Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib
Learn how to leverage the scientific computing and data analysis capabilities of Python, its standard library, and popular open-source numerical Python packages like NumPy, SymPy, SciPy, matplotlib, and more. This book demonstrates how to work with mathematical modeling and solve problems with numer...
Saved in:
Main Author: | |
---|---|
Format: | Book |
Language: | English |
Published: |
Berkeley, CA
Apress
[2024]
|
Edition: | Third Edition |
Subjects: | |
Summary: | Learn how to leverage the scientific computing and data analysis capabilities of Python, its standard library, and popular open-source numerical Python packages like NumPy, SymPy, SciPy, matplotlib, and more. This book demonstrates how to work with mathematical modeling and solve problems with numerical, symbolic, and visualization techniques. It explores applications in science, engineering, data analytics, and more.Numerical Python, Third Edition, presents many case study examples of applications in fundamental scientific computing disciplines, as well as in data science and statistics. This fully revised edition, updated for each library's latest version, demonstrates Python's power for rapid development and exploratory computing due to its simple and high-level syntax and many powerful libraries and tools for computation and data analysis. After reading this book, readers will be familiar with many computing techniques, including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling, and machine learning.What You'll Learn- Work with vectors and matrices using NumPy- Review Symbolic computing with SymPy- Plot and visualize data with Matplotlib- Perform data analysis tasks with Pandas and SciPy- Understand statistical modeling and machine learning with statsmodels and scikit-learn- Optimize Python code using Numba and CythonWho This Book Is ForDevelopers who want to understand how to use Python and its ecosystem of libraries for scientific computing and data analysis |
Physical Description: | xx, 492 Seiten Illustrationen, Diagramme 254 mm |
Staff View
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049921876 | ||
003 | DE-604 | ||
005 | 20250526 | ||
007 | t| | ||
008 | 241023s2024 xx a||| |||| 00||| eng d | ||
020 | |z 9798868804120 |9 979-8-8688-0412-0 | ||
024 | 3 | |a 9798868804120 | |
035 | |a (DE-599)BVBBV049921876 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
084 | |a ST 250 |0 (DE-625)143626: |2 rvk | ||
084 | |a ST 600 |0 (DE-625)143681: |2 rvk | ||
084 | |a ST 601 |0 (DE-625)143682: |2 rvk | ||
100 | 1 | |a Johansson, Robert |d 1977- |e Verfasser |0 (DE-588)136985262 |4 aut | |
245 | 1 | 0 | |a Numerical Python |b Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib |c Robert Johansson |
250 | |a Third Edition | ||
264 | 1 | |a Berkeley, CA |b Apress |c [2024] | |
300 | |a xx, 492 Seiten |b Illustrationen, Diagramme |c 254 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | |a Learn how to leverage the scientific computing and data analysis capabilities of Python, its standard library, and popular open-source numerical Python packages like NumPy, SymPy, SciPy, matplotlib, and more. This book demonstrates how to work with mathematical modeling and solve problems with numerical, symbolic, and visualization techniques. It explores applications in science, engineering, data analytics, and more.Numerical Python, Third Edition, presents many case study examples of applications in fundamental scientific computing disciplines, as well as in data science and statistics. This fully revised edition, updated for each library's latest version, demonstrates Python's power for rapid development and exploratory computing due to its simple and high-level syntax and many powerful libraries and tools for computation and data analysis. After reading this book, readers will be familiar with many computing techniques, including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling, and machine learning.What You'll Learn- Work with vectors and matrices using NumPy- Review Symbolic computing with SymPy- Plot and visualize data with Matplotlib- Perform data analysis tasks with Pandas and SciPy- Understand statistical modeling and machine learning with statsmodels and scikit-learn- Optimize Python code using Numba and CythonWho This Book Is ForDevelopers who want to understand how to use Python and its ecosystem of libraries for scientific computing and data analysis | ||
650 | 4 | |a Computer software | |
650 | 4 | |a Big data | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Python (Computer program language) | |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wissenschaftliches Rechnen |0 (DE-588)4338507-2 |2 gnd |9 rswk-swf |
653 | |a Hardcover, Softcover / Informatik, EDV/Programmiersprachen | ||
689 | 0 | 0 | |a Wissenschaftliches Rechnen |0 (DE-588)4338507-2 |D s |
689 | 0 | 1 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 979-8-8688-0413-7 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035260439 |
Record in the Search Index
_version_ | 1833184410117079040 |
---|---|
adam_text | |
any_adam_object | |
author | Johansson, Robert 1977- |
author_GND | (DE-588)136985262 |
author_facet | Johansson, Robert 1977- |
author_role | aut |
author_sort | Johansson, Robert 1977- |
author_variant | r j rj |
building | Verbundindex |
bvnumber | BV049921876 |
classification_rvk | ST 250 ST 600 ST 601 |
ctrlnum | (DE-599)BVBBV049921876 |
discipline | Informatik |
