Galois Theories of Fields and Rings:
This textbook arises from a master’s course taught by the author at the University of Coimbra. It takes the reader from the very classical Galois theorem for fields to its generalization to the case of rings. Given a finite-dimensional Galois extension of fields, the classical bijection between the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
[2024]
|
Ausgabe: | 2024 |
Schriftenreihe: | Coimbra Mathematical Texts
Volume 2 |
Schlagworte: | |
Zusammenfassung: | This textbook arises from a master’s course taught by the author at the University of Coimbra. It takes the reader from the very classical Galois theorem for fields to its generalization to the case of rings. Given a finite-dimensional Galois extension of fields, the classical bijection between the intermediate field extensions and the subgroups of the corresponding Galois group was extended by Grothendieck as an equivalence between finite-dimensional split algebras and finite sets on which the Galois group acts. Adding further profinite topologies on the Galois group and the sets on which it acts, these two theorems become valid in arbitrary dimension. Taking advantage of the power of category theory, the second part of the book generalizes this most general Galois theorem for fields to the case of commutative rings. This book should be of interest to field theorists and ring theorists wanting to discover new techniques which make it possible to liberate Galois theory from its traditional restricted context of field theory. It should also be of great interest to category theorists who want to apply their everyday techniques to produce deep results in other domains of mathematics |
Beschreibung: | xii, 181 Seiten Diagramme 235 mm |
ISBN: | 9783031584596 |
ISSN: | 2813-0057 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV049921872 | ||
003 | DE-604 | ||
005 | 20241125 | ||
007 | t| | ||
008 | 241023s2024 xx |||| |||| 00||| eng d | ||
020 | |a 9783031584596 |c hbk |9 978-3-031-58459-6 | ||
024 | 3 | |a 9783031584596 | |
035 | |a (DE-599)BVBBV049921872 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
084 | |a SK 200 |0 (DE-625)143223: |2 rvk | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Borceux, Francis |d 1948- |e Verfasser |0 (DE-588)11084825X |4 aut | |
245 | 1 | 0 | |a Galois Theories of Fields and Rings |c Francis Borceux |
250 | |a 2024 | ||
264 | 1 | |a Cham |b Springer |c [2024] | |
300 | |a xii, 181 Seiten |b Diagramme |c 235 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Coimbra Mathematical Texts |v Volume 2 |x 2813-0057 | |
520 | |a This textbook arises from a master’s course taught by the author at the University of Coimbra. It takes the reader from the very classical Galois theorem for fields to its generalization to the case of rings. Given a finite-dimensional Galois extension of fields, the classical bijection between the intermediate field extensions and the subgroups of the corresponding Galois group was extended by Grothendieck as an equivalence between finite-dimensional split algebras and finite sets on which the Galois group acts. Adding further profinite topologies on the Galois group and the sets on which it acts, these two theorems become valid in arbitrary dimension. Taking advantage of the power of category theory, the second part of the book generalizes this most general Galois theorem for fields to the case of commutative rings. This book should be of interest to field theorists and ring theorists wanting to discover new techniques which make it possible to liberate Galois theory from its traditional restricted context of field theory. It should also be of great interest to category theorists who want to apply their everyday techniques to produce deep results in other domains of mathematics | ||
650 | 4 | |a bicssc | |
650 | 4 | |a bisacsh | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 0 | 7 | |a Galois-Theorie |0 (DE-588)4155901-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Galois-Theorie |0 (DE-588)4155901-0 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-031-58460-2 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035260435 |
Datensatz im Suchindex
_version_ | 1816707179205361664 |
---|---|
adam_text | |
any_adam_object | |
author | Borceux, Francis 1948- |
author_GND | (DE-588)11084825X |
author_facet | Borceux, Francis 1948- |
author_role | aut |
author_sort | Borceux, Francis 1948- |
author_variant | f b fb |
building | Verbundindex |
bvnumber | BV049921872 |
classification_rvk | SK 200 SK 230 |
classification_tum | MAT 000 |
ctrlnum | (DE-599)BVBBV049921872 |
discipline | Mathematik |
