar Pins -- Sentiment Analysis -- Email Spam and Malware Filtering -- Online Customer Support -- Result Refinement of a Search Engine.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Python (Programming language)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khurana, Roopal</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="z">9789815124439</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789815124439</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035282551</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/ub-lmu/detail.action?docID=30410702</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UBM_Einzelkauf_2024</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049944410 |
illustrated | Not Illustrated |
indexdate | 2025-01-28T09:08:42Z |
institution | BVB |
isbn | 9789815124422 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035282551 |
oclc_num | 1477599821 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM |
owner_facet | DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (139 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE UBM_Einzelkauf_2024 |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Bentham Science Publishers |
record_format | marc |
spelling | Chopra, Deepti Verfasser aut Introduction to machine learning with Python authored by Deepti Chopra & Roopal Khurana Doral Bentham Science Publishers 2023 1 Online-Ressource (139 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Machine learning is a subfield of artificial intelligence, broadly defined as a machine's capability to imitate intelligent human behavior. Like humans, machines become capable of making intelligent decisions by learning from their past experiences. Machine learning is being employed in many applications, including fraud detection and prevention, self-driving cars, recommendation systems, facial recognition technology, and intelligent computing. This book helps beginners learn the art and science of machine learning. It presens real-world examples that leverage the popular Python machine learning ecosystem, The topics covered in this book include machine learning basics: supervised and unsupervised learning, linear regression and logistic regression, Support Vector Machines (SVMs). It also delves into special topics such as neural networks, theory of generalisation, and bias and fairness in machine learning. After reading this book, computer science and engineering students - at college and university levels - will receive a complete understanding of machine learning fundamentals and will be able to implement neural network solutions in information systems, and also extend them to their advantage. Cover -- Title -- Copyright -- End User License Agreement -- Contents -- Foreword -- Preface -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- Introduction to Python -- INTRODUCTION -- Web Development -- Game Development -- Artificial Intelligence and Machine Learning -- Desktop GUI -- SETTING UP PYTHON ENVIRONMENT -- Steps Involved In Installing Python On Windows Include The Following: -- Steps involved in installing Python on Macintosh include the following -- Setting Up Path -- Setting Up Path In The Unix/linux -- WHY PYTHON FOR DATA SCIENCE? -- ECOSYSTEM FOR PYTHON MACHINE LEARNING -- ESSENTIAL TOOLS AND LIBRARIES -- Jupyter Notebook -- Pip Install Jupiter -- NumPy -- Pandas -- Scikit-learn -- SciPy -- Matplotlib -- Mglearn -- PYTHON CODES -- CONCLUSION -- EXERCISES -- REFERENCES -- Introduction To Machine Learning -- INTRODUCTION -- DESIGN A LEARNING SYSTEM -- Selection Of Training Set -- Selection Of Target Function -- Selection Of A Function Approximation Algorithm -- PERSPECTIVE AND ISSUES IN MACHINE LEARNING -- Issues In Machine Learning -- Quality of Data -- Improve the Quality of Training -- Overfitting the Training Data -- Machine Learning Involves A Complex Process -- Insufficient training data -- Feasibility of Learning An Unknown Target Function -- Collection of Data -- Pre-processing of Data -- Finding The Model That Will Be Best For The Data -- Training and Testing Of The Developed Model Evaluation -- In Sample Error and Out of Sample Error -- APPLICATIONS OF MACHINE LEARNING -- Virtual Personal Assistants -- Traffic Prediction -- Online Transportation Networks -- Video Surveillance System -- Social Media Services -- People you May Know -- Face Recognition -- Similar Pins -- Sentiment Analysis -- Email Spam and Malware Filtering -- Online Customer Support -- Result Refinement of a Search Engine. Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Python (Programming language) Machine learning Python (Computer program language) Electronic books Maschinelles Lernen (DE-588)4193754-5 s DE-604 Python Programmiersprache (DE-588)4434275-5 s Khurana, Roopal Verfasser aut 9789815124439 Erscheint auch als Druck-Ausgabe 9789815124439 |
spellingShingle | Chopra, Deepti Khurana, Roopal Introduction to machine learning with Python Python Programmiersprache (DE-588)4434275-5 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4434275-5 (DE-588)4193754-5 |
title | Introduction to machine learning with Python |
title_auth | Introduction to machine learning with Python |
title_exact_search | Introduction to machine learning with Python |
title_full | Introduction to machine learning with Python authored by Deepti Chopra & Roopal Khurana |
title_fullStr | Introduction to machine learning with Python authored by Deepti Chopra & Roopal Khurana |
title_full_unstemmed | Introduction to machine learning with Python authored by Deepti Chopra & Roopal Khurana |
title_short | Introduction to machine learning with Python |
title_sort | introduction to machine learning with python |
topic | Python Programmiersprache (DE-588)4434275-5 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Python Programmiersprache Maschinelles Lernen |
work_keys_str_mv | AT chopradeepti introductiontomachinelearningwithpython AT khuranaroopal introductiontomachinelearningwithpython |