edition | Third Edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049921876</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250526</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">241023s2024 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9798868804120</subfield><subfield code="9">979-8-8688-0412-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9798868804120</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049921876</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 600</subfield><subfield code="0">(DE-625)143681:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Johansson, Robert</subfield><subfield code="d">1977-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136985262</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Python</subfield><subfield code="b">Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib</subfield><subfield code="c">Robert Johansson</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berkeley, CA</subfield><subfield code="b">Apress</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xx, 492 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">254 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Learn how to leverage the scientific computing and data analysis capabilities of Python, its standard library, and popular open-source numerical Python packages like NumPy, SymPy, SciPy, matplotlib, and more. This book demonstrates how to work with mathematical modeling and solve problems with numerical, symbolic, and visualization techniques. It explores applications in science, engineering, data analytics, and more.Numerical Python, Third Edition, presents many case study examples of applications in fundamental scientific computing disciplines, as well as in data science and statistics. This fully revised edition, updated for each library's latest version, demonstrates Python's power for rapid development and exploratory computing due to its simple and high-level syntax and many powerful libraries and tools for computation and data analysis. After reading this book, readers will be familiar with many computing techniques, including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling, and machine learning.What You'll Learn- Work with vectors and matrices using NumPy- Review Symbolic computing with SymPy- Plot and visualize data with Matplotlib- Perform data analysis tasks with Pandas and SciPy- Understand statistical modeling and machine learning with statsmodels and scikit-learn- Optimize Python code using Numba and CythonWho This Book Is ForDevelopers who want to understand how to use Python and its ecosystem of libraries for scientific computing and data analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wissenschaftliches Rechnen</subfield><subfield code="0">(DE-588)4338507-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardcover, Softcover / Informatik, EDV/Programmiersprachen</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wissenschaftliches Rechnen</subfield><subfield code="0">(DE-588)4338507-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">979-8-8688-0413-7</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035260439</subfield></datafield></record></collection> |
id | DE-604.BV049921876 |
illustrated | Illustrated |
indexdate | 2025-05-26T12:01:29Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035260439 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xx, 492 Seiten Illustrationen, Diagramme 254 mm |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Apress |
record_format | marc |
spelling | Johansson, Robert 1977- Verfasser (DE-588)136985262 aut Numerical Python Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib Robert Johansson Third Edition Berkeley, CA Apress [2024] xx, 492 Seiten Illustrationen, Diagramme 254 mm txt rdacontent n rdamedia nc rdacarrier Learn how to leverage the scientific computing and data analysis capabilities of Python, its standard library, and popular open-source numerical Python packages like NumPy, SymPy, SciPy, matplotlib, and more. This book demonstrates how to work with mathematical modeling and solve problems with numerical, symbolic, and visualization techniques. It explores applications in science, engineering, data analytics, and more.Numerical Python, Third Edition, presents many case study examples of applications in fundamental scientific computing disciplines, as well as in data science and statistics. This fully revised edition, updated for each library's latest version, demonstrates Python's power for rapid development and exploratory computing due to its simple and high-level syntax and many powerful libraries and tools for computation and data analysis. After reading this book, readers will be familiar with many computing techniques, including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling, and machine learning.What You'll Learn- Work with vectors and matrices using NumPy- Review Symbolic computing with SymPy- Plot and visualize data with Matplotlib- Perform data analysis tasks with Pandas and SciPy- Understand statistical modeling and machine learning with statsmodels and scikit-learn- Optimize Python code using Numba and CythonWho This Book Is ForDevelopers who want to understand how to use Python and its ecosystem of libraries for scientific computing and data analysis Computer software Big data Artificial intelligence Python (Computer program language) Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf Wissenschaftliches Rechnen (DE-588)4338507-2 gnd rswk-swf Hardcover, Softcover / Informatik, EDV/Programmiersprachen Wissenschaftliches Rechnen (DE-588)4338507-2 s Python Programmiersprache (DE-588)4434275-5 s DE-604 Erscheint auch als Online-Ausgabe 979-8-8688-0413-7 |
spellingShingle | Johansson, Robert 1977- Numerical Python Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib Computer software Big data Artificial intelligence Python (Computer program language) Python Programmiersprache (DE-588)4434275-5 gnd Wissenschaftliches Rechnen (DE-588)4338507-2 gnd |
subject_GND | (DE-588)4434275-5 (DE-588)4338507-2 |
title | Numerical Python Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib |
title_auth | Numerical Python Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib |
title_exact_search | Numerical Python Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib |
title_full | Numerical Python Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib Robert Johansson |
title_fullStr | Numerical Python Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib Robert Johansson |
title_full_unstemmed | Numerical Python Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib Robert Johansson |
title_short | Numerical Python |
title_sort | numerical python scientific computing and data science applications with numpy scipy and matplotlib |
title_sub | Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib |
topic | Computer software Big data Artificial intelligence Python (Computer program language) Python Programmiersprache (DE-588)4434275-5 gnd Wissenschaftliches Rechnen (DE-588)4338507-2 gnd |
topic_facet | Computer software Big data Artificial intelligence Python (Computer program language) Python Programmiersprache Wissenschaftliches Rechnen |
work_keys_str_mv | AT johanssonrobert numericalpythonscientificcomputinganddatascienceapplicationswithnumpyscipyandmatplotlib |