edition | 2024 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV049921872</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241125</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">241023s2024 xx |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031584596</subfield><subfield code="c">hbk</subfield><subfield code="9">978-3-031-58459-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783031584596</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049921872</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 200</subfield><subfield code="0">(DE-625)143223:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borceux, Francis</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)11084825X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Galois Theories of Fields and Rings</subfield><subfield code="c">Francis Borceux</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2024</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 181 Seiten</subfield><subfield code="b">Diagramme</subfield><subfield code="c">235 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Coimbra Mathematical Texts</subfield><subfield code="v">Volume 2</subfield><subfield code="x">2813-0057</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This textbook arises from a master’s course taught by the author at the University of Coimbra. It takes the reader from the very classical Galois theorem for fields to its generalization to the case of rings. Given a finite-dimensional Galois extension of fields, the classical bijection between the intermediate field extensions and the subgroups of the corresponding Galois group was extended by Grothendieck as an equivalence between finite-dimensional split algebras and finite sets on which the Galois group acts. Adding further profinite topologies on the Galois group and the sets on which it acts, these two theorems become valid in arbitrary dimension. Taking advantage of the power of category theory, the second part of the book generalizes this most general Galois theorem for fields to the case of commutative rings. This book should be of interest to field theorists and ring theorists wanting to discover new techniques which make it possible to liberate Galois theory from its traditional restricted context of field theory. It should also be of great interest to category theorists who want to apply their everyday techniques to produce deep results in other domains of mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Galois-Theorie</subfield><subfield code="0">(DE-588)4155901-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Galois-Theorie</subfield><subfield code="0">(DE-588)4155901-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-031-58460-2</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035260435</subfield></datafield></record></collection> |
id | DE-604.BV049921872 |
illustrated | Not Illustrated |
indexdate | 2024-11-25T15:02:57Z |
institution | BVB |
isbn | 9783031584596 |
issn | 2813-0057 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035260435 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xii, 181 Seiten Diagramme 235 mm |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Springer |
record_format | marc |
series2 | Coimbra Mathematical Texts |
spelling | Borceux, Francis 1948- Verfasser (DE-588)11084825X aut Galois Theories of Fields and Rings Francis Borceux 2024 Cham Springer [2024] xii, 181 Seiten Diagramme 235 mm txt rdacontent n rdamedia nc rdacarrier Coimbra Mathematical Texts Volume 2 2813-0057 This textbook arises from a master’s course taught by the author at the University of Coimbra. It takes the reader from the very classical Galois theorem for fields to its generalization to the case of rings. Given a finite-dimensional Galois extension of fields, the classical bijection between the intermediate field extensions and the subgroups of the corresponding Galois group was extended by Grothendieck as an equivalence between finite-dimensional split algebras and finite sets on which the Galois group acts. Adding further profinite topologies on the Galois group and the sets on which it acts, these two theorems become valid in arbitrary dimension. Taking advantage of the power of category theory, the second part of the book generalizes this most general Galois theorem for fields to the case of commutative rings. This book should be of interest to field theorists and ring theorists wanting to discover new techniques which make it possible to liberate Galois theory from its traditional restricted context of field theory. It should also be of great interest to category theorists who want to apply their everyday techniques to produce deep results in other domains of mathematics bicssc bisacsh Mathematics Algebra Galois-Theorie (DE-588)4155901-0 gnd rswk-swf Galois-Theorie (DE-588)4155901-0 s DE-604 Erscheint auch als Online-Ausgabe 978-3-031-58460-2 |
spellingShingle | Borceux, Francis 1948- Galois Theories of Fields and Rings bicssc bisacsh Mathematics Algebra Galois-Theorie (DE-588)4155901-0 gnd |
subject_GND | (DE-588)4155901-0 |
title | Galois Theories of Fields and Rings |
title_auth | Galois Theories of Fields and Rings |
title_exact_search | Galois Theories of Fields and Rings |
title_full | Galois Theories of Fields and Rings Francis Borceux |
title_fullStr | Galois Theories of Fields and Rings Francis Borceux |
title_full_unstemmed | Galois Theories of Fields and Rings Francis Borceux |
title_short | Galois Theories of Fields and Rings |
title_sort | galois theories of fields and rings |
topic | bicssc bisacsh Mathematics Algebra Galois-Theorie (DE-588)4155901-0 gnd |
topic_facet | bicssc bisacsh Mathematics Algebra Galois-Theorie |
work_keys_str_mv | AT borceuxfrancis galoistheoriesoffieldsandrings |